Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = iron(III) phosphate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
68 pages, 6774 KiB  
Review
Geobiological and Biochemical Cycling in the Early Cambrian: Insights from Phosphoritic Materials of South Spain
by Ting Huang and David C. Fernández-Remolar
Minerals 2025, 15(3), 203; https://doi.org/10.3390/min15030203 - 20 Feb 2025
Cited by 1 | Viewed by 832
Abstract
In the early Cambrian period, a severe greenhouse effect subjected the Gondwanan continents to accelerated erosion, enriching oceanic waters with essential nutrients, including phosphate, silicon, calcium, magnesium, iron, and trace elements. The nutrient flux, sourced from the volcanic composition of west Gondwana, was [...] Read more.
In the early Cambrian period, a severe greenhouse effect subjected the Gondwanan continents to accelerated erosion, enriching oceanic waters with essential nutrients, including phosphate, silicon, calcium, magnesium, iron, and trace elements. The nutrient flux, sourced from the volcanic composition of west Gondwana, was recorded as sequences of nodular phosphoritic limestones intercalated with chlorite-rich silts, containing ferrous phyllosilicates such as chamosite and chlorite. The abundant and diverse fossil record within these deposits corroborates that the ion supply facilitated robust biogeochemical and nutrient cycling, promoting elevated biological productivity and biodiversity. This paper investigates the early Cambrian nutrient fluxes from the Gondwanan continental region, focusing on the formation of phosphoritic and ferrous facies and the diversity of the fossil record. We estimate and model the biogeochemical cycling within a unique early Cambrian ecosystem located in South Spain, characterized by calcimicrobial reefs interspersed with archaeocyathids that settled atop a tectonically elevated volcano-sedimentary platform. The configuration enclosed a shallow marine lagoon nourished by riverine contributions including ferric and phosphatic complexes. Geochemical analyses revealed varying concentrations of iron (0.14–3.23 wt%), phosphate (0.1–20.0 wt%), and silica (0.27–69.0 wt%) across different facies, with distinct patterns between reef core and lagoonal deposits. Using the Geochemist’s Workbench software and field observations, we estimated that continental andesite weathering rates were approximately 23 times higher than the rates predicted through modeling, delivering, at least, annual fluxes of 0.286 g·cm⁻²·yr⁻¹ for Fe and 0.0146 g·cm⁻²·yr⁻¹ for PO₄³⁻ into the lagoon. The abundant and diverse fossil assemblage, comprising over 20 distinct taxonomic groups dominated by mollusks and small shelly fossils, indicates that this nutrient influx facilitated robust biogeochemical cycling and elevated biological productivity. A carbon budget analysis revealed that while the system produced an estimated 1.49·10¹⁵ g of C over its million-year existence, only about 0.01% was preserved in the rock record. Sulfate-reducing and iron-reducing chemoheterotrophic bacteria played essential roles in organic carbon recycling, with sulfate reduction serving as the dominant degradation pathway, processing approximately 1.55·10¹¹ g of C compared to the 5.94·10⁸ g of C through iron reduction. A stoichiometric analysis based on Redfield ratios suggested significant deviations in the C:P ratios between the different facies and metabolic pathways, ranging from 0.12 to 161.83, reflecting the complex patterns of organic matter preservation and degradation. The formation of phosphorites and ferrous phyllosilicates was primarily controlled by suboxic conditions in the lagoon, where microbial iron reduction destabilized Fe(III)-bearing oxyhydroxide complexes, releasing scavenged phosphate. This analysis of nutrient cycling in the Las Ermitas reef–lagoon system demonstrates how intensified continental weathering and enhanced nutrient fluxes during the early Cambrian created favorable conditions for the development of complex marine ecosystems. The quantified nutrient concentrations, weathering rates, and metabolic patterns established here provide a baseline data for future research addressing the biogeochemical conditions that facilitated the Cambrian explosion and offering new insights into the co-evolution of Earth’s geochemical cycles and early animal communities. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

17 pages, 2007 KiB  
Article
Modeling of the Nanofiltration Process Based on Convective Diffusion Theory
by Sergei Lazarev, Dmitrii Protasov, Dmitrii Konovalov, Irina Khorokhorina and Oleg Abonosimov
Modelling 2024, 5(4), 1729-1744; https://doi.org/10.3390/modelling5040090 - 18 Nov 2024
Cited by 1 | Viewed by 822
Abstract
The article formulates the state of the problem of improving the theoretical calculation of the nanofiltration kinetic characteristics in the time cycle of separation of industrial solutions containing copper(II), iron(III), trisodium phosphate and OP-10 (a wetting agent used in electroplating, a product of [...] Read more.
The article formulates the state of the problem of improving the theoretical calculation of the nanofiltration kinetic characteristics in the time cycle of separation of industrial solutions containing copper(II), iron(III), trisodium phosphate and OP-10 (a wetting agent used in electroplating, a product of treating a mixture of mono- and dialkylphenols with ethylene oxide) using the equations of convective diffusion, hydrodynamics and mass transfer. To calculate the kinetic characteristics of the nanofiltration process, the mathematical model was improved by numerically solving the equations of convective diffusion, the Navier–Stokes equation and the flow continuity equation in a polar coordinate system with initial and boundary conditions. The theoretical results obtained in the process of an analytical solution of the system of equations allow calculating changes in concentrations in the permeate and retentate tracts and the permeate volume during nanofiltration separation. The acceptability of the developed nanofiltration method for separating solutions is assessed by comparing the calculated data according to the mathematical model with the experimental data obtained on the nanofiltration unit during separation of solutions containing copper(II), iron(III), trisodium phosphate and OP-10. Full article
Show Figures

Figure 1

16 pages, 2491 KiB  
Article
Influence of Phosphate on Arsenic Adsorption Behavior of Si-Fe-Mg Mixed Hydrous Oxide
by Marjjuk Ahmed and Tomoyuki Kuwabara
Toxics 2024, 12(4), 280; https://doi.org/10.3390/toxics12040280 - 11 Apr 2024
Cited by 2 | Viewed by 1698
Abstract
The arsenic adsorption performance of silicon (Si), iron (Fe), and magnesium (Mg) mixed hydrous oxide containing a Si: Fe: Mg metal composition ratio of 0.05:0.9:0.05 (SFM05905) was investigated. SFM05905 was synthesized by the co-precipitation method. Batch experiments on arsenic adsorption were conducted at [...] Read more.
The arsenic adsorption performance of silicon (Si), iron (Fe), and magnesium (Mg) mixed hydrous oxide containing a Si: Fe: Mg metal composition ratio of 0.05:0.9:0.05 (SFM05905) was investigated. SFM05905 was synthesized by the co-precipitation method. Batch experiments on arsenic adsorption were conducted at various temperatures and concentrations. Adsorption isotherms models were represented by a linearized equations and were insensitive to temperature change. The anion selectivity of SFM05905 at single component was high for arsenite (III), arsenate (V), and phosphate (PO4), indicating that PO4 inhibits arsenic adsorption. The adsorption amount of As (III), As (V), and PO4 were compared using a column packed with granular SFM05905, and an aqueous solution was passed by a combination of several anions that are single, binary, and ternary adsorbate systems. As (III) had the highest adsorption amount; however, As (III) and PO4 were affected by each other under the ternary mixing condition. Although the adsorption amount of As (V) was smaller than that of As (III), it was not affected by other adsorbates in the column experiments. Finally, although the adsorption of both arsenic continued, the adsorbed PO4 gradually desorbed. Full article
(This article belongs to the Special Issue Techniques and Methods for Toxic Agent Analysis and Removal)
Show Figures

Figure 1

13 pages, 4937 KiB  
Article
Modification of Layered Cathodes of Sodium-Ion Batteries with Conducting Polymers
by M. Ángeles Hidalgo, Pedro Lavela, José L. Tirado and Manuel Aranda
Batteries 2024, 10(3), 93; https://doi.org/10.3390/batteries10030093 - 6 Mar 2024
Cited by 5 | Viewed by 3345
Abstract
Layered oxides exhibit interesting performance as positive electrodes for commercial sodium-ion batteries. Nevertheless, the replacement of low-sustainable nickel with more abundant iron would be desirable. Although it can be achieved in P2-Na2/3Ni2/9Fe2/9Mn5/9O2, its [...] Read more.
Layered oxides exhibit interesting performance as positive electrodes for commercial sodium-ion batteries. Nevertheless, the replacement of low-sustainable nickel with more abundant iron would be desirable. Although it can be achieved in P2-Na2/3Ni2/9Fe2/9Mn5/9O2, its performance still requires further improvement. Many imaginative strategies such as surface modification have been proposed to minimize undesirable interactions at the cathode–electrolyte interface while facilitating sodium insertion in different materials. Here, we examine four different approaches based on the use of the electron-conductive polymer poly(3,4-ethylene dioxythiophene) (PEDOT) as an additive: (i) electrochemical in situ polymerization of the monomer, (ii) manual mixing with the active material, (iii) coating the current collector, and (iv) a combination of the latter two methods. As compared with pristine layered oxide, the electrochemical performance shows a particularly effective way of increasing cycling stability by using electropolymerization. Contrarily, the mixtures show less improvement, probably due to the heterogeneous distribution of oxide and polymer in the samples. In contrast with less conductive polyanionic cathode materials such as phosphates, the beneficial effects of PEDOT on oxide cathodes are not as much in rate performance as in inhibiting cycling degradation, due to the compactness of the electrodes without loss of electrical contact between active particles. Full article
(This article belongs to the Special Issue High-Performance Materials for Sodium-Ion Batteries)
Show Figures

Graphical abstract

18 pages, 5498 KiB  
Article
Development of Electrochemical Sensor Using Iron (III) Phthalocyanine/Gold Nanoparticle/Graphene Hybrid Film for Highly Selective Determination of Nicotine in Human Salivary Samples
by Kavitha Kamalasekaran, Vasanth Magesh, Raji Atchudan, Sandeep Arya and Ashok K. Sundramoorthy
Biosensors 2023, 13(9), 839; https://doi.org/10.3390/bios13090839 - 23 Aug 2023
Cited by 24 | Viewed by 3148
Abstract
Nicotine is the one of the major addictive substances; the overdose of nicotine (NIC) consumption causes increasing heart rate, blood pressure, stroke, lung cancer, and respiratory illnesses. In this study, we have developed a precise and sensitive electrochemical sensor for nicotine detection in [...] Read more.
Nicotine is the one of the major addictive substances; the overdose of nicotine (NIC) consumption causes increasing heart rate, blood pressure, stroke, lung cancer, and respiratory illnesses. In this study, we have developed a precise and sensitive electrochemical sensor for nicotine detection in saliva samples. It was built on a glassy carbon electrode (GCE) modified with graphene (Gr), iron (III) phthalocyanine-4,4′,4″,4′′′-tetrasulfonic acid (Fe(III)Pc), and gold nanoparticles (AuNPs/Fe(III)Pc/Gr/GCE). The AuNPs/Fe(III)Pc/Gr nanocomposite was prepared and characterized by using FE-SEM, EDX, and E-mapping techniques to confirm the composite formation as well as the even distribution of elements. Furthermore, the newly prepared AuNPs/Fe(III)Pc/Gr/GCE-nanocomposite-based sensor was used to detect the nicotine in phosphate-buffered solution (0.1 M PBS, pH 7.4). The AuNPs/Fe(III)Pc/Gr/GCE-based sensor offered a linear response against NIC from 0.5 to 27 µM with a limit of detection (LOD) of 17 nM using the amperometry (i–t curve) technique. This electrochemical sensor demonstrated astounding selectivity and sensitivity during NIC detection in the presence of common interfering molecules in 0.1 M PBS. Moreover, the effect of pH on NIC electro-oxidation was studied, which indicated that PBS with pH 7.4 was the best medium for NIC determination. Finally, the AuNPs/Fe(III)Pc/Gr/GCE sensor was used to accurately determine NIC concentration in human saliva samples, and the recovery percentages were also calculated. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Figure 1

18 pages, 5288 KiB  
Article
Interaction and Redox Chemistry between Iron, Dopamine, and Alpha-Synuclein C-Terminal Peptides
by Fabio Schifano, Simone Dell’Acqua, Stefania Nicolis, Luigi Casella and Enrico Monzani
Antioxidants 2023, 12(4), 791; https://doi.org/10.3390/antiox12040791 - 24 Mar 2023
Cited by 4 | Viewed by 2166
Abstract
α-Synuclein (αS), dopamine (DA), and iron have a crucial role in the etiology of Parkinson’s disease. The present study aims to investigate the interplay between these factors by analyzing the DA/iron interaction and how it is affected by the presence of the C-terminal [...] Read more.
α-Synuclein (αS), dopamine (DA), and iron have a crucial role in the etiology of Parkinson’s disease. The present study aims to investigate the interplay between these factors by analyzing the DA/iron interaction and how it is affected by the presence of the C-terminal fragment of αS (Ac-αS119–132) that represents the iron-binding domain. At high DA:Fe molar ratios, the formation of the [FeIII(DA)2] complex prevents the interaction with αS peptides, whereas, at lower DA:Fe molar ratios, the peptide is able to compete with one of the two coordinated DA molecules. This interaction is also confirmed by HPLC-MS analysis of the post-translational modifications of the peptide, where oxidized αS is observed through an inner-sphere mechanism. Moreover, the presence of phosphate groups in Ser129 (Ac-αSpS119–132) and both Ser129 and Tyr125 (Ac-αSpYpS119–132) increases the affinity for iron(III) and decreases the DA oxidation rate, suggesting that this post-translational modification may assume a crucial role for the αS aggregation process. Finally, αS interaction with cellular membranes is another key aspect for αS physiology. Our data show that the presence of a membrane-like environment induced an enhanced peptide effect over both the DA oxidation and the [FeIII(DA)2] complex formation and decomposition. Full article
(This article belongs to the Special Issue Iron Metabolism, Oxidative Stress and Cellular Dysfunction)
Show Figures

Figure 1

18 pages, 10725 KiB  
Article
Nanoscale Iron-Based Metal–Organic Frameworks: Incorporation of Functionalized Drugs and Degradation in Biological Media
by Ioanna Christodoulou, Pengbo Lyu, Carla Vieira Soares, Gilles Patriarche, Christian Serre, Guillaume Maurin and Ruxandra Gref
Int. J. Mol. Sci. 2023, 24(4), 3362; https://doi.org/10.3390/ijms24043362 - 8 Feb 2023
Cited by 18 | Viewed by 2957
Abstract
Metal–organic frameworks (MOFs) attract growing interest in biomedical applications. Among thousands of MOF structures, the mesoporous iron(III) carboxylate MIL-100(Fe) (MIL stands for the Materials of Lavoisier Institute) is among the most studied MOF nanocarrier, owing to its high porosity, biodegradability, and lack of [...] Read more.
Metal–organic frameworks (MOFs) attract growing interest in biomedical applications. Among thousands of MOF structures, the mesoporous iron(III) carboxylate MIL-100(Fe) (MIL stands for the Materials of Lavoisier Institute) is among the most studied MOF nanocarrier, owing to its high porosity, biodegradability, and lack of toxicity. Nanosized MIL-100(Fe) particles (nanoMOFs) readily coordinate with drugs leading to unprecedented payloads and controlled release. Here, we show how the functional groups of the challenging anticancer drug prednisolone influence their interactions with the nanoMOFs and their release in various media. Molecular modeling enabled predicting the strength of interactions between prednisolone-bearing or not phosphate or sulfate moieties (PP and PS, respectively) and the oxo-trimer of MIL-100(Fe) as well as understanding the pore filling of MIL-100(Fe). Noticeably, PP showed the strongest interactions (drug loading up to 30 wt %, encapsulation efficiency > 98%) and slowed down the nanoMOFs’ degradation in simulated body fluid. This drug was shown to bind to the iron Lewis acid sites and was not displaced by other ions in the suspension media. On the contrary, PS was entrapped with lower efficiencies and was easily displaced by phosphates in the release media. Noticeably, the nanoMOFs maintained their size and faceted structures after drug loading and even after degradation in blood or serum after losing almost the totality of the constitutive trimesate ligands. Scanning electron microscopy with high annular dark field (STEM-HAADF) in conjunction with X-Ray energy-dispersive spectrometry (XEDS) was a powerful tool enabling the unraveling of the main elements to gain insights on the MOF structural evolution after drug loading and/or upon degradation. Full article
(This article belongs to the Special Issue Implication of Nanoparticles in Cancer Therapy Research)
Show Figures

Figure 1

18 pages, 4344 KiB  
Article
Influence of Additives Concentration on the Electrical Properties and the Tribological Behaviour of Three Automatic Transmission Fluids
by Alejandro García Tuero, Noelia Rivera, Eduardo Rodríguez, Alfonso Fernández-González, José Luis Viesca and Antolín Hernández Battez
Lubricants 2022, 10(11), 276; https://doi.org/10.3390/lubricants10110276 - 22 Oct 2022
Cited by 18 | Viewed by 2705
Abstract
Placing an electric motor (EM) inside the transmission housing of a hybrid electric vehicle (HEV) implies that the automatic transmission fluid (ATF) needs to accomplish additional requirements. Among these requirements, electrical compatibility is of critical significance. This study investigated the influences of the [...] Read more.
Placing an electric motor (EM) inside the transmission housing of a hybrid electric vehicle (HEV) implies that the automatic transmission fluid (ATF) needs to accomplish additional requirements. Among these requirements, electrical compatibility is of critical significance. This study investigated the influences of the additive concentrations of three commercial ATFs on their electrical compatibilities and tribological performances. Two variations of each ATF with different concentrations of the original additive packages were prepared. The viscosity, electrical conductivity, permittivity, resistivity, dielectric dissipation factor, breakdown voltage, and tribological performance of the nine resulting ATFs were measured. All the ATFs were found to be electrically compatible and showed dissipative performance and sufficiently high breakdown voltage, even at increasing additive concentrations. The tribological performances of the ATFs formulated with the API (American Petroleum Institute) Group III base oils had improved wear reduction at the highest additive concentrations; the better wear performance was related to the formation of iron phosphates and polyphosphates on the worn surface. Full article
(This article belongs to the Special Issue Thermally and Electrically Conductive Nanomaterials Lubricants)
Show Figures

Graphical abstract

11 pages, 1997 KiB  
Article
Hydrometallurgical Recovery of Iron, Nickel, and Chromium from Stainless Steel Sludge with Emphasis on Solvent Extraction and Chemical Precipitation
by Wei-Sheng Chen, Yu-Chi Chen and Cheng-Han Lee
Processes 2022, 10(4), 748; https://doi.org/10.3390/pr10040748 - 12 Apr 2022
Cited by 16 | Viewed by 5800
Abstract
Stainless steel has a variety of applications nowadays because of its mechanical strength and corrosion resistance. The large-scale machinery made up of stainless steel has an outstanding performance and endurance for manufacturing industries. However, stainless steel scraps accumulate with a lubricant to form [...] Read more.
Stainless steel has a variety of applications nowadays because of its mechanical strength and corrosion resistance. The large-scale machinery made up of stainless steel has an outstanding performance and endurance for manufacturing industries. However, stainless steel scraps accumulate with a lubricant to form sludge during the operation. To reduce the environmental hazards caused by sludge, this research attempts to construct a hydrometallurgical process to recover iron, nickel, and chromium from the sludge. The experiments could be divided into four parts. First, calcination was adopted to remove the oil and water content. The factors that have impacts on the leaching efficiency, such as the type of acid and the calcination temperature, were investigated in the second part. It was optimal that the sludge was calcined at 300 ℃ for 8 h and leached by 4 mol/L HCl. The results revealed that the leaching percentages of iron, nickel, and chromium were 97.6%, 98.1%, and 95.7%, respectively. In the two-stage solvent extraction procedure, Fe(III) could be efficiently recovered by using 0.1 mol/L bis(2-ethlhexyl) phosphate (D2EHPA) at pH 1.5 with an Aqueous/Organic ratio of 1 over 10 min. The results indicated that the extraction percentage of Fe(III) was beyond 99%. Eventually, the recoveries of nickel and chromium were respectively 99.5% and 75% through chemical precipitation. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design)
Show Figures

Figure 1

14 pages, 1870 KiB  
Article
Coagulation Behavior of Antimony Oxyanions in Water: Influence of pH, Inorganic and Organic Matter on the Physicochemical Characteristics of Iron Precipitates
by Muhammad Ali Inam, Kang Hoon Lee, Hira Lal Soni, Kashif Hussain Mangi, Abdul Sami Channa, Rizwan Khan, Young Min Wie and Ki Gang Lee
Molecules 2022, 27(5), 1663; https://doi.org/10.3390/molecules27051663 - 3 Mar 2022
Cited by 3 | Viewed by 2545
Abstract
The presence of inorganic and organic substances may alter the physicochemical properties of iron (Fe) salt precipitates, thereby stabilizing the antimony (Sb) oxyanions in potable water during the chemical treatment process. Therefore, the present study aimed to examine the surface characteristics, size of [...] Read more.
The presence of inorganic and organic substances may alter the physicochemical properties of iron (Fe) salt precipitates, thereby stabilizing the antimony (Sb) oxyanions in potable water during the chemical treatment process. Therefore, the present study aimed to examine the surface characteristics, size of Fe flocs and coagulation performance of Sb oxyanions under different aqueous matrices. The results showed that surface properties of Fe flocs significantly varies with pH in both Sb(III, V) suspensions, thereby increasing the mobility of Sb(V) ions in alkaline conditions. The negligible change in surface characteristics of Fe flocs was observed in pure water and Sb(III, V) suspension at pH 7. The key role of Van der Waals forces of attraction as well as hydration force in the aggregation of early formed flocs were found, with greater agglomeration capability at higher more ferric chloride dosage. The higher Sb(V) loading decreased the size of Fe flocs and reversed the surface charge of precipitates, resulting in a significant reduction in Sb(V) removal efficiency. The competitive inhibition effect on Sb(III, V) removal was noticed in the presence of phosphate anions, owing to lowering of ζ-potential values towards more negative trajectory. The presence of hydrophobic organic matter (humic acid) significantly altered the surface characteristics of Fe flocs, thereby affecting the coagulation behavior of Sb in water as compared to the hydrophilic (salicylic acid). Overall, the findings of this research may provide a new insight into the variation in physicochemical characteristics of Fe flocs and Sb removal behavior in the presence of inorganic and organic compounds during the drinking water treatment process. Full article
Show Figures

Figure 1

16 pages, 2235 KiB  
Article
Adsorption Capacities of Iron Hydroxide for Arsenate and Arsenite Removal from Water by Chemical Coagulation: Kinetics, Thermodynamics and Equilibrium Studies
by Muhammad Ali Inam, Rizwan Khan, Kang Hoon Lee, Muhammad Akram, Zameer Ahmed, Ki Gang Lee and Young Min Wie
Molecules 2021, 26(22), 7046; https://doi.org/10.3390/molecules26227046 - 22 Nov 2021
Cited by 14 | Viewed by 2978
Abstract
Arsenic (As)-laden wastewater may pose a threat to biodiversity when released into soil and water bodies without treatment. The current study investigated the sorption properties of both As(III, V) oxyanions onto iron hydroxide (FHO) by chemical coagulation. The potential mechanisms were identified using [...] Read more.
Arsenic (As)-laden wastewater may pose a threat to biodiversity when released into soil and water bodies without treatment. The current study investigated the sorption properties of both As(III, V) oxyanions onto iron hydroxide (FHO) by chemical coagulation. The potential mechanisms were identified using the adsorption models, ζ-potential, X-ray diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR) analysis. The results indicate that the sorption kinetics of pentavalent and trivalent As species closely followed the pseudo-second-order model, and the adsorption rates of both toxicants were remarkably governed by pH as well as the quantity of FHO in suspension. Notably, the FHO formation was directly related to the amount of ferric chloride (FC) coagulant added in the solution. The sorption isotherm results show a better maximum sorption capacity for pentavalent As ions than trivalent species, with the same amount of FHO in the suspensions. The thermodynamic study suggests that the sorption process was spontaneously exothermic with increased randomness. The ζ-potential, FT-IR and XRD analyses confirm that a strong Fe-O bond with As(V) and the closeness of the surface potential of the bonded complex to the point of zero charge (pHzpc) resulted in the higher adsorption affinity of pentavalent As species than trivalent ions in most aquatic conditions. Moreover, the presence of sulfates, phosphates, and humic and salicylic acid significantly affected the As(III, V) sorption performance by altering the surface properties of Fe precipitates. The combined effect of charge neutralization, complexation, oxidation and multilayer chemisorption was identified as a major removal mechanism. These findings may provide some understanding regarding the fate, transport and adsorption properties onto FHO of As oxyanions in a complex water environment. Full article
(This article belongs to the Special Issue Nano Environmental Materials)
Show Figures

Graphical abstract

16 pages, 2478 KiB  
Article
Cationic Polymer-Coated Magnetic Nanoparticles with Antibacterial Properties: Synthesis and In Vitro Characterization
by Anastasiia B. Shatan, Vitalii Patsula, Aneta Dydowiczová, Kristýna Gunár, Nadiia Velychkivska, Jiřina Hromádková, Eduard Petrovský and Daniel Horák
Antibiotics 2021, 10(9), 1077; https://doi.org/10.3390/antibiotics10091077 - 6 Sep 2021
Cited by 11 | Viewed by 3630
Abstract
Uniformly sized magnetite nanoparticles (Dn = 16 nm) were prepared by a thermal decomposition of Fe(III) oleate in octadec-1-ene and stabilized by oleic acid. The particles were coated with Sipomer PAM-200 containing both phosphate and methacrylic groups available for the attachment [...] Read more.
Uniformly sized magnetite nanoparticles (Dn = 16 nm) were prepared by a thermal decomposition of Fe(III) oleate in octadec-1-ene and stabilized by oleic acid. The particles were coated with Sipomer PAM-200 containing both phosphate and methacrylic groups available for the attachment to the iron oxide and at the same time enabling (co)polymerization of 2-(dimethylamino)ethyl methacrylate and/or 2-tert-butylaminoethyl methacrylate at two molar ratios. The poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[2-(dimethylamino)ethyl methacrylate-co-2-tert-butylaminoethyl methacrylate] [P(DMAEMA-TBAEMA)] polymers and the particles were characterized by 1H NMR spectroscopy, size-exclusion chromatography, transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, magnetometry, and ATR FTIR and atomic absorption spectroscopy. The antimicrobial effect of cationic polymer-coated magnetite nanoparticles tested on both Escherichia coli and Staphylococcus aureus bacteria was found to be time- and dose-responsive. The P(DMAEMA-TBAEMA)-coated magnetite particles possessed superior biocidal properties compared to those of P(DMAEMA)-coated one. Full article
(This article belongs to the Special Issue Synthesis and Biological Activity of Antimicrobial Agents)
Show Figures

Graphical abstract

16 pages, 3068 KiB  
Article
Electrochemical Detection of Dopamine at Fe3O4/SPEEK Modified Electrode
by Mogomotsi N. Ranku, Gloria E. Uwaya and Omolola E. Fayemi
Molecules 2021, 26(17), 5357; https://doi.org/10.3390/molecules26175357 - 3 Sep 2021
Cited by 19 | Viewed by 4242
Abstract
Reported here is the design of an electrochemical sensor for dopamine (DA) based on a screen print carbon electrode modified with a sulphonated polyether ether ketone-iron (III) oxide composite (SPCE-Fe3O4/SPEEK). L. serica leaf extract was used in the synthesis [...] Read more.
Reported here is the design of an electrochemical sensor for dopamine (DA) based on a screen print carbon electrode modified with a sulphonated polyether ether ketone-iron (III) oxide composite (SPCE-Fe3O4/SPEEK). L. serica leaf extract was used in the synthesis of iron (III) oxide nanoparticles (Fe3O4NPs). Successful synthesis of Fe3O4NP was confirmed through characterization using Fourier transform infrared (FTIR), ultraviolet–visible light (UV–VIS), X-ray diffractometer (XRD), and scanning electron microscopy (SEM). Cyclic voltammetry (CV) was used to investigate the electrochemical behaviour of Fe3O4/SPEEK in 0.1 M of phosphate buffer solution (PBS) containing 5 mM of potassium ferricyanide (III) solution (K3[Fe(CN)6]). An increase in peak current was observed at the nanocomposite modified electrode SPCE-Fe3O4/SPEEK) but not SPCE and SPCE-Fe3O4, which could be ascribed to the presence of SPEEK. CV and square wave voltammetry (SWV) were employed in the electroxidation of dopamine (0.1 mM DA). The detection limit (LoD) of 7.1 μM and 0.005 μA/μM sensitivity was obtained for DA at the SPCE-Fe3O4/SPEEK electrode with concentrations ranging from 5–50 μM. LOD competes well with other electrodes reported in the literature. The developed sensor demonstrated good practical applicability for DA in a DA injection with good resultant recovery percentages and RSDs values. Full article
Show Figures

Graphical abstract

19 pages, 4275 KiB  
Article
Genome Mining and Comparative Genome Analysis Revealed Niche-Specific Genome Expansion in Antibacterial Bacillus pumilus Strain SF-4
by Sajid Iqbal, John Vollmers and Hussnain Ahmed Janjua
Genes 2021, 12(7), 1060; https://doi.org/10.3390/genes12071060 - 12 Jul 2021
Cited by 21 | Viewed by 5277
Abstract
The present study reports the isolation of antibacterial exhibiting Bacillus pumilus (B. pumilus) SF-4 from soil field. The genome of this strain SF-4 was sequenced and analyzed to acquire in-depth genomic level insight related to functional diversity, evolutionary history, and biosynthetic [...] Read more.
The present study reports the isolation of antibacterial exhibiting Bacillus pumilus (B. pumilus) SF-4 from soil field. The genome of this strain SF-4 was sequenced and analyzed to acquire in-depth genomic level insight related to functional diversity, evolutionary history, and biosynthetic potential. The genome of the strain SF-4 harbor 12 Biosynthetic Gene Clusters (BGCs) including four Non-ribosomal peptide synthetases (NRPSs), two terpenes, and one each of Type III polyketide synthases (PKSs), hybrid (NRPS/PKS), lipopeptide, β-lactone, and bacteriocin clusters. Plant growth-promoting genes associated with de-nitrification, iron acquisition, phosphate solubilization, and nitrogen metabolism were also observed in the genome. Furthermore, all the available complete genomes of B. pumilus strains were used to highlight species boundaries and diverse niche adaptation strategies. Phylogenetic analyses revealed local diversification and indicate that strain SF-4 is a sister group to SAFR-032 and 150a. Pan-genome analyses of 12 targeted strains showed regions of genome plasticity which regulate function of these strains and proposed direct strain adaptations to specific habitats. The unique genome pool carries genes mostly associated with “biosynthesis of secondary metabolites, transport, and catabolism” (Q), “replication, recombination and repair” (L), and “unknown function” (S) clusters of orthologous groups (COG) categories. Moreover, a total of 952 unique genes and 168 exclusively absent genes were prioritized across the 12 genomes. While newly sequenced B. pumilus SF-4 genome consists of 520 accessory, 59 unique, and seven exclusively absent genes. The current study demonstrates genomic differences among 12 B. pumilus strains and offers comprehensive knowledge of the respective genome architecture which may assist in the agronomic application of this strain in future. Full article
(This article belongs to the Special Issue Microbial Genomics and Evolution)
Show Figures

Figure 1

17 pages, 4793 KiB  
Article
Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin
by Chiara Turrina, Sonja Berensmeier and Sebastian P. Schwaminger
Pharmaceuticals 2021, 14(5), 405; https://doi.org/10.3390/ph14050405 - 24 Apr 2021
Cited by 41 | Viewed by 5519
Abstract
New drug delivery systems are a potential solution for administering drugs to reduce common side effects of traditional methods, such as in cancer therapy. Iron oxide nanoparticles (IONs) can increase the drugs’ biological activity through high binding efficiency and magnetically targeted drug delivery. [...] Read more.
New drug delivery systems are a potential solution for administering drugs to reduce common side effects of traditional methods, such as in cancer therapy. Iron oxide nanoparticles (IONs) can increase the drugs’ biological activity through high binding efficiency and magnetically targeted drug delivery. Understanding the adsorption and release process of a drug to the carrier material plays a significant role in research to generate an applicable and controlled drug delivery system. This contribution focuses on the binding patterns of the peptide lasioglossin III from bee venom on bare IONs. Lasioglossin has a high antimicrobial behavior and due to its cationic properties, it has high binding potential. Considering the influence of pH, the buffer type, the particle concentration, and time, the highest drug loading of 22.7% is achieved in phosphate-buffered saline. Analysis of the desorption conditions revealed temperature and salt concentration sensitivity. The nanoparticles and peptide-ION complexes are analyzed with dynamic light scattering, zeta potential, and infrared spectroscopy. Additionally, cytotoxicity experiments performed on Escherichia coli show higher antimicrobial activity of bound lasioglossin than of the free peptide. Therefore, bare IONs are an interesting platform material for the development of drug-delivery carriers for cationic peptides. Full article
Show Figures

Figure 1

Back to TopTop