Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = ion tuning water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9479 KiB  
Review
Major Intrinsic Proteins in Fungi: A Special Emphasis on the XIP Subfamily
by Jean-Stéphane Venisse, Gisèle Bronner, Mouadh Saadaoui, Patricia Roeckel-Drevet, Mohamed Faize and Boris Fumanal
J. Fungi 2025, 11(7), 543; https://doi.org/10.3390/jof11070543 - 21 Jul 2025
Viewed by 345
Abstract
The fungal kingdom, with an estimated five million species, has undergone extensive diversification over the past billion years and now occupies a wide array of ecological niches from terrestrial to aquatic ecosystems. To thrive in such diverse environments, fungi must exhibit finely tuned [...] Read more.
The fungal kingdom, with an estimated five million species, has undergone extensive diversification over the past billion years and now occupies a wide array of ecological niches from terrestrial to aquatic ecosystems. To thrive in such diverse environments, fungi must exhibit finely tuned physiological and morphological responses orchestrated by conserved molecular pathways. Increasing evidence suggests that aquaporins (AQPs) play a key role in mediating these adaptive responses, particularly under varying abiotic and biotic stress conditions. However, despite notable advances in recent decades, the precise functional roles of AQPs within the fungal kingdom remains largely unresolved in the field of cell biology. AQPs are transmembrane proteins belonging to the major intrinsic proteins (MIPs) superfamily, which is characterized by remarkable sequence and structural diversity. Beyond their established function in facilitating water transport, MIPs mediated the bidirectional diffusion of a range of small inorganic and organic solutes, ions, and gases across cellular membranes. In fungi, MIPs are classified into three main subfamilies: orthodox (i.e., classical) AQPs, aquaglyceroporins (AQGP), and X-intrinsic proteins (XIPs). This review provides a concise summary of the fundamental structural and functional characteristics of fungal aquaporins, including their structure, classification, and known physiological roles. While the majority of the current literature has focused on the aquaporin and aquaglyceroporin subfamilies, this review also aims to offer a comprehensive and original overview of the relatively understudied X-intrinsic protein subfamily, highlighting its potential implication in fungal biology. Full article
Show Figures

Figure 1

20 pages, 1845 KiB  
Article
Meta-Transcriptomic Response to Copper Corrosion in Drinking Water Biofilms
by Jingrang Lu, Ian Struewing and Nicholas J. Ashbolt
Microorganisms 2025, 13(7), 1528; https://doi.org/10.3390/microorganisms13071528 - 30 Jun 2025
Viewed by 465
Abstract
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe [...] Read more.
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe materials on downstream viable community structures, pathogen populations, and metatranscriptomic responses of the microbial communities in drinking water biofilms. Randomly transcribed cDNA was generated and sequenced from downstream biofilm samples of either unplasticized polyvinylchloride (PVC) or Cu coupons. Diverse viable microbial organisms with enriched pathogen-like organisms and opportunistic pathogens were active in those biofilm samples. Cu-influenced tubing biofilms had a greater upregulation of genes associated with potassium (K) metabolic pathways (i.e., K-homeostasis, K-transporting ATPase, and transcriptional attenuator), and a major component of the cell wall of mycobacteria (mycolic acids) compared to tubing biofilms downstream of PVC. Other upregulated genes on Cu influenced biofilms included those associated with stress responses (various oxidative resistance genes), biofilm formation, and resistance to toxic compounds. Downregulated genes included those associated with membrane proteins responsible for ion interactions with potassium; respiration–electron-donating reactions; RNA metabolism in eukaryotes; nitrogen metabolism; virulence, disease, and defense; and antibiotic resistance genes. When combined with our previous identification of biofilm community differences, our studies reveal how microbial biofilms adapt to Cu plumbing conditions by fine-tuning gene expression, altering metabolic pathways, and optimizing their structural organization. This study offers new insights into how copper pipe materials affect the development and composition of biofilms in premise plumbing. Specifically, it highlights copper’s role in inhibiting the growth of many microbes while also contributing to the resistance of some microbes within the drinking water biofilm community. Full article
Show Figures

Graphical abstract

32 pages, 20574 KiB  
Article
Alteration of Sulfur-Bearing Silicate–Phosphate (Agri)Glasses in Soil Environment: Chemical Interactions and Biological Response
by Anna Berezicka, Agnieszka Wojteczko, Justyna Sułowska and Magdalena Szumera
Molecules 2025, 30(8), 1790; https://doi.org/10.3390/molecules30081790 - 16 Apr 2025
Viewed by 490
Abstract
Glasses exposed to soil environments are of interest across various scientific fields, from nuclear waste containment to archaeological preservation and nutrient-delivery systems for plants. While immersion experiments provide valuable insights into the ion release kinetics in root- and microbe-exuded solutions, they fail to [...] Read more.
Glasses exposed to soil environments are of interest across various scientific fields, from nuclear waste containment to archaeological preservation and nutrient-delivery systems for plants. While immersion experiments provide valuable insights into the ion release kinetics in root- and microbe-exuded solutions, they fail to replicate the complexities of nutrient leaching in real soil conditions. To address this, the degradation behavior of nutrient-bearing glasses (41SiO2·6(10)P2O5·20K2O·33(29)MgO/CaO/MgO + CaO) with increasing sulfate contents was investigated through a soil incubation experiment simulating Central European weather variability. A comprehensive approach, combining SEM observations and EDS semi-quantitative analysis, revealed that acidic peat strongly promoted ion exchange, where protons from the medium replaced network cations. The glass composition played a crucial role in the fracture behavior: sulfate incorporation increased the network rigidity, making the glasses more prone to mechanical degradation and accelerating the reaction front advancement. The P2O5 content was also a key factor in modulating the reactivity, with higher concentrations intensifying interactions with the soil medium. Limited water availability accelerated the solution saturation, leading to secondary phase precipitation and temporary nutrient immobilization. These findings demonstrate that glass reactivity can be fine-tuned through composition adjustments and highlight the dynamic nature of glass–soil interactions, including seasonal variations in nutrient release under acidic conditions. Full article
(This article belongs to the Special Issue Materials for Environmental Remediation and Catalysis)
Show Figures

Graphical abstract

21 pages, 2480 KiB  
Review
Recent Advances in ZIF Membrane: Fabrication, Separation Ability and Its Application
by Jingyuan Zhang, Jiatong Han, Xin Chen, Dan Xu, Xiaobin Wen, Yiming Zhao, Yanyan Huang, Xin Ding, Ge Chen, Donghui Xu, Xiaomin Xu and Guangyang Liu
Nanomaterials 2025, 15(3), 239; https://doi.org/10.3390/nano15030239 - 4 Feb 2025
Cited by 1 | Viewed by 1938
Abstract
With the growth of the population and the development of industry and agriculture, water resources are experiencing contamination by numerous pollutants, posing a threat to the aquatic environment and human health. Zeolitic imidazolate framework (ZIF) membranes, as a solution for water pollutant treatment, [...] Read more.
With the growth of the population and the development of industry and agriculture, water resources are experiencing contamination by numerous pollutants, posing a threat to the aquatic environment and human health. Zeolitic imidazolate framework (ZIF) membranes, as a solution for water pollutant treatment, not only have the advantages of high efficiency adsorption, good selectivity, stability, and easy recyclability, but they also can be modified or derivatized through surface functionalization, compositing, or structural tuning, which can further endow the membranes with other functions, such as catalysis and degradation. In order to improve the performance of ZIF membranes, it is crucial to select suitable preparation methods to optimize the microstructure of the membranes and to improve the separation performance and stability of the membranes. This review systematically summarizes the current major preparation methods of ZIF membranes and their respective advantages and disadvantages, providing an overview of the applications of ZIF membranes in the treatment of water pollutants, such as dyes, antibiotics, and heavy metal ions. Future development prospects are also discussed, with the expectation that future research will optimize the synthesis methods to enhance the mechanical strength of the membranes and improve their selectivity, permeability, and anti-fouling properties through modifications or functionalization. This article is expected to provide theoretical support for the application of ZIF membranes in water pollution treatment. Full article
Show Figures

Figure 1

14 pages, 7530 KiB  
Article
Cold Consolidation of Pharmaceutical Waste Glass Powders Through Alkali Activation and Binder Jet 3D Printing
by Hamada Elsayed, Filippo Gobbin, Alberto Barci, Enrico Bernardo and Paolo Colombo
Materials 2024, 17(21), 5164; https://doi.org/10.3390/ma17215164 - 23 Oct 2024
Cited by 2 | Viewed by 1247
Abstract
The recent COVID-19 emergency has led to an impressive increase in the production of pharmaceutical vials. This has led to a parallel increase in the amounts of waste glass; manufacturers typically recover material from faulty containers by crushing, giving origin to an unrecyclable [...] Read more.
The recent COVID-19 emergency has led to an impressive increase in the production of pharmaceutical vials. This has led to a parallel increase in the amounts of waste glass; manufacturers typically recover material from faulty containers by crushing, giving origin to an unrecyclable fraction. Coarse fragments are effectively reused as feedstock for glass melting; on the contrary, fine powders (<100 microns), contaminated by metal and ceramic particles due to the same crushing operations, are landfilled. Landfilling is also suggested for pharmaceutical containers after medical use. This study aims at proposing new opportunities for the recycling of fine glass particles, according to recent findings concerning alkali activation of pharmaceutical glass, combined with novel processing, i.e., binder jetting printing. It has already been shown that pharmaceutical glass, immersed in low-molarity alkaline solution (not exceeding 2.5 M NaOH), undergoes surface dissolution and hydration; cold consolidation is later achieved, upon drying at 40–60 °C, by a condensation reaction occurring at hydrated layers of adjacent particles. Binder jetting printing does not realize a full liquid immersion of the glass powders, as the attacking solution is selectively sprayed on a powder bed. Here, we discuss the tuning of key parameters, such as the molarity of the attacking solution (from 2.5 to 10 M) and the granulometry of the waste glass, to obtain stable printed blocks. In particular, the stability depends on the formation of bridges between adjacent particles consisting of strong T-O bonds (Si-O-Si, Al-O-Si, B-O-Si), while degradation products (concentrating Na ions) remain as a secondary phase, solubilized by immersion in boiling water. Such stability is achieved by operating at 5 M NaOH. Full article
(This article belongs to the Special Issue State of the Art of Materials Science and Engineering in Italy)
Show Figures

Figure 1

14 pages, 9773 KiB  
Article
High-Entropy and Component Stoichiometry Tuning Strategies Boost the Sodium-Ion Storage Performance of Cobalt-Free Prussian Blue Analogues Cathode Materials
by Yuan-Ting Lin, Bai-Tong Niu, Zi-Han Wang, Yu-Xi Li, Yun-Peng Xu, Shi-Wei Liu, Yan-Xin Chen and Xiu-Mei Lin
Molecules 2024, 29(19), 4559; https://doi.org/10.3390/molecules29194559 - 25 Sep 2024
Cited by 2 | Viewed by 2049
Abstract
Prussian blue analogs (PBAs) are appealing cathode materials for sodium-ion batteries because of their low material cost, facile synthesis methods, rigid open framework, and high theoretical capacity. However, the poor electrical conductivity, unavoidable presence of [Fe(CN)6] vacancies and crystalline water within [...] Read more.
Prussian blue analogs (PBAs) are appealing cathode materials for sodium-ion batteries because of their low material cost, facile synthesis methods, rigid open framework, and high theoretical capacity. However, the poor electrical conductivity, unavoidable presence of [Fe(CN)6] vacancies and crystalline water within the framework, and phase transition during charge–discharge result in inferior electrochemical performance, particularly in terms of rate capability and cycling stability. Here, cobalt-free PBAs are synthesized using a facile and economic co-precipitation method at room temperature, and their sodium-ion storage performance is boosted due to the reduced crystalline water content and improved electrical conductivity via the high-entropy and component stoichiometry tuning strategies, leading to enhanced initial Coulombic efficiency (ICE), specific capacity, cycling stability, and rate capability. The optimized HE-HCF of Fe0.60Mn0.10-hexacyanoferrate (referred to as Fe0.60Mn0.10-HCF), with the chemical formula Na1.156Fe0.599Mn0.095Ni0.092Cu0.109Zn0.105 [Fe(CN)6]0.724·3.11H2O, displays the most appealing electrochemical performance of an ICE of 100%, a specific capacity of around 115 and 90 mAh·g−1 at 0.1 and 1.0 A·g−1, with 66.7% capacity retention observed after 1000 cycles and around 61.4% capacity retention with a 40-fold increase in specific current. We expect that our findings could provide reference strategies for the design of SIB cathode materials with superior electrochemical performance. Full article
Show Figures

Figure 1

14 pages, 9414 KiB  
Article
Charge Transfer in n-FeO and p-α-Fe2O3 Nanoparticles for Efficient Hydrogen and Oxygen Evolution Reaction
by Amir Humayun, Nandapriya Manivelan and Kandasamy Prabakar
Nanomaterials 2024, 14(18), 1515; https://doi.org/10.3390/nano14181515 - 18 Sep 2024
Cited by 7 | Viewed by 2411
Abstract
This study aims to explore the n-FeO and p-α-Fe2O3 semiconductor nanoparticles in hydrogen (HER) and oxygen (OER) evolution reactions and a combined full cell electrocatalyst system to electrolyze the water. We have observed a distinct electrocatalytic performance for both HER [...] Read more.
This study aims to explore the n-FeO and p-α-Fe2O3 semiconductor nanoparticles in hydrogen (HER) and oxygen (OER) evolution reactions and a combined full cell electrocatalyst system to electrolyze the water. We have observed a distinct electrocatalytic performance for both HER and OER by tuning the interplay between iron oxidation states Fe2+ and Fe3+ and utilizing phase-transformed iron oxide nanoparticles (NPs). The Fe2+ rich n-FeO NPs exhibited superior HER performance compared to p-α-Fe2O3 and Fe(OH)x NPs, which is attributed to the enhancement in n-type semiconducting nature under HER potential, facilitating the electron transfer for the reduction in H+ ions. In contrast, p-α-Fe2O3 NPs demonstrated excellent OER activity. An H-cell constructed using n-FeO||p-α-Fe2O3 NPs as cathode and anode achieved a cell voltage of 1.87 V at a current density of 50 mA/cm2. The cell exhibited remarkable stability after 30 h of activation and maintained the high current density of 100 mA/cm2 for 80 h with a negligible increase in cell voltage. This work highlights the semiconducting properties of n-FeO and p-α-Fe2O3 for the electrochemical water splitting system using the band bending phenomenon under the applied potential. Full article
(This article belongs to the Special Issue Nanoscale Materials as Catalysts for the Hydrogen Evolution Reaction)
Show Figures

Figure 1

10 pages, 9472 KiB  
Article
Synthesis and Characterization of Highly Fluorinated Hydrophobic Rare–Earth Metal–Organic Frameworks (MOFs)
by Muhammad Abbas, Bhargavasairam Murari, Simin Sheybani, Monu Joy and Kenneth J. Balkus
Materials 2024, 17(17), 4213; https://doi.org/10.3390/ma17174213 - 26 Aug 2024
Cited by 2 | Viewed by 1847
Abstract
Tuning a material’s hydrophobicity is desirable in several industrial applications, such as hydrocarbon storage, separation, selective CO2 capture, oil spill cleanup, and water purification. The introduction of fluorine into rare-earth (RE) metal–organic frameworks (MOFs) can make them hydrophobic. In this work, the [...] Read more.
Tuning a material’s hydrophobicity is desirable in several industrial applications, such as hydrocarbon storage, separation, selective CO2 capture, oil spill cleanup, and water purification. The introduction of fluorine into rare-earth (RE) metal–organic frameworks (MOFs) can make them hydrophobic. In this work, the linker bis(trifluoromethyl)terephthalic acid (TTA) was used to make highly fluorinated MOFs. The reaction of the TTA and RE3+ (RE: Y, Gd, or Eu) ions resulted in the primitive cubic structure (pcu) exhibiting RE dimer nodes (RE-TTA-pcu). The crystal structure of the RE-TTA-pcu was obtained. The use of the 2-fluorobenzoic acid in the synthesis resulted in fluorinated hexaclusters in the face-centered cubic (fcu) framework (RE-TTA-fcu), analogous to the UiO-66 MOF. The RE-TTA-fcu has fluorine on the linker as well as in the cluster. The MOFs were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, and contact angle measurements. Full article
Show Figures

Graphical abstract

26 pages, 1885 KiB  
Review
Regulation of Microalgal Photosynthetic Electron Transfer
by Yuval Milrad, Laura Mosebach and Felix Buchert
Plants 2024, 13(15), 2103; https://doi.org/10.3390/plants13152103 - 29 Jul 2024
Cited by 1 | Viewed by 2121
Abstract
The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on [...] Read more.
The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on time and intensity scales of several orders of magnitude. Such rapid and steep changes in energy availability are potentially devastating for biological systems. To enable a safe and efficient light-harnessing process, photosynthetic organisms tune their light capturing, the redox connections between core complexes and auxiliary electron mediators, ion passages across the membrane, and functional coupling of energy transducing organelles. Here, microalgal species are the most diverse group, featuring both unique environmental adjustment strategies and ubiquitous protective mechanisms. In this review, we explore a selection of regulatory processes of the microalgal photosynthetic apparatus supporting smooth electron flow in variable environments. Full article
(This article belongs to the Special Issue Microalgae Photobiology, Biotechnology, and Bioproduction)
Show Figures

Figure 1

34 pages, 8871 KiB  
Review
Cellulose Membranes: Synthesis and Applications for Water and Gas Separation and Purification
by Jinwu Wang, Syed Comail Abbas, Ling Li, Colleen C. Walker, Yonghao Ni and Zhiyong Cai
Membranes 2024, 14(7), 148; https://doi.org/10.3390/membranes14070148 - 30 Jun 2024
Cited by 10 | Viewed by 11690
Abstract
Membranes are a selective barrier that allows certain species (molecules and ions) to pass through while blocking others. Some rely on size exclusion, where larger molecules get stuck while smaller ones permeate through. Others use differences in charge or polarity to attract and [...] Read more.
Membranes are a selective barrier that allows certain species (molecules and ions) to pass through while blocking others. Some rely on size exclusion, where larger molecules get stuck while smaller ones permeate through. Others use differences in charge or polarity to attract and repel specific species. Membranes can purify air and water by allowing only air and water molecules to pass through, while preventing contaminants such as microorganisms and particles, or to separate a target gas or vapor, such as H2 and CO2, from other gases. The higher the flux and selectivity, the better a material is for membranes. The desirable performance can be tuned through material type (polymers, ceramics, and biobased materials), microstructure (porosity and tortuosity), and surface chemistry. Most membranes are made from plastic from petroleum-based resources, contributing to global climate change and plastic pollution. Cellulose can be an alternative sustainable resource for making renewable membranes. Cellulose exists in plant cell walls as natural fibers, which can be broken down into smaller components such as cellulose fibrils, nanofibrils, nanocrystals, and cellulose macromolecules through mechanical and chemical processing. Membranes made from reassembling these particles and molecules have variable pore architecture, porosity, and separation properties and, therefore, have a wide range of applications in nano-, micro-, and ultrafiltration and forward osmosis. Despite their advantages, cellulose membranes face some challenges. Improving the selectivity of membranes for specific molecules often comes at the expense of permeability. The stability of cellulose membranes in harsh environments or under continuous operation needs further improvement. Research is ongoing to address these challenges and develop advanced cellulose membranes with enhanced performance. This article reviews the microstructures, fabrication methods, and potential applications of cellulose membranes, providing some critical insights into processing–structure–property relationships for current state-of-the-art cellulosic membranes that could be used to improve their performance. Full article
(This article belongs to the Special Issue Cellulose Membranes: From Synthesis to Applications)
Show Figures

Figure 1

18 pages, 3257 KiB  
Article
Effects of Mineral Elements and Annealing on the Physicochemical Properties of Native Potato Starch
by Johanna A. Thomann, Michael Polhuis, Alessia Lasorsa, Hero J. Heeres and André Heeres
ChemEngineering 2024, 8(3), 60; https://doi.org/10.3390/chemengineering8030060 - 10 Jun 2024
Cited by 1 | Viewed by 1927
Abstract
Native potato starch is an excellent carrier of minerals due to its inherent ion exchange capacity. Mineral enrichment not only changes the nutritional value but also influences starch pasting and swelling properties. Hydrothermal treatments like annealing constitute a straightforward and green way to [...] Read more.
Native potato starch is an excellent carrier of minerals due to its inherent ion exchange capacity. Mineral enrichment not only changes the nutritional value but also influences starch pasting and swelling properties. Hydrothermal treatments like annealing constitute a straightforward and green way to tune functional properties. Here, novel combinations of mineral enrichment and annealing were studied. Ion exchange was readily achieved by suspending starch in a salt solution at room temperature over 3 h and confirmed by ICP-OES. Annealing at 50 °C for 24 h using demineralized water or salt solutions strongly affected pasting, thermal, and swelling properties. The obtained XRD and DSC results support a more ordered structure with relative crystallinity increasing from initially 41.7% to 44.4% and gelatinization onset temperature increasing from 60.39 to 65.94 J/g. Solid-state NMR spectroscopy revealed no detectable changes after annealing. Total digestible starch content decreased after annealing from 8.89 to 7.86 g/100 g. During both ion exchange at room temperature and annealing, monovalent cations promoted swelling and peak viscosity, and divalent cations suppressed peak viscosity through ionic crosslinking. The presented combination allows fine-tuning of pasting behavior, potentially enabling requirements of respective food applications to be met while offering an alternative to chemically modified starches. Full article
Show Figures

Figure 1

11 pages, 2499 KiB  
Article
Hierarchically Structured Graphene Aerogel Supported Nickel–Cobalt Oxide Nanowires as an Efficient Electrocatalyst for Oxygen Evolution Reaction
by Donglei Guo, Jiaqi Xu, Guilong Liu and Xu Yu
Molecules 2024, 29(8), 1805; https://doi.org/10.3390/molecules29081805 - 16 Apr 2024
Cited by 2 | Viewed by 1468
Abstract
The rational design of a heterostructure electrocatalyst is an attractive strategy to produce hydrogen energy by electrochemical water splitting. Herein, we have constructed hierarchically structured architectures by immobilizing nickel–cobalt oxide nanowires on/beneath the surface of reduced graphene aerogels (NiCoO2/rGAs) through solvent–thermal [...] Read more.
The rational design of a heterostructure electrocatalyst is an attractive strategy to produce hydrogen energy by electrochemical water splitting. Herein, we have constructed hierarchically structured architectures by immobilizing nickel–cobalt oxide nanowires on/beneath the surface of reduced graphene aerogels (NiCoO2/rGAs) through solvent–thermal and activation treatments. The morphological structure of NiCoO2/rGAs was characterized by microscopic analysis, and the porous structure not only accelerates the electrolyte ion diffusion but also prevents the agglomeration of NiCoO2 nanowires, which is favorable to expose the large surface area and active sites. As further confirmed by the spectroscopic analysis, the tuned surface chemical state can boost the catalytic active sites to show the improved oxygen evolution reaction performance in alkaline electrolytes. Due to the synergistic effect of morphology and composition effect, NiCoO2/rGAs show the overpotential of 258 mV at the current density of 10 mA cm−2. Meanwhile, the small values of the Tafel slope and charge transfer resistance imply that NiCoO2/rGAs own fast kinetic behavior during the OER test. The overlap of CV curves at the initial and 1001st cycles and almost no change in current density after the chronoamperometric (CA) test for 10 h confirm that NiCoO2/rGAs own exceptional catalytic stability in a 1 M KOH electrolyte. This work provides a promising way to fabricate the hierarchically structured nanomaterials as efficient electrocatalysts for hydrogen production. Full article
(This article belongs to the Special Issue Advanced Heterostructural Nanocomposites for Renewable Energy System)
Show Figures

Figure 1

38 pages, 5235 KiB  
Article
Mineral Indicators of Geologically Recent Past Habitability on Mars
by Roger Hart and Dawn Cardace
Life 2023, 13(12), 2349; https://doi.org/10.3390/life13122349 - 15 Dec 2023
Viewed by 3270
Abstract
We provide new support for habitable microenvironments in the near-subsurface of Mars, hosted in Fe- and Mg-rich rock units, and present a list of minerals that can serve as indicators of specific water–rock reactions in recent geologic paleohabitats for follow-on study. We modeled, [...] Read more.
We provide new support for habitable microenvironments in the near-subsurface of Mars, hosted in Fe- and Mg-rich rock units, and present a list of minerals that can serve as indicators of specific water–rock reactions in recent geologic paleohabitats for follow-on study. We modeled, using a thermodynamic basis without selective phase suppression, the reactions of published Martian meteorites and Jezero Crater igneous rock compositions and reasonable planetary waters (saline, alkaline waters) using Geochemist’s Workbench Ver. 12.0. Solid-phase inputs were meteorite compositions for ALH 77005, Nakhla, and Chassigny, and two rock units from the Mars 2020 Perseverance rover sites, Máaz and Séítah. Six plausible Martian groundwater types [NaClO4, Mg(ClO4)2, Ca(ClO4)2, Mg-Na2(ClO4)2, Ca-Na2(ClO4)2, Mg-Ca(ClO4)2] and a unique Mars soil-water analog solution (dilute saline solution) named “Rosy Red”, related to the Phoenix Lander mission, were the aqueous-phase inputs. Geophysical conditions were tuned to near-subsurface Mars (100 °C or 373.15 K, associated with residual heat from a magmatic system, impact event, or a concentration of radionuclides, and 101.3 kPa, similar to <10 m depth). Mineral products were dominated by phyllosilicates such as serpentine-group minerals in most reaction paths, but differed in some important indicator minerals. Modeled products varied in physicochemical properties (pH, Eh, conductivity), major ion activities, and related gas fugacities, with different ecological implications. The microbial habitability of pore spaces in subsurface groundwater percolation systems was interrogated at equilibrium in a thermodynamic framework, based on Gibbs Free Energy Minimization. Models run with the Chassigny meteorite produced the overall highest H2 fugacity. Models reliant on the Rosy Red soil-water analog produced the highest sustained CH4 fugacity (maximum values observed for reactant ALH 77005). In general, Chassigny meteorite protoliths produced the best yield regarding Gibbs Free Energy, from an astrobiological perspective. Occurrences of serpentine and saponite across models are key: these minerals have been observed using CRISM spectral data, and their formation via serpentinization would be consistent with geologically recent-past H2 and CH4 production and sustained energy sources for microbial life. We list index minerals to be used as diagnostic for paleo water–rock models that could have supported geologically recent-past microbial activity, and suggest their application as criteria for future astrobiology study-site selections. Full article
(This article belongs to the Special Issue What Is Life?)
Show Figures

Figure 1

12 pages, 3022 KiB  
Article
Achieving Luminescence of Sr3Ga1.98In0.02Ge4O14:0.03Cr3+ via [In3+] Substitution [Ga3+] and Its Application to NIR pc-LED in Non-Destructive Testing
by Tao Wang, Bingkai Gao, Jiehong Li, Zhijun Wang and Panlai Li
Molecules 2023, 28(24), 8059; https://doi.org/10.3390/molecules28248059 - 13 Dec 2023
Cited by 3 | Viewed by 1317
Abstract
Cr3+-doped Sr3Ga2Ge4O14:0.03Cr3+ (SGGO:0.03Cr3+) phosphor was synthesized via a high-temperature solid-phase method. Considering the tunable structure of SGGO, Ga3+ ions in the matrix were substituted with In3+ ions at [...] Read more.
Cr3+-doped Sr3Ga2Ge4O14:0.03Cr3+ (SGGO:0.03Cr3+) phosphor was synthesized via a high-temperature solid-phase method. Considering the tunable structure of SGGO, Ga3+ ions in the matrix were substituted with In3+ ions at a certain concentration. The tuned phosphor produced a red-shifted emission spectrum, with its luminescence intensity at 423 K maintained at 63% of that at room temperature; moreover, the internal quantum efficiency increased to 65.60%, and the external quantum efficiency correspondingly increased to 21.94%. On this basis, SGIGO:0.03Cr3+ was encapsulated into a pc-LED, which was applied in non-destructive testing (NDT) experiments, successfully realizing the recognition of water and anhydrous ethanol, proving its potential application in the field of NDT. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials)
Show Figures

Graphical abstract

19 pages, 16343 KiB  
Article
Evaluation of a Combined Approach for Sulfate and Ammonia Recovery from Treated Brine Using a Simultaneous Chemical Precipitation and Electrocoagulation Processes
by Ameera F. Mohammad, Sabeera Haris, Aya A-H. Mourad, Ali H. Al-Marzouqi, Muftah H. El-Naas, Bart Van der Bruggen and Mohamed H. Al-Marzouqi
Sustainability 2023, 15(23), 16534; https://doi.org/10.3390/su152316534 - 4 Dec 2023
Cited by 3 | Viewed by 2113
Abstract
Soda ash (Na2CO3) is produced using the traditional Solvay process. It entails the reaction of CO2 with high-salinity water in the presence of ammonia (NH3), which produces insoluble sodium bicarbonate (NaHCO3) and soluble ammonium [...] Read more.
Soda ash (Na2CO3) is produced using the traditional Solvay process. It entails the reaction of CO2 with high-salinity water in the presence of ammonia (NH3), which produces insoluble sodium bicarbonate (NaHCO3) and soluble ammonium chloride (NH4Cl). In the current work, a newly combined approach has been developed to effectively manage the removal of ammonia and sulfate from the effluent of the Solvay process. The devised technique centers on an electrochemical coagulation process, complemented with the utilization of calcium oxide (CaO) as a buffering reagent. This innovative approach excels at achieving high recovery rates for both ammonia and sulfate. The recovered ammonia holds the potential for recycling, thereby contributing to the sustainability of the Solvay process by reusing ammonia in its initial stages. Furthermore, sulfate ions are recuperated in the form of calcium sulfate, a value-added product boasting various industrial applications. The results gleaned from this study underscore the efficacy of the ammonia recovery process, particularly when operating at elevated current densities and with higher calcium oxide concentrations. On the other hand, sulfate recovery demonstrates superior performance when exposed to moderate current densities and limited calcium oxide concentrations. Consequently, the integration of both stages within a single, cohesive process necessitates the development of an optimization methodology to cater to varying operational conditions. To address this need, second-order polynomial equations were formulated and employed to anticipate ammonia and sulfate removal rates in the integrated approach. Four independent variables come into play: calcium oxide concentration, current density, temperature, and mixing rate. The findings reveal that most of these variables exert substantial influences on both ammonia and sulfate removal rates, underscoring the need for careful consideration and fine-tuning to optimize the overall process. The maximum ammonia and sulfate removal were found to reach 99.50% and 96.03%, respectively, at a calcium oxide concentration of 3.5 g/100 mL, a current density of 19.95 mA/cm2, a temperature of 35 °C, and a mixing rate of 0.76 R/s. The results are promising, and the developed process is also suitable for recovering high concentrations of sulfate and ammonia from various wastewater sources. Full article
Show Figures

Figure 1

Back to TopTop