Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = ionospheric D-region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2733 KiB  
Data Descriptor
Investigating Mid-Latitude Lower Ionospheric Responses to Energetic Electron Precipitation: A Case Study
by Aleksandra Kolarski, Vladimir A. Srećković, Zoran R. Mijić and Filip Arnaut
Data 2025, 10(8), 121; https://doi.org/10.3390/data10080121 - 26 Jul 2025
Viewed by 209
Abstract
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to [...] Read more.
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to the localized, transient nature of Energetic Electron Precipitation (EEP) events and the path-dependence of VLF responses, research relies on event-specific case studies to model reflection height and sharpness via numerical simulations. Findings show LIEs are typically under 1000 × 500 km, with varying internal structure. Accumulated case studies and corresponding data across diverse conditions contribute to a broader understanding of ionospheric dynamics and space weather effects. These findings enhance regional modeling, support aerosol–electricity climate research, and underscore the value of VLF-based ionospheric monitoring and collaboration in Europe. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

16 pages, 1538 KiB  
Article
Lower Ionospheric Perturbations Associated with Lightning Activity over Low and Equatorial Regions
by Dayanand Bhaskar, Rajat Tripathi, Mahesh N. Shrivastava, Rajesh Singh, Sudipta Sasmal, Abhirup Datta and Ajeet Kumar Maurya
Atmosphere 2025, 16(7), 832; https://doi.org/10.3390/atmos16070832 - 9 Jul 2025
Viewed by 305
Abstract
We present lightning-induced ionospheric perturbations in narrowband very-low-frequency (VLF) signals from the transmitters NWC (21.82° S, 114.17° E, 19.8 kHz) and VTX (8.4° N, 77.8° E, 18.6 kHz) recorded at the low-latitude station Dehradun (DDN; 30.3° N, 78.0° E) over a 12-month period [...] Read more.
We present lightning-induced ionospheric perturbations in narrowband very-low-frequency (VLF) signals from the transmitters NWC (21.82° S, 114.17° E, 19.8 kHz) and VTX (8.4° N, 77.8° E, 18.6 kHz) recorded at the low-latitude station Dehradun (DDN; 30.3° N, 78.0° E) over a 12-month period from September 2020 to October 2021. Early/slow VLF events, VLF LOREs, and step-like VLF LOREs associated with lightning were analyzed for their onset and recovery times. This study utilized data from the World Wide Lightning Location Network (WWLLN), which provides lightning locations and energy estimates. The results show that early/slow VLF events occur most frequently, accounting for approximately 68% of cases, followed by VLF LOREs at 12%, and step-like VLF LOREs at 10%. Furthermore, we observed that 100% of the VLF perturbing events occurred during the nighttime, which is not entirely consistent with previous studies. Moreover, more than 60% of VLF LOREs were associated with lightning energies of approximately 1 kJ, and about 40% were associated with lightning energies of ~10 kJ. Step-like VLF LOREs were linked to WWLLN energies between 1 and 5 kJ. The observed WWLLN energy range is somewhat lower than the energies reported in previous studies. Scattering characteristics revealed that 87.3% of events were associated with wide-angle scattering, while approximately 12.6% were linked to narrow-angle scattering. LWPC version 2.1 was used to simulate these perturbing events and to estimate the reflection height (H′, in km) and the exponential sharpness factor (β, in km−1) corresponding to changes in D-region electron density. The reflection height (H′, in km) and the exponential sharpness factor (β, in km−1) of the D-region varied from 83 to 87 km and from 0.42 to 0.79 km−1 for early/slow VLF events, from 83 to 85 km and from 0.5 to 0.75 km−1 for step-like VLF LOREs, and from 81 to 83 km and from 0.75 to 0.81 km−1 for VLF LOREs, respectively. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

20 pages, 6414 KiB  
Article
D- and F-Region Ionospheric Response to the Severe Geomagnetic Storm of April 2023
by Arnab Sen, Sujay Pal, Bakul Das and Sushanta K. Mondal
Atmosphere 2025, 16(6), 716; https://doi.org/10.3390/atmos16060716 - 13 Jun 2025
Viewed by 579
Abstract
This study investigates the impact on the Earth’s ionosphere of a severe geomagnetic storm (Dst  212 nT) that began on 23 April 2023 at around 17:37 UT according to very low-frequency (VLF, 3–30 kHz) or low-frequency (LF, 30–300 [...] Read more.
This study investigates the impact on the Earth’s ionosphere of a severe geomagnetic storm (Dst  212 nT) that began on 23 April 2023 at around 17:37 UT according to very low-frequency (VLF, 3–30 kHz) or low-frequency (LF, 30–300 kHz) radio signals and ionosonde data. We analyze VLF/LF signals received by SuperSID monitors located in mid-latitude (Europe) and low-latitude (South America, Colombia) areas across nine different propagation paths in the Northern Hemisphere. Mid-latitude regions exhibited a daytime amplitude perturbation, mostly an increase, by ∼3–5 dB during the storm period, with a subsequent recovery after 7–8 days post April 23. In contrast, signals received in low-latitude regions (UTP, Colombia) did not show significant variation during the storm-disturbed days. We also observe that the 3-hour average of foF2 data declined by up to 3 MHz on April 23 and April 24 at the European Digisonde stations. However, no significant variation in foF2 was observed at the low-latitude Digisonde stations in Brazil. Both the VLF and ionosonde data exhibited anomalies during the storm period in the European regions, confirming that both D- and F-region ionospheric perturbation was caused by the severe geomagnetic storm. Full article
Show Figures

Figure 1

17 pages, 9271 KiB  
Article
Temporal and Spatial Analysis of the Impact of the 2015 St. Patrick’s Day Geomagnetic Storm on Ionospheric TEC Gradients and GNSS Positioning in China Using GIX and ROTI Indices
by Zhihao Fu, Ningbo Wang, Xuhui Shen and Ang Li
Remote Sens. 2025, 17(12), 2027; https://doi.org/10.3390/rs17122027 - 12 Jun 2025
Viewed by 872
Abstract
Geomagnetic storms induce ionospheric disturbances, significantly affecting Global Navigation Satellite System (GNSS) positioning accuracy. This study investigates how geomagnetic storm-induced ionospheric irregularities influence GNSS Precise Point Positioning (PPP), using data from approximately 260 GNSS stations across China during 15 storm events between 1 [...] Read more.
Geomagnetic storms induce ionospheric disturbances, significantly affecting Global Navigation Satellite System (GNSS) positioning accuracy. This study investigates how geomagnetic storm-induced ionospheric irregularities influence GNSS Precise Point Positioning (PPP), using data from approximately 260 GNSS stations across China during 15 storm events between 1 January and 30 June 2015. We applied two indices—the Gradient Ionosphere Index (GIX), representing spatial gradients of vertical total electron content (VTEC), and the Rate of TEC Index (ROTI), describing temporal TEC variations. The analysis identified the St. Patrick’s Day geomagnetic storm (17 March 2015) as causing the most pronounced ionospheric disruptions, with significant east–west TEC gradients (|GIXx,P95| > 50 mTECU/km) consistently associated with substantial PPP errors (>0.5 m). Spatial analyses further indicated that significant 3D PPP errors (PPP, P95 > 0.4 m) closely overlapped with regions experiencing intense east–west TEC gradients, predominantly in the 20–35°N latitude band. Further analysis indicated notable pre-storm ionospheric enhancements driven by zonal electric fields, distinct ionospheric suppression associated with westward disturbance dynamo electric fields (DDEFs) on 18 March, and re-intensification due to eastward penetration electric fields (PEFs) on 19 March. Full article
Show Figures

Figure 1

19 pages, 5934 KiB  
Article
Variation in Total Electron Content During a Severe Geomagnetic Storm, 23–24 April 2023
by Atirsaw Muluye Tilahun, Edward Uluma and Yohannes Getachew Ejigu
Atmosphere 2025, 16(6), 676; https://doi.org/10.3390/atmos16060676 - 3 Jun 2025
Viewed by 478
Abstract
In this paper, we study the geomagnetic storm that occurred on 23–24 April 2023. We present variations in the values of interplanetary magnetic field (IMF-Bz), solar wind parameters (Vsw, Nsw, Tsw, and Psw), geomagnetic index (SYM-H), and vertical total electron content (VTEC) obtained [...] Read more.
In this paper, we study the geomagnetic storm that occurred on 23–24 April 2023. We present variations in the values of interplanetary magnetic field (IMF-Bz), solar wind parameters (Vsw, Nsw, Tsw, and Psw), geomagnetic index (SYM-H), and vertical total electron content (VTEC) obtained from 18 GPS-TEC stations situated in equatorial, mid-latitude, and high-latitude regions. We analyze the variations in total electron content (TEC) before, during, and after the storm using VTEC plots, dTEC% plots, and global ionospheric maps for each GNSS receiver station, all referenced to universal time (UT). Our results indicate that GNSS receiver stations located at high latitudes detected an increase in ionospheric density during the main phase and a decrease during the recovery phase. In contrast, stations in equatorial and mid-latitude regions detected a decrease in ionospheric density during the main phase and an increase during the recovery phase. Large dTEC% values ranging from −80 to 190 TECU were observed a few hours before and during the storm period (23–24 April 2023); these can be compared to values ranging from −10 to 20 TECU on the day before (22 April 2023) and the day after (25 April 2023). Notably, higher dTEC% values were observed at stations in high and middle latitudes compared to those in the equatorial region. As the storm progressed, the TEC intensification observed on global ionospheric maps appeared to shift from east to west. A detailed analysis of these maps showed that equatorial and low-latitude regions experienced larger spatial and temporal TEC variations during the storm period compared to higher-latitude regions. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

13 pages, 3745 KiB  
Communication
Seismo-Traveling Ionospheric Disturbances from the 2024 Hualien Earthquake: Altitude-Dependent Propagation Insights
by Zhiqiang Mao, Chieh-Hung Chen, Aisa Yisimayili, Jing Liu, Xuemin Zhang, Yang-Yi Sun, Yongxin Gao, Shengjia Zhang, Chuanqi Teng and Jianjun Zhao
Remote Sens. 2025, 17(7), 1241; https://doi.org/10.3390/rs17071241 - 31 Mar 2025
Viewed by 664
Abstract
The propagation of seismo-traveling ionospheric disturbances (STIDs) is generally observed at one specific altitude layer. On 2 April 2024, a Mw 7.4 earthquake struck Hualien, which was the biggest earthquake since the 1999 Chi-Chi earthquake in the Taiwan region. In this study, a [...] Read more.
The propagation of seismo-traveling ionospheric disturbances (STIDs) is generally observed at one specific altitude layer. On 2 April 2024, a Mw 7.4 earthquake struck Hualien, which was the biggest earthquake since the 1999 Chi-Chi earthquake in the Taiwan region. In this study, a co-located vertical monitoring system combined with the observation of two horizontal layers in the ionosphere was utilized to study the STIDs associated with the Hualien earthquake. The vertical monitoring system can capture disturbances from the ground surface up to a height of ~350 km. In addition, changes in electric currents and the TEC (total electron content) at two horizontal layers, ~100 km and ~350 km, were monitored by permanent geomagnetic stations and a ground-based GNSS (global navigation satellite system) receivers network, respectively. The observations from this four-dimensional (4D) monitoring network show that the STIDs at a height of ~100 km associated with Rayleigh waves can propagate as far as 2000 km from the epicenter, while at an altitude of ~350 km, they can only propagate to about 1000 km. At an altitude of about 200 km, STIDs were also captured by a high-frequency Doppler sounder in a vertical monitoring system, which was consistent with the results in the geomagnetic field. The results from the 4D monitoring network suggest that the STIDs associated with Rayleigh waves exhibit different propagation ranges at various altitudes and prefer to propagate at low ionosphere layers. The vertical propagating waves typically only reach the bottom of the ionosphere and struggle to propagate to higher regions over long distances. Full article
Show Figures

Figure 1

20 pages, 12169 KiB  
Article
Exploring the Advantages of Multi-GNSS Ionosphere-Weighted Single-Frequency Precise Point Positioning in Regional Ionospheric VTEC Modeling
by Ahao Wang, Yize Zhang, Junping Chen, Hu Wang, Xuexi Liu, Yihang Xu, Jing Li and Yuyan Yan
Remote Sens. 2025, 17(6), 1104; https://doi.org/10.3390/rs17061104 - 20 Mar 2025
Cited by 1 | Viewed by 448
Abstract
Although the traditional Carrier-to-Code Leveling (CCL) method can provide ideal slant total electron content (STEC) observables for establishing ionospheric models, it must rely on dual-frequency (DF) receivers, which results in high hardware costs. In this study, an ionosphere-weight (IW) single-frequency (SF) precise point [...] Read more.
Although the traditional Carrier-to-Code Leveling (CCL) method can provide ideal slant total electron content (STEC) observables for establishing ionospheric models, it must rely on dual-frequency (DF) receivers, which results in high hardware costs. In this study, an ionosphere-weight (IW) single-frequency (SF) precise point positioning (PPP) method for extracting STEC observables is proposed, and multi-global navigation satellite system (GNSS)-integrated processing is adopted to improve the spatial resolution of the ionospheric model. To investigate the advantages of this novel method, 41 European stations are used to establish the regional ionospheric model, and both low- and high-solar-activity conditions are considered. The results show that the IW SFPPP-derived regional ionospheric model has a significantly better quality of vertical total electron content (VTEC) than the CCL method when using the final global ionospheric map (GIM) as a reference, especially in areas with sparse monitoring stations. Compared with the CCL method, the RMS VTEC accuracy of the IW SFPPP method can be improved by 17.4% and 12.7% to 1.09 and 2.83 total electron content unit (TECU) in low- and high-solar-activity periods, respectively. Regarding GNSS carrier-phase-derived STEC variation (dSTEC) as the reference, the dSTEC accuracy of the IW SFPPP method is comparable to that of the CCL method, and its RMS values are about 1.5 and 2.8 TECU in low- and high-solar-activity conditions, respectively. This indicates that the proposed method using SF-only observations can achieve the same external accord accuracy as the CCL method in regional ionospheric modeling. Full article
(This article belongs to the Special Issue Advanced Multi-GNSS Positioning and Its Applications in Geoscience)
Show Figures

Figure 1

15 pages, 5408 KiB  
Technical Note
Predicting the Spatial Distribution of VLF Transmitter Signals Using Transfer Learning Models
by Hanqing Shi, Wei Xu, Binbin Ni, Xudong Gu, Shiwei Wang, Jingyuan Feng, Wen Cheng, Wenchen Ma, Haotian Xu, Yudi Pan and Dongfang Zhai
Remote Sens. 2025, 17(5), 871; https://doi.org/10.3390/rs17050871 - 28 Feb 2025
Viewed by 688
Abstract
The D-region ionosphere (60–100 km altitude) is critical for radio communication and space weather research but cannot be easily measured because it is too low for satellites and too high for balloons. The most effective technique is to remotely sense by measuring Very-Low-Frequency [...] Read more.
The D-region ionosphere (60–100 km altitude) is critical for radio communication and space weather research but cannot be easily measured because it is too low for satellites and too high for balloons. The most effective technique is to remotely sense by measuring Very-Low-Frequency (VLF, 3–30 kHz) waves emitted from man-made transmitters, a technique that was traditionally utilized to estimate the average ionospheric condition between the transmitter and receiver. Recently, various methods have been proposed to remotely sense the D-region ionosphere in large areas using network observation of VLF transmitter signals. The key component of these methods is the VLF propagation model, and the Long-Wavelength Propagation Capability (LWPC) model is employed in most cases due to its relatively fast computation speed. However, it is still too long and thus insufficient for real-time remote sensing. To overcome this limitation, we have proposed a neural network model to replace the LWPC model and to shorten the computation time of VLF propagation. This model is specifically obtained using the transfer learning method by retraining the last three layers of the well-established VGG16, GoogLeNet, and ResNet architectures. We have tested different methods to organize the input data for these neural network models and verified their performance using the validation dataset and real measurements. Among the three models, GoogLeNet outperforms the other two, and the root mean squared error (RMSE), with respect to LWPC results, is as low as 0.334. Moreover, the proposed neural network model can dramatically reduce the computation time. The computation time to calculate the signal distribution near the transmitter is 1184 s if one uses the LWPC model but 0.87 s if the present neural network model is used. The performance of this model is also excellent for ionospheric conditions that are not included in the validation dataset. Therefore, this model is robust and can be used to remotely sense, in real time, the D-region ionosphere in large areas, as well as various scientific and engineering needs. Full article
Show Figures

Figure 1

13 pages, 2913 KiB  
Article
Low-Latitude Ionospheric and Geomagnetic Disturbances Caused by the X7.13 Solar Flare of 25 February 2014
by Zane Nikia C. Domingo, Ernest P. Macalalad and Akimasa Yoshikawa
Universe 2025, 11(2), 70; https://doi.org/10.3390/universe11020070 - 17 Feb 2025
Viewed by 706
Abstract
On 25 February 2014 at around 00:39 UT, a major solar flare (code: SOL2014-02-25T00:39) erupted at sunspot region AR11990. Using the updated science quality data of GOES-15, it has been classified as an X7.13 solar flare. This gave rise to the electron density [...] Read more.
On 25 February 2014 at around 00:39 UT, a major solar flare (code: SOL2014-02-25T00:39) erupted at sunspot region AR11990. Using the updated science quality data of GOES-15, it has been classified as an X7.13 solar flare. This gave rise to the electron density changes that affected the strengths of ionospheric electric currents. In this work, the difference in total electron content (TEC), between the TEC during a flare day and a quiet, fitted TEC, ΔTEC, and rate of change of TEC, dTEC/dt, are determined to observe electron density changes due to the solar flare over a low-latitude region. These stations are at Quezon City (PIMO) and Taguig City (PTAG). Also, responses in the geomagnetic field component, ΔH, are calculated along with the variations in the equatorial electrojet (EEJ) strength. These are observed at equatorial, Davao (DAV) and Cagayan de Oro (CDO), and off-equatorial, Muntinlupa (MUT) and Legazpi (LGZ), stations. The resulting ΔTEC values were 1.17–1.97 TECU while dTEC/dt maxima were 0.29–0.48 TECU/min. The dTEC/dt maxima were found to concur with the time the solar EUV reached peak intensity at 00:45 UT, 4 min before the flare (i.e., X-ray) peaked. Furthermore, the ΔH variations exhibited larger enhancements at the equatorial stations. These are mostly attributed to the EEJ contributing to the geomagnetic field variations. The amplification experienced by the EEJ due to the increased ionospheric conductivity is then reflected in the geomagnetic responses. For the CDO-LGZ stations, the EEJ strength reached ~37 nT, while for the DAV-MUT, this was ~60 nT. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2025—Space Science)
Show Figures

Figure 1

23 pages, 13422 KiB  
Article
Investigation for Possible Association of the Topside and Bottomside Ionospheric Irregularities over the Midlatitude Ionosphere
by Krishnendu Sekhar Paul and Haris Haralambous
Appl. Sci. 2025, 15(2), 506; https://doi.org/10.3390/app15020506 - 7 Jan 2025
Cited by 2 | Viewed by 708
Abstract
The present study investigates the characteristics of ionospheric irregularities at middle latitudes by examining the association between spread F (SF) events detected by Digisondes and medium-scale travelling ionospheric disturbances (MSTIDs) detected by GNSS with a special emphasis on the coupling with topside irregularities [...] Read more.
The present study investigates the characteristics of ionospheric irregularities at middle latitudes by examining the association between spread F (SF) events detected by Digisondes and medium-scale travelling ionospheric disturbances (MSTIDs) detected by GNSS with a special emphasis on the coupling with topside irregularities observed by Swarm satellites based on in situ electron density (Ne) measurements. We analyzed SF events over the European midlatitude region from 2015 to 2017, over six Digisonde stations coinciding with Swarm satellite overpasses. Swarm latitudinal Ne profiles were used to identify topside irregularities, while GNSS d-TEC and ROTI maps were used to track MSTIDs and irregularities, respectively. Based on ten selected cases demonstrating concurrent SF and topside irregularities, our findings suggest a strong association between SF in the bottomside ionosphere and fluctuations in topside Ne. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

20 pages, 8899 KiB  
Article
Evaluation of Satellite-Derived Atmospheric Temperature and Humidity Profiles and Their Application as Precursors to Severe Convective Precipitation
by Zhaokai Song, Weihua Bai, Yuanjie Zhang, Yuqi Wang, Xiaoze Xu and Jialing Xin
Remote Sens. 2024, 16(24), 4638; https://doi.org/10.3390/rs16244638 - 11 Dec 2024
Cited by 1 | Viewed by 1424
Abstract
This study evaluated the reliability of satellite-derived atmospheric temperature and humidity profiles derived from occultations of Fengyun-3D (FY-3D), the Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2), the Meteorological Operational Satellite program (METOP), and the microwave observations of NOAA Polar Orbital Environmental [...] Read more.
This study evaluated the reliability of satellite-derived atmospheric temperature and humidity profiles derived from occultations of Fengyun-3D (FY-3D), the Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2), the Meteorological Operational Satellite program (METOP), and the microwave observations of NOAA Polar Orbital Environmental Satellites (POES) using various conventional sounding datasets from 2020 to 2021. Satellite-derived profiles were also used to explore the precursors of severe convective precipitations in terms of the atmospheric boundary layer (ABL) characteristics and convective parameters. It was found that the satellite-derived temperature profiles exhibited high accuracy, with RMSEs from 0.75 K to 2.68 K, generally increasing with the latitude and decreasing with the altitude. Among these satellite-derived profile sources, the COSMIC-2-derived temperature profiles showed the highest accuracy in the middle- and low-latitude regions, while the METOP series had the best performance in high-latitude regions. Comparatively, the satellite-derived relative humidity profiles had lower accuracy, with RMSEs from 13.72% to 24.73%, basically increasing with latitude. The METOP-derived humidity profiles were overall the most reliable among the different data sources. The ABL temperature and humidity structures from these satellite-derived profiles showed different characteristics between severe precipitation and non-precipitation regions and could reflect the evolution of ABL characteristics during a severe convective precipitation event. Furthermore, some convective parameters calculated from the satellite-derived profiles showed significant and rapid changes before the severe precipitation, indicating the feasibility of using satellite-derived temperature and humidity profiles as precursors to severe convective precipitation. Full article
Show Figures

Figure 1

14 pages, 10016 KiB  
Technical Note
Characterization of Electric Field Fluctuations in the High-Latitude Ionosphere Using a Dynamical Systems Approach: CSES-01 Observations
by Virgilio Quattrociocchi, Paola De Michelis, Tommaso Alberti, Emanuele Papini, Giulia D’Angelo and Giuseppe Consolini
Remote Sens. 2024, 16(21), 3919; https://doi.org/10.3390/rs16213919 - 22 Oct 2024
Viewed by 881
Abstract
We present an analysis of the ionospheric electric field dynamics at high latitudes during periods of quiet and disturbed geomagnetic activity by exploiting recent advancements in dynamical systems and extreme value theory. Specifically, we employed two key indicators: the instantaneous dimension d, [...] Read more.
We present an analysis of the ionospheric electric field dynamics at high latitudes during periods of quiet and disturbed geomagnetic activity by exploiting recent advancements in dynamical systems and extreme value theory. Specifically, we employed two key indicators: the instantaneous dimension d, which evaluates the degrees of freedom within the system, and the extremal index θ, which quantifies the system’s persistence in a given state. Electric field measurements were obtained from the CSES-01 satellite at mid- and high latitudes in the Southern Hemisphere. Our analysis revealed that the instantaneous dimension increases upon crossing specific ionospheric regions corresponding to the auroral oval boundaries. Outside these regions, the instantaneous dimension fluctuates around the state-space dimension, suggesting an ergodic nature of the system. As geomagnetic activity intensifies, differences in the properties of various ionospheric regions persist, albeit with an increased system instability characterized by higher θ values, thus indicating the externally driven nature of the electric field response to geomagnetic activity. This study provides new insights into the spatial and temporal variability of electric field fluctuations in the ionosphere, highlighting the complex interplay between geomagnetic conditions and ionospheric dynamics. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

14 pages, 3241 KiB  
Article
Modeling the Effect of Ionospheric Electron Density Profile and Its Inhomogeneities on Sprite Halos
by Jinbo Zhang, Jiawei Niu, Zhibin Xie, Yajun Wang, Xiaolong Li and Qilin Zhang
Atmosphere 2024, 15(10), 1169; https://doi.org/10.3390/atmos15101169 - 30 Sep 2024
Cited by 1 | Viewed by 1133
Abstract
Sprite halos are diffuse glow discharges in the D-region ionosphere triggered by the quasi-electrostatic (QES) fields of lightning discharges. A three-dimensional (3D) QES model is adopted to investigate the effect of ionospheric electron density on sprite halos. The electron density is described by [...] Read more.
Sprite halos are diffuse glow discharges in the D-region ionosphere triggered by the quasi-electrostatic (QES) fields of lightning discharges. A three-dimensional (3D) QES model is adopted to investigate the effect of ionospheric electron density on sprite halos. The electron density is described by an exponential formula, parameterized by reference height (h’) and sharpness (β), and the local inhomogeneity has a Gaussian density distribution. Simulation results indicate that the reference height and steepness of the nighttime electron density affect the penetration altitudes and amplitudes of normalized electric fields, as well as the altitudes and intensities of the corresponding sprite halos optical emissions. A comparison of the daytime and nighttime conditions demonstrates that the daytime electron density profile is not favorable for generating sprite halos emissions. Furthermore, the pre-existing electron density inhomogeneities lead to enhanced local electric fields and optical emissions, potentially offering a plausible explanation for the horizontal displacement between sprites and their parent lightning, as well as their clustering. Full article
(This article belongs to the Special Issue Impact of Thunderstorms on the Upper Atmosphere)
Show Figures

Figure 1

15 pages, 5706 KiB  
Article
Algorithms and Resources for the Monitoring of Very-Low-Frequency Signal Deviations Due to Solar Activity Using a Web-Based Software-Defined Radio-Distributed Network
by Ilia Iliev, Kostadin Tudjarov, Ivaylo Nachev, Peter Z. Petkov, Yuliyan Velchev and Ana Ilieva
Sensors 2024, 24(14), 4596; https://doi.org/10.3390/s24144596 - 16 Jul 2024
Viewed by 1335
Abstract
This work presents the development and testing of an experimental web-based SDR (software-defined radio) monitoring system for indirect solar activity detection, which has the ability to estimate and potentially predict various events in space and on earth, including solar flares, coronal mass ejections, [...] Read more.
This work presents the development and testing of an experimental web-based SDR (software-defined radio) monitoring system for indirect solar activity detection, which has the ability to estimate and potentially predict various events in space and on earth, including solar flares, coronal mass ejections, and geomagnetic storms. The proposed system can be used to investigate the effect of solar activity on the propagation of very-low-frequency (VLF) signals. The advantages and benefits of the given approach are as follows: increasing measurement accuracy and eventual solar activity identification by combining measurements from multiple spatially distributed SDRs. The verification process involves carrying out several experiments comparing data from the GOES satellite system and the Dunksin SuperSID system with information received by the SDR monitoring system. Then, utilizing Pearson correlation coefficients, the measured data from the SDRs, along with those from the GOES satellite system and the Dunsing monitoring station, are investigated. At the time of a solar flare, the correlation value is above 90% for most of the stations used. Combining the signal-to-noise ratio via summation also shows an improvement in the results, with a correlation above 98%. Full article
(This article belongs to the Special Issue Sensor Network Applications for Environmental Monitoring)
Show Figures

Figure 1

16 pages, 2582 KiB  
Technical Note
Examining the Capability of the VLF Technique for Nowcasting Solar Flares Based on Ground Measurements in Antarctica
by Shiwei Wang, Ruoxian Zhou, Xudong Gu, Wei Xu, Zejun Hu, Binbin Ni, Wen Cheng, Jingyuan Feng, Wenchen Ma, Haotian Xu, Yudi Pan, Bin Li, Fang He, Xiangcai Chen and Hongqiao Hu
Remote Sens. 2024, 16(12), 2092; https://doi.org/10.3390/rs16122092 - 9 Jun 2024
Cited by 2 | Viewed by 1781
Abstract
Measurements of Very-Low-Frequency (VLF) transmitter signals have been widely used to investigate the effects of various space weather events on the D-region ionosphere, including nowcasting solar flares. Previous studies have established a method to nowcast solar flares using VLF measurements, but only using [...] Read more.
Measurements of Very-Low-Frequency (VLF) transmitter signals have been widely used to investigate the effects of various space weather events on the D-region ionosphere, including nowcasting solar flares. Previous studies have established a method to nowcast solar flares using VLF measurements, but only using measurements from dayside propagation paths, and there remains limited focus on day–night mixed paths, which are important for method applicability. Between March and May of 2022, the Sun erupted a total of 56 M-class and 6 X-class solar flares, all of which were well captured by our VLF receiver in Antarctica. Using these VLF measurements, we reexamine the capability of the VLF technique to nowcast solar flares by including day–night mixed propagation paths and expanding the path coverage in longitude compared to that in previous studies. The amplitude and phase maximum changes are generally positively correlated with X-ray fluxes, whereas the time delay is negatively correlated. The curve-fitting parameters that we obtain for the X-ray fluxes and VLF signal maximum changes are consistent with those in previous studies for dayside paths, even though different instruments are used, supporting the flare-nowcasting method. Moreover, the present results show that, for day–night mixed paths, the amplitude and phase maximum changes also scale linearly with the logarithm of the flare X-ray fluxes, but the level of change is notably different from that for dayside paths. The coefficients used in the flare-nowcasting method need to be updated for mixed propagation paths. Full article
Show Figures

Figure 1

Back to TopTop