Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = ion-beam sputtering-deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2086 KiB  
Article
Radiation Hardness of Oxide Thin Films Prepared by Magnetron Sputtering Deposition
by Marko Škrabić, Marija Majer, Zdravko Siketić, Maja Mičetić, Željka Knežević and Marko Karlušić
Appl. Sci. 2025, 15(13), 7067; https://doi.org/10.3390/app15137067 - 23 Jun 2025
Viewed by 186
Abstract
Thin amorphous oxide films (a-SiO2, a-Al2O3, a-MgO) were prepared by magnetron sputtering deposition. Their response to high-energy heavy ion beams (23 MeV I, 18 MeV Cu, 2.5 MeV Cu) and gamma-ray (1.25 MeV) irradiation was studied by [...] Read more.
Thin amorphous oxide films (a-SiO2, a-Al2O3, a-MgO) were prepared by magnetron sputtering deposition. Their response to high-energy heavy ion beams (23 MeV I, 18 MeV Cu, 2.5 MeV Cu) and gamma-ray (1.25 MeV) irradiation was studied by elastic recoil detection analysis and infrared spectroscopy. It was established that their high radiation hardness is due to a high level of disorder, already present in as-prepared samples, so the high-energy heavy ion irradiation cannot change their structure much. In the case of a-SiO2, this resulted in a completely different response to high-energy heavy ion irradiation found previously in thermally grown a-SiO2. In the case of a-MgO, only gamma-ray irradiation was found to induce significant changes. Full article
Show Figures

Figure 1

12 pages, 3736 KiB  
Article
A Focusing Supermirror for Time-of-Flight Grazing-Incidence Small-Angle Neutron Scattering Measurement
by Dai Yamazaki, Ryuji Maruyama, Hiroyuki Aoki, Takayasu Hanashima, Kazuhiro Akutsu-Suyama, Noboru Miyata and Kazuhiko Soyama
Quantum Beam Sci. 2025, 9(2), 20; https://doi.org/10.3390/qubs9020020 - 10 Jun 2025
Viewed by 356
Abstract
This study developed a neutron-beam-focusing supermirror for grazing-incidence small-angle neutron scattering (GISANS) measurements. We adopted point-to-point beam focusing based on an ellipse whose two foci correspond to a virtual point source and a spot on the detector surface. The focusing supermirror was fabricated [...] Read more.
This study developed a neutron-beam-focusing supermirror for grazing-incidence small-angle neutron scattering (GISANS) measurements. We adopted point-to-point beam focusing based on an ellipse whose two foci correspond to a virtual point source and a spot on the detector surface. The focusing supermirror was fabricated by depositing NiC/Ti supermirror film with ion-beam sputtering on a precise elliptic surface of fused quartz figured using the elastic emission machining technique. Neutron measurements at the pulsed neutron reflectometer BL17 of the MLF, J-PARC, successfully demonstrated that the focusing supermirror enhances the beam intensity twentyfold compared with an optimally collimated beam, achieving a signal-to-background ratio of the focal spot as high as 500. The mirror can be readily installed and used at BL17 for time-of-flight GISANS measurements. Full article
(This article belongs to the Section Radiation Scattering Fundamentals and Theory)
Show Figures

Figure 1

11 pages, 2921 KiB  
Article
Optical Coating Deposition on Submicron-Patterned Surfaces
by Lina Grineviciute, Simas Melnikas, Julianija Nikitina, Mantas Drazdys, Algirdas Selskis and Darija Astrauskytė
Coatings 2025, 15(4), 372; https://doi.org/10.3390/coatings15040372 - 22 Mar 2025
Cited by 1 | Viewed by 664
Abstract
Periodically modulated optical coatings, fabricated by depositing conformal films on modulated substrates, offer unique capabilities for spectral and spatial filtering of light. However, conventional deposition methods often do not achieve required replication and conformality on submicron-size structured surfaces. In this paper, we compare [...] Read more.
Periodically modulated optical coatings, fabricated by depositing conformal films on modulated substrates, offer unique capabilities for spectral and spatial filtering of light. However, conventional deposition methods often do not achieve required replication and conformality on submicron-size structured surfaces. In this paper, we compare various thin film deposition techniques, including electron beam evaporation, atomic layer deposition, and ion beam sputtering, to evaluate their ability to control multilayer coating growth on periodically modulated substrates. Our study demonstrates that both single-layer and multilayer coatings produced by ion beam sputtering effectively replicate the initial geometry of structured surfaces, thereby enhancing optical performance. Full article
(This article belongs to the Special Issue Optical Coatings: From Materials to Applications)
Show Figures

Figure 1

17 pages, 1931 KiB  
Article
Lithium Tracer Diffusion in LixCoO2 and LixNi1/3Mn1/3Co1/3O2 (x = 1, 0.9, 0.65)-Sintered Bulk Cathode Materials for Lithium-Ion Batteries
by Erwin Hüger, Daniel Uxa and Harald Schmidt
Batteries 2025, 11(2), 40; https://doi.org/10.3390/batteries11020040 - 21 Jan 2025
Viewed by 1220
Abstract
The knowledge of Li diffusivities in electrode materials of Li-ion batteries (LIBs) is essential for a fundamental understanding of charging/discharging times, maximum capacities, stress formation and possible side reactions. The literature indicates that Li diffusion in the cathode material Li(Ni,Mn,Co)O2 strongly increases [...] Read more.
The knowledge of Li diffusivities in electrode materials of Li-ion batteries (LIBs) is essential for a fundamental understanding of charging/discharging times, maximum capacities, stress formation and possible side reactions. The literature indicates that Li diffusion in the cathode material Li(Ni,Mn,Co)O2 strongly increases during electrochemical delithiation. Such an increased Li diffusivity will be advantageous for performance if it is present already in the initial state after synthesis. In order to understand the influence of a varying initial Li content on Li diffusion, we performed Li tracer diffusion experiments on LixCoO2 (LCO) and LixNi1/3Mn1/3Co1/3O2 (NMC, x = 1, 0.9, 0.65) cathode materials. The measurements were performed on polycrystalline sintered bulk materials, free of additives and binders, in order to study the intrinsic properties. The variation of Li content was achieved using reactive solid-state synthesis using pressed Li2CO3, NiO, Co3O4 and/or MnO2 powders and high temperature sintering at 800 °C. XRD analyses showed that the resultant bulk samples exhibit the layered LCO or NMC phases with a low amount of cation intermixing. Moreover, the presence of additional NiO and Co3O4 phases was detected in NMC with a pronounced nominal Li deficiency of x = 0.65. As a tracer source, a 6Li tracer layer with the same chemical composition was deposited using ion beam sputtering. Secondary ion mass spectrometry in depth profile mode was used for isotopic analysis. The diffusivities followed the Arrhenius law with an activation enthalpy of about 0.8 eV and were nearly identical within error for all samples investigated in the temperature range up to 500 °C. For a diffusion mechanism based on structural Li vacancies, the results indicated that varying the Li content does not result in a change in the vacancy concentration. Consequently, the design and use of a cathode initially made of a Li-deficient material will not improve the kinetics of battery performance. The possible reasons for this unexpected result are discussed. Full article
Show Figures

Figure 1

22 pages, 3244 KiB  
Review
Solution Deposition Planarization as an Alternative to Electro-Mechanical Polishing for HTS Coated-Conducters
by Laura Piperno and Giuseppe Celentano
Coatings 2025, 15(1), 45; https://doi.org/10.3390/coatings15010045 - 3 Jan 2025
Viewed by 1000
Abstract
Mechanically flexible substrates are increasingly utilized in electronics and advanced energy technologies like solar cells and high-temperature superconducting coated conductors (HTS-CCs). These substrates offer advantages, such as large surface areas and reduced manufacturing costs through reel-to-reel processing, but often lack the surface smoothness [...] Read more.
Mechanically flexible substrates are increasingly utilized in electronics and advanced energy technologies like solar cells and high-temperature superconducting coated conductors (HTS-CCs). These substrates offer advantages, such as large surface areas and reduced manufacturing costs through reel-to-reel processing, but often lack the surface smoothness needed for optimal performance. For HTS-CCs, specific orientation and high crystalline quality are essential, requiring buffer layers to prepare the amorphous substrate for superconductor deposition. Techniques, such as mechanical polishing, electropolishing, and chemical-mechanical polishing, can help achieve an optimally levelled surface suitable for the subsequent steps of sputtering and ion-beam-assisted deposition (IBAD) necessary for texturing. This review examines Solution Deposition Planarization (SDP) as a cost-effective alternative to traditional electro-mechanical polishing for HTS coated conductors. SDP achieves surface roughness levels below 1 nm through multiple oxide layer coatings, offering reduced production costs. Comparative studies demonstrate planarization efficiencies of up to 20%. Ongoing research aims to enhance SDP’s efficiency for industrial applications in CC production. Full article
Show Figures

Figure 1

13 pages, 3997 KiB  
Article
Reliable Atom Probe Tomography of Cu Nanoparticles Through Tailored Encapsulation by an Electrodeposited Film
by Aydan Çiçek, Florian Knabl, Maximilian Schiester, Helene Waldl, Lidija D. Rafailović, Michael Tkadletz and Christian Mitterer
Nanomaterials 2025, 15(1), 43; https://doi.org/10.3390/nano15010043 - 30 Dec 2024
Viewed by 1101
Abstract
Nanoparticles are essential for energy storage, catalysis, and medical applications, emphasizing their accurate chemical characterization. However, atom probe tomography (APT) of nanoparticles sandwiched at the interface between an encapsulating film and a substrate poses difficulties. Poor adhesion at the film-substrate interface can cause [...] Read more.
Nanoparticles are essential for energy storage, catalysis, and medical applications, emphasizing their accurate chemical characterization. However, atom probe tomography (APT) of nanoparticles sandwiched at the interface between an encapsulating film and a substrate poses difficulties. Poor adhesion at the film-substrate interface can cause specimen fracture during APT, while impurities may introduce additional peaks in the mass spectra. We demonstrate preparing APT specimens with strong adhesion between nanoparticles and film/substrate matrices for successful analysis. Copper nanoparticles were encapsulated at the interface between nickel film and cobalt substrate using electrodeposition. Cobalt and nickel were chosen to match their evaporation fields with copper, minimizing peak overlaps and aiding nanoparticle localization. Copper nanoparticles were deposited via magnetron sputter inert gas condensation with varying deposition times to yield suitable surface coverages, followed by encapsulation with the nickel film. In-plane and cross-plane APT specimens were prepared by femtosecond laser ablation and focused ion beam milling. Longer deposition times resulted in agglomerated nanoparticles as well as pores and voids, causing poor adhesion and specimen failure. In contrast, shorter deposition times provided sufficient surface coverage, ensuring strong adhesion and reducing void formation. This study emphasizes controlled surface coverage for reliable APT analysis, offering insights into nanoparticle chemistry. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

32 pages, 6198 KiB  
Review
A Review on Preparation of Palladium Oxide Films
by Petre Badica and Adam Lőrinczi
Coatings 2024, 14(10), 1260; https://doi.org/10.3390/coatings14101260 - 1 Oct 2024
Viewed by 3136
Abstract
Fabrication aspects of PdO thin films and coatings are reviewed here. The work provides and organizes the up-to-date information on the methods to obtain the films. In recent years, the interest in Pd oxide for different applications has increased. Since Pd can be [...] Read more.
Fabrication aspects of PdO thin films and coatings are reviewed here. The work provides and organizes the up-to-date information on the methods to obtain the films. In recent years, the interest in Pd oxide for different applications has increased. Since Pd can be converted into PdO, it is instructive to pay attention to the preparation of the pure and the alloyed Pd films, heterostructures, and nanoparticles synthesized on different substrates. The development of PdO films is presented from the early reports on coatings’ formation by oxidation of Pd foils and wires to present technologies. Modern synthesis/growth routes are gathered into chemical and physical categories. Chemical methods include hydrothermal, electrochemical, electroless deposition, and coating methods, such as impregnation, precipitation, screen printing, ink jet printing, spin or dip coating, chemical vapor deposition (CVD), and atomic layer deposition (ALD), while the physical ones include sputtering and cathodic arc deposition, laser ablation, ion or electron beam-induced deposition, evaporation, and supersonic cluster beam deposition. Analysis of publications indicates that many as-deposited Pd or Pd-oxide films are granular, with a high variety of morphologies and properties targeting very different applications, and they are grown on different substrates. We note that a comparative assessment of the challenges and quality among different films for a specific application is generally missing and, in some cases, it is difficult to make a distinction between a film and a randomly oriented, powder-like (granular), thin compact material. Textured or epitaxial films of Pd or PdO are rare and, if orientation is observed, in most cases, it is obtained accidentally. Some practical details and challenges of Pd oxidation toward PdO and some specific issues concerning application of films are also presented. Full article
(This article belongs to the Special Issue Advances of Nanoparticles and Thin Films)
Show Figures

Figure 1

18 pages, 6172 KiB  
Article
Integrated Amorphous Carbon Film Temperature Sensor with Silicon Accelerometer into MEMS Sensor
by Qi Zhang, Xiaoya Liang, Wenzhe Bi, Xing Pang and Yulong Zhao
Micromachines 2024, 15(9), 1144; https://doi.org/10.3390/mi15091144 - 12 Sep 2024
Cited by 2 | Viewed by 3920
Abstract
Amorphous carbon (a-C) has promising potential for temperature sensing due to its outstanding properties. In this work, an a-C thin film temperature sensor integrated with the MEMS silicon accelerometer was proposed, and a-C film was deposited on the fixed frame of the accelerometer [...] Read more.
Amorphous carbon (a-C) has promising potential for temperature sensing due to its outstanding properties. In this work, an a-C thin film temperature sensor integrated with the MEMS silicon accelerometer was proposed, and a-C film was deposited on the fixed frame of the accelerometer chip. The a-C film was deposited by DC magnetron sputtering and linear ion beam, respectively. The nanostructures of two types of films were observed by SEM and TEM. The cluster size of sp2 was analyzed by Raman, and the content of sp2 and sp3 of the carbon film was analyzed by XPS. It showed that the DC-sputtered amorphous carbon film, which had a higher sp2 content, had better temperature-sensitive properties. Then, an integrated sensor chip was designed, and the structure of the accelerometer was simulated and optimized to determine the final sizes. The temperature sensor module had a sensitivity of 1.62 mV/°C at the input voltage of 5 V with a linearity of 0.9958 in the temperature range of 20~150 °C. The sensitivity of the sensor is slightly higher than that of traditional metal film temperature sensors. The accelerometer module had a sensitivity of 1.4 mV/g/5 V, a nonlinearity of 0.38%, a repeatability of 1.56%, a total thermomechanical noise of 509 μg over the range of 1 to 20 Hz, and an average thermomechanical noise density of 116 µg/√Hz, which is smaller than the input acceleration amplitude for testing sensitivity. Under different temperatures, the performance of the accelerometer was tested. This research provided significant insights into the convenient procedure to develop a high-performance, economical temperature–accelerometer-integrated MEMS sensor. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors and Actuators, 3rd Edition)
Show Figures

Figure 1

11 pages, 9819 KiB  
Article
Wear and Abrasion Resistance of Nitride Coatings on Ceramic Substrates Processed with Fast Argon Atoms
by Sergey N. Grigoriev, Alexander S. Metel, Marina A. Volosova, Enver S. Mustafaev and Yury A. Melnik
Surfaces 2024, 7(3), 714-724; https://doi.org/10.3390/surfaces7030046 - 4 Sep 2024
Viewed by 1035
Abstract
The surfaces of ceramic products are replete with numerous defects, such as those that appear during the diamond grinding of sintered SiAlON ceramics. The defective surface layer is the reason for the low effectiveness of TiZrN coatings under abrasive and fretting wear. An [...] Read more.
The surfaces of ceramic products are replete with numerous defects, such as those that appear during the diamond grinding of sintered SiAlON ceramics. The defective surface layer is the reason for the low effectiveness of TiZrN coatings under abrasive and fretting wear. An obvious solution is the removal of an up to 4-µm-thick surface layer containing the defects. It was proposed in the present study to etch the layer with fast argon atoms. At the atom energy of 5 keV and a 0.5 mA/cm2 current density, the ions were converted into fast atoms and the sputtering rate for the SiAlON samples reached 20 μm/h. No defects were observed in the microstructures of coatings deposited after beam treatment for half an hour. The treatment reduced the volumetric abrasive wear by five times. The fretting wear was reduced by three to four times. Full article
Show Figures

Figure 1

12 pages, 5028 KiB  
Article
Wafer-Scale Characterization of 1692-Pixel-Per-Inch Blue Micro-LED Arrays with an Optimized ITO Layer
by Eun-Kyung Chu, Eun Jeong Youn, Hyun Woong Kim, Bum Doo Park, Ho Kun Sung and Hyeong-Ho Park
Micromachines 2024, 15(5), 560; https://doi.org/10.3390/mi15050560 - 24 Apr 2024
Cited by 5 | Viewed by 1923
Abstract
Wafer-scale blue micro-light-emitting diode (micro-LED) arrays were fabricated with a pixel size of 12 μm, a pixel pitch of 15 μm, and a pixel density of 1692 pixels per inch, achieved by optimizing the properties of e-beam-deposited and sputter-deposited indium tin oxide (ITO). [...] Read more.
Wafer-scale blue micro-light-emitting diode (micro-LED) arrays were fabricated with a pixel size of 12 μm, a pixel pitch of 15 μm, and a pixel density of 1692 pixels per inch, achieved by optimizing the properties of e-beam-deposited and sputter-deposited indium tin oxide (ITO). Although the sputter-deposited ITO (S-ITO) films exhibited a densely packed morphology and lower resistivity compared to the e-beam-deposited ITO (E-ITO) films, the forward voltage (VF) values of a micro-LED with the S-ITO films were higher than those with the E-ITO films. The VF values for a single pixel and for four pixels with E-ITO films were 2.82 V and 2.83 V, respectively, while the corresponding values for S-ITO films were 3.50 V and 3.52 V. This was attributed to ion bombardment damage and nitrogen vacancies in the p-GaN layer. Surprisingly, the VF variations of a single pixel and of four pixels with the optimized E-ITO spreading layer from five different regions were only 0.09 V and 0.10 V, respectively. This extremely uniform VF variation is suitable for creating micro-LED displays to be used in AR and VR applications, circumventing the bottleneck in the development of long-lifespan and high-brightness organic LED devices for industrial mass production. Full article
Show Figures

Figure 1

12 pages, 5257 KiB  
Article
β-Ga2O3 Schottky Barrier Diode with Ion Beam Sputter-Deposited Semi-Insulating Layer
by Nikita N. Yakovlev, Aleksei V. Almaev, Bogdan O. Kushnarev, Maksim G. Verkholetov, Maksim V. Poliakov and Mikhail M. Zinovev
Crystals 2024, 14(2), 123; https://doi.org/10.3390/cryst14020123 - 26 Jan 2024
Cited by 2 | Viewed by 1941
Abstract
Vertical Schottky barrier diodes based on an ion beam sputter (IBS)-deposited β-Ga2O3 film on a single-crystalline (2¯01) unintentionally doped (UID) β-Ga2O3 with a Ni contact were developed. To form ohmic Ti/Ni contacts, the IBS-Ga [...] Read more.
Vertical Schottky barrier diodes based on an ion beam sputter (IBS)-deposited β-Ga2O3 film on a single-crystalline (2¯01) unintentionally doped (UID) β-Ga2O3 with a Ni contact were developed. To form ohmic Ti/Ni contacts, the IBS-Ga2O3/UID β-Ga2O3 structures were wet-etched, and an indium tin oxide (ITO) intermediate semiconductor layer (ISL) was deposited on the opposite surface of the UID β-Ga2O3. The IBS-deposited Ga2O3 layer was polycrystalline and semi-insulating. Low leakage currents, rectification ratios of 3.9 × 108 arb. un. and 3.4 × 106 arb. un., ideality factors of 1.43 and 1.24, Schottky barrier heights of 1.80 eV and 1.67 eV as well as breakdown voltages of 134 V and 180 V were achieved for diodes without and with ITO-ISL, respectively. The surface area of the IBS-Ga2O3 film acted as a thin dielectric layer and, together with the preliminary wet etching, provided low leakage currents and relatively high Schottky barrier heights. Diodes with a Schottky barrier based on a Ni/IBS-deposited Ga2O3 film contact were demonstrated for the first time. Full article
(This article belongs to the Special Issue β-Ga2O3: Growth (Bulk, Thin Film, Epitaxy) and Physical Properties)
Show Figures

Figure 1

11 pages, 10583 KiB  
Communication
Mid-Infrared (MIR) Complex Refractive Index Spectra of Polycrystalline Copper-Nitride Films by IR-VASE Ellipsometry and Their FIB-SEM Porosity
by Emilio Márquez, Eduardo Blanco, José M. Mánuel, Manuel Ballester, Marcos García-Gurrea, María I. Rodríguez-Tapiador, Susana M. Fernández, Florian Willomitzer and Aggelos K. Katsaggelos
Coatings 2024, 14(1), 5; https://doi.org/10.3390/coatings14010005 - 19 Dec 2023
Cited by 7 | Viewed by 2194
Abstract
Copper-nitride (Cu3N) semiconductor material is attracting much attention as a potential, next-generation thin-film solar light absorber in solar cells. In this communication, polycrystalline covalent Cu3N thin films were prepared using reactive-RF-magnetron-sputtering deposition, at room temperature, onto glass and silicon [...] Read more.
Copper-nitride (Cu3N) semiconductor material is attracting much attention as a potential, next-generation thin-film solar light absorber in solar cells. In this communication, polycrystalline covalent Cu3N thin films were prepared using reactive-RF-magnetron-sputtering deposition, at room temperature, onto glass and silicon substrates. The very-broadband optical properties of the Cu3N thin film layers were studied by UV-MIR (0.2–40 μm) ellipsometry and optical transmission, to be able to achieve the goal of a low-cost absorber material to replace the conventional silicon. The reactive-RF-sputtered Cu3N films were also investigated by focused ion beam scanning electron microscopy and both FTIR and Raman spectroscopies. The less dense layer was found to have a value of the static refractive index of 2.304, and the denser film had a value of 2.496. The iso-absorption gap, E04, varied between approximately 1.3 and 1.8 eV and could be considered suitable as a solar light absorber. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Graphical abstract

20 pages, 20489 KiB  
Article
Microstructural, Mechanical and Oxidation Resistance of Nanolayer Sputter-Deposited CrAlN Hard Coatings
by Aljaž Drnovšek, Dragan Kukuruzovič, Pal Terek, Aleksandar Miletić, Miha Čekada, Matjaž Panjan and Peter Panjan
Coatings 2023, 13(12), 2096; https://doi.org/10.3390/coatings13122096 - 17 Dec 2023
Cited by 6 | Viewed by 1690
Abstract
In the present study, (Cr,Al)N nanolayer coatings with different Al/Cr atomic ratios were deposited by magnetron sputtering on different substrate materials (H11 and D2 tool steel, alumina). To prepare the (Cr,Al)N coatings with different Al/Cr atomic ratios in the same batch, we used [...] Read more.
In the present study, (Cr,Al)N nanolayer coatings with different Al/Cr atomic ratios were deposited by magnetron sputtering on different substrate materials (H11 and D2 tool steel, alumina). To prepare the (Cr,Al)N coatings with different Al/Cr atomic ratios in the same batch, we used two targets composed of two triangle-like segments together with two standard Al and Cr targets. This approach enabled us to study the evolution of structural and mechanical properties in dependence on composition. The elemental composition of the coatings was determined by energy-dispersive X-ray analysis (EDS). The phase composition of the (Cr,Al)N coatings was determined utilizing X-ray diffraction (XRD), while scanning electron microscopy (SEM) was employed to assess their morphology and microstructure. The coating surface topography was analyzed by atomic force microscopy (AFM). In order to evaluate the effect of the Al/Cr atomic ratio on the oxidation behavior, the (Cr,Al)N coatings were oxidized in ambient atmospheres at temperatures between 700 and 850 °C and subsequently analyzed by means of cross-sectional SEM and transmission electron microscopy (TEM). The oxidation rate, determined by weight gain over time, was utilized to quantify the oxidation process. The oxidation tests showed that the Al-rich (Cr,Al)N nanolayer coatings exhibit a considerably better oxidation resistance than the Cr-rich ones. We found that the oxide scale formed on the Al-rich coating is composed of double layers: a Cr-oxide top layer and an inner (Cr,Al) mixed oxide layer. In contrast, the oxide scale of the Cr-rich coating mainly consists of the Cr2O3 layer. In particular, we focused on the oxidation process occurring at the locations of growth defects. We noticed that the first oxidation products on the coated substrate occurred at a temperature that was much lower than the temperature for the (Cr,Al)N coating oxidation initiation. These products (iron oxides) formed only at the sites of those growth defects that extended through the entire coating thickness. Full article
(This article belongs to the Special Issue State-of-the-Art PVD Hard Coatings and Their Applications)
Show Figures

Figure 1

21 pages, 6792 KiB  
Review
A Comprehensive Review on Combinatorial Film via High-Throughput Techniques
by Dongxin Wang, Wei Jiang, Shurong Li, Xuehui Yan, Shuaishuai Wu, Haochen Qiu, Shengli Guo and Baohong Zhu
Materials 2023, 16(20), 6696; https://doi.org/10.3390/ma16206696 - 15 Oct 2023
Cited by 11 | Viewed by 2868
Abstract
Numerous technological advancements in the 21st century depend on the creation of novel materials possessing enhanced properties; there is a growing reliance on materials that can be optimized to serve multiple functions. To efficiently save time and meet the requirements of diverse applications, [...] Read more.
Numerous technological advancements in the 21st century depend on the creation of novel materials possessing enhanced properties; there is a growing reliance on materials that can be optimized to serve multiple functions. To efficiently save time and meet the requirements of diverse applications, high-throughput and combinatorial approaches are increasingly employed to explore and design superior materials. Among them, gradient thin-film deposition is one of the most mature and widely used technologies for high-throughput preparation of material libraries. This review summarizes recent progress in gradient thin-film deposition fabricated by magnetron sputtering, multi-arc ion plating, e-beam evaporation, additive manufacturing, and chemical bath deposition, providing readers with a fundamental understanding of this research field. First, high-throughput synthesis methods for gradient thin films are emphasized. Subsequently, we present the characteristics of combinatorial films, including microstructure, oxidation, corrosion tests, and mechanical properties. Next, the screening methods employed for evaluating these properties are discussed. Furthermore, we delve into the limitations of high-throughput preparation and characterization techniques for combinatorial films. Finally, we provide a summary and offer our perspectives. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys II)
Show Figures

Figure 1

12 pages, 6035 KiB  
Article
Preparation of MgO Self-Epitaxial Films for YBCO High-Temperature Coated Conductors
by Fei Yu, Yan Xue, Chaowei Zhong, Jiayi Song, Qiong Nie, Xin Hou and Baolei Wang
Micromachines 2023, 14(10), 1914; https://doi.org/10.3390/mi14101914 - 8 Oct 2023
Cited by 4 | Viewed by 2277
Abstract
Ion beam-assisted deposition (IBAD) has been proposed as a promising texturing technology that uses the film epitaxy method to obtain biaxial texture on a non-textured metal or compound substrate. Magnesium oxide (MgO) is the most well explored texturing material. In order to obtain [...] Read more.
Ion beam-assisted deposition (IBAD) has been proposed as a promising texturing technology that uses the film epitaxy method to obtain biaxial texture on a non-textured metal or compound substrate. Magnesium oxide (MgO) is the most well explored texturing material. In order to obtain the optimal biaxial texture, the actual thickness of the IBAD-MgO film must be controlled within 12nm. Due to the bombardment of ion beams, IBAD-MgO has large lattice deformation, poor texture, and many defects in the films. In this work, the solution deposition planarization (SDP) method was used to deposit oxide amorphous Y2O3 films on the surface of Hastelloy C276 tapes instead of the electrochemical polishing, sputtering-Al2O3 and sputtering-Y2O3 in the commercialized buffer layer. An additional homogeneous epitaxy MgO (epi-MgO) layer, which was used to improve the biaxial texture in the IBAD-MgO layer, was deposited on the IBAD-MgO layer by electron-beam evaporation. The effects of growth temperature, film thickness, deposition rate, and oxygen pressure on the texture and morphology of the epi-MgO film were systematically studied. The best full width at half maximum (FWHM) values were 2.2° for the out-of-plane texture and 4.8° for the in-plane texture for epi-MgO films, respectively. Subsequently, the LaMnO3 cap layer and YBa2Cu3O7-x (YBCO) functional layer were deposited on the epi-MgO layer to test the quality of the MgO layer. Finally, the critical current density of the YBCO films was 6 MA/cm2 (77 K, 500 nm, self-field), indicating that this research provides a high-quality MgO substrate for the YBCO layer. Full article
(This article belongs to the Special Issue Advanced Thin-Films: Design, Fabrication and Applications)
Show Figures

Figure 1

Back to TopTop