Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (955)

Search Parameters:
Keywords = internet of healthcare things

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 1855 KB  
Systematic Review
Stage-Wise IoT Solutions for Alzheimer’s Disease: A Systematic Review of Detection, Monitoring, and Assistive Technologies
by Sanket Salvi, Lalit Garg and Varadraj Gurupur
Sensors 2025, 25(17), 5252; https://doi.org/10.3390/s25175252 - 23 Aug 2025
Viewed by 61
Abstract
The Internet of Things (IoT) has emerged as a transformative technology in managing Alzheimer’s Disease (AD), offering novel solutions for early diagnosis, continuous patient monitoring, and assistive care. This review presents a comprehensive analysis of IoT-enabled systems tailored to AD care, focusing on [...] Read more.
The Internet of Things (IoT) has emerged as a transformative technology in managing Alzheimer’s Disease (AD), offering novel solutions for early diagnosis, continuous patient monitoring, and assistive care. This review presents a comprehensive analysis of IoT-enabled systems tailored to AD care, focusing on wearable biosensors, cognitive monitoring tools, smart home automation, and Artificial Intelligence (AI)-driven analytics. A systematic literature survey was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to identify, screen, and synthesize 236 relevant studies primarily published between 2020 and 2025 across IEEE Xplore, PubMed, Scopus and Web of Science. The inclusion criteria targeted peer-reviewed articles that proposed or evaluated IoT-based solutions for AD detection, progression monitoring, or patient assistance. Key findings highlight the effectiveness of the IoT in detecting behavioral and cognitive changes, enhancing safety through real-time alerts, and improving patient autonomy. The review also explores integration challenges such as data privacy, system interoperability, and clinical adoption. The study reveals critical gaps in real-world deployment, clinical validation, and ethical integration of IoT-based systems for Alzheimer’s care. This study aims to serve as a definitive reference for researchers, clinicians, and developers working at the intersection of the IoT and neurodegenerative healthcare. Full article
Show Figures

Figure 1

29 pages, 1620 KB  
Article
A Multi-Layer Quantum-Resilient IoT Security Architecture Integrating Uncertainty Reasoning, Relativistic Blockchain, and Decentralised Storage
by Gerardo Iovane
Appl. Sci. 2025, 15(16), 9218; https://doi.org/10.3390/app15169218 - 21 Aug 2025
Viewed by 126
Abstract
The rapid development of the Internet of Things (IoT) has enabled the implementation of interconnected intelligent systems in extremely dynamic contexts with limited resources. However, traditional paradigms, such as those using ECC-based heuristics and centralised decision-making frameworks, cannot be modernised to ensure resilience, [...] Read more.
The rapid development of the Internet of Things (IoT) has enabled the implementation of interconnected intelligent systems in extremely dynamic contexts with limited resources. However, traditional paradigms, such as those using ECC-based heuristics and centralised decision-making frameworks, cannot be modernised to ensure resilience, scalability and security while taking quantum threats into account. In this case, we propose a modular architecture that integrates quantum-inspired cryptography (QI), epistemic uncertainty reasoning, the multiscale blockchain MuReQua, and the quantum-inspired decentralised storage engine (DeSSE) with fragmented entropy storage. Each component addresses specific cybersecurity weaknesses of IoT devices: quantum-resistant communication on epistemic agents that facilitate cognitive decision-making under uncertainty, lightweight adaptive consensus provided by MuReQua, and fragmented entropy storage provided by DeSSE. Tested through simulations and use case analyses in industrial, healthcare and automotive networks, the architecture shows exceptional latency, decision accuracy and fault tolerance compared to conventional solutions. Furthermore, its modular nature allows for incremental integration and domain-specific customisation. By adding reasoning, trust and quantum security, it is possible to design intelligent decentralised architectures for resilient IoT ecosystems, thereby strengthening system defences alongside architectures. In turn, this work offers a specific architectural response and a broader perspective on secure decentralised computing, even for the imminent advent of quantum computers. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 2657 KB  
Article
AI-Powered Adaptive Disability Prediction and Healthcare Analytics Using Smart Technologies
by Malak Alamri, Mamoona Humayun, Khalid Haseeb, Naveed Abbas and Naeem Ramzan
Diagnostics 2025, 15(16), 2104; https://doi.org/10.3390/diagnostics15162104 - 21 Aug 2025
Viewed by 204
Abstract
Background: By leveraging advanced wireless technologies, Healthcare Industry 5.0 promotes the continuous monitoring of real-time medical acquisition from the physical environment. These systems help identify early diseases by collecting health records from patients’ bodies promptly using biosensors. The dynamic nature of medical [...] Read more.
Background: By leveraging advanced wireless technologies, Healthcare Industry 5.0 promotes the continuous monitoring of real-time medical acquisition from the physical environment. These systems help identify early diseases by collecting health records from patients’ bodies promptly using biosensors. The dynamic nature of medical devices not only enhances the data analysis in medical services and the prediction of chronic diseases, but also improves remote diagnostics with the latency-aware healthcare system. However, due to scalability and reliability limitations in data processing, most existing healthcare systems pose research challenges in the timely detection of personalized diseases, leading to inconsistent diagnoses, particularly when continuous monitoring is crucial. Methods: This work propose an adaptive and secure framework for disability identification using the Internet of Medical Things (IoMT), integrating edge computing and artificial intelligence. To achieve the shortest response time for medical decisions, the proposed framework explores lightweight edge computing processes that collect physiological and behavioral data using biosensors. Furthermore, it offers a trusted mechanism using decentralized strategies to protect big data analytics from malicious activities and increase authentic access to sensitive medical data. Lastly, it provides personalized healthcare interventions while monitoring healthcare applications using realistic health records, thereby enhancing the system’s ability to identify diseases associated with chronic conditions. Results: The proposed framework is tested using simulations, and the results indicate the high accuracy of the healthcare system in detecting disabilities at the edges, while enhancing the prompt response of the cloud server and guaranteeing the security of medical data through lightweight encryption methods and federated learning techniques. Conclusions: The proposed framework offers a secure and efficient solution for identifying disabilities in healthcare systems by leveraging IoMT, edge computing, and AI. It addresses critical challenges in real-time disease monitoring, enhancing diagnostic accuracy and ensuring the protection of sensitive medical data. Full article
Show Figures

Figure 1

27 pages, 7905 KB  
Article
SimID: Wi-Fi-Based Few-Shot Cross-Domain User Recognition with Identity Similarity Learning
by Zhijian Wang, Lei Ouyang, Shi Chen, Han Ding, Ge Wang and Fei Wang
Sensors 2025, 25(16), 5151; https://doi.org/10.3390/s25165151 - 19 Aug 2025
Viewed by 254
Abstract
In recent years, indoor user identification via Wi-Fi signals has emerged as a vibrant research area in smart homes and the Internet of Things, thanks to its privacy preservation, immunity to lighting conditions, and ease of large-scale deployment. Conventional deep-learning classifiers, however, suffer [...] Read more.
In recent years, indoor user identification via Wi-Fi signals has emerged as a vibrant research area in smart homes and the Internet of Things, thanks to its privacy preservation, immunity to lighting conditions, and ease of large-scale deployment. Conventional deep-learning classifiers, however, suffer from poor generalization and demand extensive pre-collected data for every new scenario. To overcome these limitations, we introduce SimID, a few-shot Wi-Fi user recognition framework based on identity-similarity learning rather than conventional classification. SimID embeds user-specific signal features into a high-dimensional space, encouraging samples from the same individual to exhibit greater pairwise similarity. Once trained, new users can be recognized simply by comparing their Wi-Fi signal “query” against a small set of stored templates—potentially as few as a single sample—without any additional retraining. This design not only supports few-shot identification of unseen users but also adapts seamlessly to novel movement patterns in unfamiliar environments. On the large-scale XRF55 dataset, SimID achieves average accuracies of 97.53%, 93.37%, 92.38%, and 92.10% in cross-action, cross-person, cross-action-and-person, and cross-person-and-scene few-shot scenarios, respectively. These results demonstrate SimID’s promise for robust, data-efficient indoor identity recognition in smart homes, healthcare, security, and beyond. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2025)
Show Figures

Figure 1

31 pages, 2255 KB  
Review
Digital Convergence in Dental Informatics: A Structured Narrative Review of Artificial Intelligence, Internet of Things, Digital Twins, and Large Language Models with Security, Privacy, and Ethical Perspectives
by Sanket Salvi, Giang Vu, Varadraj Gurupur and Christian King
Electronics 2025, 14(16), 3278; https://doi.org/10.3390/electronics14163278 - 18 Aug 2025
Viewed by 455
Abstract
Background: Dentistry is undergoing a digital transformation driven by emerging technologies such as Artificial Intelligence (AI), Internet of Things (IoT), Digital Twins (DTs), and Large Language Models (LLMs). These advancements offer new paradigms in clinical diagnostics, patient monitoring, treatment planning, and medical [...] Read more.
Background: Dentistry is undergoing a digital transformation driven by emerging technologies such as Artificial Intelligence (AI), Internet of Things (IoT), Digital Twins (DTs), and Large Language Models (LLMs). These advancements offer new paradigms in clinical diagnostics, patient monitoring, treatment planning, and medical education. However, integrating these technologies also raises critical questions around security, privacy, ethics, and trust. Objective: This review aims to provide a structured synthesis of the recent literature exploring AI, IoT, DTs, and LLMs in dentistry, with a specific focus on their application domains and the associated ethical, privacy, and security concerns. Methods: A comprehensive literature search was conducted across PubMed, IEEE Xplore, and SpringerLink using a custom Boolean query string targeting publications from 2020 to 2025. Articles were screened based on defined inclusion and exclusion criteria. In total, 146 peer-reviewed articles and 18 technology platforms were selected. Each article was critically evaluated and categorized by technology domain, application type, evaluation metrics, and ethical considerations. Results: AI-based diagnostic systems and LLM-driven patient support tools were the most prominent technologies, primarily applied in image analysis, decision-making, and health communication. While numerous studies reported high performance, significant methodological gaps exist in evaluation design, sample size, and real-world validation. Ethical and privacy concerns were mentioned frequently, but were substantively addressed in only a few works. Notably, IoT and Digital Twin implementations remained largely conceptual or in pilot stages, highlighting a technology gap in dental deployment. Conclusions: The review identifies significant potential for converged intelligent dental systems but also reveals gaps in integration, security, ethical frameworks, and clinical validation. Future work must prioritize cross-disciplinary development, transparency, and regulatory alignment to realize responsible and patient-centered digital transformation in dentistry. Full article
Show Figures

Figure 1

21 pages, 2065 KB  
Article
FED-EHR: A Privacy-Preserving Federated Learning Framework for Decentralized Healthcare Analytics
by Rızwan Uz Zaman Wani and Ozgu Can
Electronics 2025, 14(16), 3261; https://doi.org/10.3390/electronics14163261 - 17 Aug 2025
Viewed by 462
Abstract
The Internet of Medical Things (IoMT) is revolutionizing healthcare by enabling continuous monitoring and real-time data collection through interconnected medical devices such as wearable sensors and smart health monitors. These devices generate sensitive physiological data, including cardiac signals, glucose levels, and vital signs, [...] Read more.
The Internet of Medical Things (IoMT) is revolutionizing healthcare by enabling continuous monitoring and real-time data collection through interconnected medical devices such as wearable sensors and smart health monitors. These devices generate sensitive physiological data, including cardiac signals, glucose levels, and vital signs, that are integrated into electronic health records (EHRs). Machine Learning (ML) and Deep Learning (DL) techniques have shown significant potential for predictive diagnostics and decision support based on such data. However, traditional centralized ML approaches raise significant privacy concerns due to the transmission and aggregation of sensitive health information. Additionally, compliance with data protection regulations, such as the Health Insurance Portability and Accountability Act (HIPAA) and General Data Protection Regulation (GDPR), restricts centralized data sharing and analytics. To address these challenges, this study introduces FED-EHR, a privacy-preserving Federated Learning (FL) framework that enables collaborative model training on distributed EHR datasets without transferring raw data from its source. The framework is implemented using Logistic Regression (LR) and Multi-Layer Perceptron (MLP) models and was evaluated using two publicly available clinical datasets: the UCI Breast Cancer Wisconsin (Diagnostic) dataset and the Pima Indians Diabetes dataset. The experimental results demonstrate that FED-EHR achieves a classification performance comparable to centralized learning, with ROC-AUC scores of 0.83 for the Diabetes dataset and 0.98 for the Breast Cancer dataset using MLP while preserving data privacy by ensuring data locality. These findings highlight the practical feasibility and effectiveness of applying the proposed FL approach in real-world IoMT scenarios, offering a secure, scalable, and regulation-compliant solution for intelligent healthcare analytics. Full article
Show Figures

Figure 1

26 pages, 1165 KB  
Article
A Set Theoretic Framework for Unsupervised Preprocessing and Power Consumption Optimisation in IoT-Enabled Healthcare Systems for Smart Cities
by Sazia Parvin and Kiran Fahd
Appl. Sci. 2025, 15(16), 9047; https://doi.org/10.3390/app15169047 - 16 Aug 2025
Viewed by 285
Abstract
The emergence of the Internet of Things (IoT) has brought about a significant technological shift, coupled with the rise of intelligent computing. IoT integrates various digital and analogue devices with the Internet, enabling advanced communication between devices and humans.The pervasive adoption of IoT [...] Read more.
The emergence of the Internet of Things (IoT) has brought about a significant technological shift, coupled with the rise of intelligent computing. IoT integrates various digital and analogue devices with the Internet, enabling advanced communication between devices and humans.The pervasive adoption of IoT has transformed urban infrastructures into interconnected smart cities. Here, we propose a framework that mathematically models and automates power consumption management for IoT devices in smart city environments ranging from residential buildings to healthcare settings. The proposed framework utilises set theoretic association-rule mining and combines unsupervised preprocessing with frequent-item set mining and iterative numerical optimisation to reduce non-critical energy consumption. Readings are first converted into binary transaction matrices; then a modified Apriori algorithm is applied to extract high-confidence usage patterns and association rules. Dimensionality reduction techniques compress these transaction profiles, while the Gauss–Seidel method computes control set points that balance energy efficiency. The resulting rule set is deployed through a web portal that provides real-time device status, remote actuation, and automated billing. These associative rules generate predictive control functions, optimise the response of the framework, and prepare the framework for future events. A web portal is introduced that enables remote control of IoT devices and facilitates power usage monitoring, as well as automated billing. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes, 3rd Edition)
Show Figures

Figure 1

22 pages, 4719 KB  
Article
An Explainable AI Approach for Interpretable Cross-Layer Intrusion Detection in Internet of Medical Things
by Michael Georgiades and Faisal Hussain
Electronics 2025, 14(16), 3218; https://doi.org/10.3390/electronics14163218 - 13 Aug 2025
Viewed by 389
Abstract
This paper presents a cross-layer intrusion detection framework leveraging explainable artificial intelligence (XAI) and interpretability methods to enhance transparency and robustness in attack detection within the Internet of Medical Things (IoMT) domain. By addressing the dual challenges of compromised data integrity, which span [...] Read more.
This paper presents a cross-layer intrusion detection framework leveraging explainable artificial intelligence (XAI) and interpretability methods to enhance transparency and robustness in attack detection within the Internet of Medical Things (IoMT) domain. By addressing the dual challenges of compromised data integrity, which span both biosensor and network-layer data, this study combines advanced techniques to enhance interpretability, accuracy, and trust. Unlike conventional flow-based intrusion detection systems that primarily rely on transport-layer statistics, the proposed framework operates directly on raw packet-level features and application-layer semantics, including MQTT message types, payload entropy, and topic structures. The key contributions of this research include the application of K-Means clustering combined with the principal component analysis (PCA) algorthim for initial categorization of attack types, the use of SHapley Additive exPlanations (SHAP) for feature prioritization to identify the most influential factors in model predictions, and the employment of Partial Dependence Plots (PDP) and Accumulated Local Effects (ALE) to elucidate feature interactions across layers. These methods enhance the system’s interpretability, making data-driven decisions more accessible to nontechnical stakeholders. Evaluation on a realistic healthcare IoMT testbed demonstrates significant improvements in detection accuracy and decision-making transparency. Furthermore, the proposed approach highlights the effectiveness of explainable and cross-layer intrusion detection for secure and trustworthy medical IoT environments that are tailored for cybersecurity analysts and healthcare stakeholders. Full article
Show Figures

Figure 1

29 pages, 12645 KB  
Article
The IoRT-in-Hand: Tele-Robotic Echography and Digital Twins on Mobile Devices
by Juan Bravo-Arrabal, Zhuoqi Cheng, J. J. Fernández-Lozano, Jose Antonio Gomez-Ruiz, Christian Schlette, Thiusius Rajeeth Savarimuthu, Anthony Mandow and Alfonso García-Cerezo
Sensors 2025, 25(16), 4972; https://doi.org/10.3390/s25164972 - 11 Aug 2025
Viewed by 538
Abstract
The integration of robotics and mobile networks (5G/6G) through the Internet of Robotic Things (IoRT) is revolutionizing telemedicine, enabling remote physician participation in scenarios where specialists are scarce, where there is a high risk to them, such as in conflicts or natural disasters, [...] Read more.
The integration of robotics and mobile networks (5G/6G) through the Internet of Robotic Things (IoRT) is revolutionizing telemedicine, enabling remote physician participation in scenarios where specialists are scarce, where there is a high risk to them, such as in conflicts or natural disasters, or where access to a medical facility is not possible. Nevertheless, touching a human safely with a robotic arm in non-engineered or even out-of-hospital environments presents substantial challenges. This article presents a novel IoRT approach for healthcare in or from remote areas, enabling interaction between a specialist’s hand and a robotic hand. We introduce the IoRT-in-hand: a smart, lightweight end-effector that extends the specialist’s hand, integrating a medical instrument, an RGB camera with servos, a force/torque sensor, and a mini-PC with Internet connectivity. Additionally, we propose an open-source Android app combining MQTT and ROS for real-time remote manipulation, alongside an Edge–Cloud architecture that links the physical robot with its Digital Twin (DT), enabling precise control and 3D visual feedback of the robot’s environment. A proof of concept is presented for the proposed tele-robotic system, using a 6-DOF manipulator with the IoRT-in-hand to perform an ultrasound scan. Teleoperation was conducted over 2300 km via a 5G NSA network on the operator side and a wired network in a laboratory on the robot side. Performance was assessed through human subject feedback, sensory data, and latency measurements, demonstrating the system’s potential for remote healthcare and emergency applications. The source code and CAD models of the IoRT-in-hand prototype are publicly available in an open-access repository to encourage reproducibility and facilitate further developments in robotic telemedicine. Full article
Show Figures

Figure 1

24 pages, 1486 KB  
Article
Improving Vehicular Network Authentication with Teegraph: A Hashgraph-Based Efficiency Approach
by Rubén Juárez Cádiz, Ruben Nicolas-Sans and José Fernández Tamámes
Sensors 2025, 25(15), 4856; https://doi.org/10.3390/s25154856 - 7 Aug 2025
Viewed by 233
Abstract
Vehicular ad hoc networks (VANETs) are a critical aspect of intelligent transportation systems, improving safety and comfort for drivers. These networks enhance the driving experience by offering timely information vital for safety and comfort. Yet, VANETs come with their own set of challenges [...] Read more.
Vehicular ad hoc networks (VANETs) are a critical aspect of intelligent transportation systems, improving safety and comfort for drivers. These networks enhance the driving experience by offering timely information vital for safety and comfort. Yet, VANETs come with their own set of challenges concerning security, privacy, and design reliability. Traditionally, vehicle authentication occurs every time a vehicle enters the domain of the roadside unit (RSU). In our study, we suggest that authentication should take place only when a vehicle has not covered a set distance, increasing system efficiency. The rise of the Internet of Things (IoT) has seen an upsurge in the use of IoT devices across various fields, including smart cities, healthcare, and vehicular IoT. These devices, while gathering environmental data and networking, often face reliability issues without a trusted intermediary. Our study delves deep into implementing Teegraph in VANETs to enhance authentication. Given the integral role of VANETs in Intelligent Transportation Systems and their inherent challenges, we turn to Hashgraph—an alternative to blockchain. Hashgraph offers a decentralized, secure, and trustworthy database. We introduce an efficient authentication system, which triggers only when a vehicle has not traversed a set distance, optimizing system efficiency. Moreover, we shed light on the indispensable role Hashgraph can occupy in the rapidly expanding IoT landscape. Lastly, we present Teegraph, a novel Hashgraph-based technology, as a superior alternative to blockchain, ensuring a streamlined, scalable authentication solution. Our approach leverages the logical key hierarchy (LKH) and packet update keys to ensure data privacy and integrity in vehicular networks. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

15 pages, 2415 KB  
Article
HBiLD-IDS: An Efficient Hybrid BiLSTM-DNN Model for Real-Time Intrusion Detection in IoMT Networks
by Hamed Benahmed, Mohammed M’hamedi, Mohammed Merzoug, Mourad Hadjila, Amina Bekkouche, Abdelhak Etchiali and Saïd Mahmoudi
Information 2025, 16(8), 669; https://doi.org/10.3390/info16080669 - 6 Aug 2025
Viewed by 386
Abstract
The Internet of Medical Things (IoMT) is revolutionizing healthcare by enabling continuous patient monitoring, early diagnosis, and personalized treatments. However, the het-erogeneity of IoMT devices and the lack of standardized protocols introduce serious security vulnerabilities. To address these challenges, we propose a hybrid [...] Read more.
The Internet of Medical Things (IoMT) is revolutionizing healthcare by enabling continuous patient monitoring, early diagnosis, and personalized treatments. However, the het-erogeneity of IoMT devices and the lack of standardized protocols introduce serious security vulnerabilities. To address these challenges, we propose a hybrid BiLSTM-DNN intrusion detection system, named HBiLD-IDS, that combines Bidirectional Long Short-Term Memory (BiLSTM) networks with Deep Neural Networks (DNNs), leveraging both temporal dependencies in network traffic and hierarchical feature extraction. The model is trained and evaluated on the CICIoMT2024 dataset, which accurately reflects the diversity of devices and attack vectors encountered in connected healthcare environments. The dataset undergoes rigorous preprocessing, including data cleaning, feature selection through correlation analysis and recursive elimination, and feature normalization. Compared to existing IDS models, our approach significantly enhances detection accuracy and generalization capacity in the face of complex and evolving attack patterns. Experimental results show that the proposed IDS model achieves a classification accuracy of 98.81% across 19 attack types confirming its robustness and scalability. This approach represents a promising solution for strengthening the security posture of IoMT networks against emerging cyber threats. Full article
Show Figures

Figure 1

28 pages, 1328 KB  
Review
Security Issues in IoT-Based Wireless Sensor Networks: Classifications and Solutions
by Dung T. Nguyen, Mien L. Trinh, Minh T. Nguyen, Thang C. Vu, Tao V. Nguyen, Long Q. Dinh and Mui D. Nguyen
Future Internet 2025, 17(8), 350; https://doi.org/10.3390/fi17080350 - 1 Aug 2025
Viewed by 507
Abstract
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to [...] Read more.
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to be important components of the IoT system (WSN-IoT) to create smart applications and automate processes. As the number of connected IoT devices increases, privacy and security issues become more complicated due to their external working environments and limited resources. Hence, solutions need to be updated to ensure that data and user privacy are protected from threats and attacks. To support the safety and reliability of such systems, in this paper, security issues in the WSN-IoT are addressed and classified as identifying security challenges and requirements for different kinds of attacks in either WSNs or IoT systems. In addition, security solutions corresponding to different types of attacks are provided, analyzed, and evaluated. We provide different comparisons and classifications based on specific goals and applications that hopefully can suggest suitable solutions for specific purposes in practical. We also suggest some research directions to support new security mechanisms. Full article
Show Figures

Figure 1

30 pages, 3898 KB  
Article
Application of Information and Communication Technologies for Public Services Management in Smart Villages
by Ingrida Kazlauskienė and Vilma Atkočiūnienė
Businesses 2025, 5(3), 31; https://doi.org/10.3390/businesses5030031 - 31 Jul 2025
Viewed by 474
Abstract
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how [...] Read more.
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how these technologies address specific rural challenges, and evaluates their benefits, implementation barriers, and future prospects for sustainable rural development. A qualitative content analysis method was applied using purposive sampling to analyze 79 peer-reviewed articles from EBSCO and Elsevier databases (2000–2024). A deductive approach employed predefined categories to systematically classify ICT applications across rural public service domains, with data coded according to technology scope, problems addressed, and implementation challenges. The analysis identified 15 ICT application domains (agriculture, healthcare, education, governance, energy, transport, etc.) and 42 key technology categories (Internet of Things, artificial intelligence, blockchain, cloud computing, digital platforms, mobile applications, etc.). These technologies address four fundamental rural challenges: limited service accessibility, inefficient resource management, demographic pressures, and social exclusion. This study provides the first comprehensive systematic categorization of ICT applications in smart villages, establishing a theoretical framework connecting technology deployment with sustainable development dimensions. Findings demonstrate that successful ICT implementation requires integrated urban–rural cooperation, community-centered approaches, and balanced attention to economic, social, and environmental sustainability. The research identifies persistent challenges, including inadequate infrastructure, limited digital competencies, and high implementation costs, providing actionable insights for policymakers and practitioners developing ICT-enabled rural development strategies. Full article
Show Figures

Figure 1

40 pages, 3463 KB  
Review
Machine Learning-Powered Smart Healthcare Systems in the Era of Big Data: Applications, Diagnostic Insights, Challenges, and Ethical Implications
by Sita Rani, Raman Kumar, B. S. Panda, Rajender Kumar, Nafaa Farhan Muften, Mayada Ahmed Abass and Jasmina Lozanović
Diagnostics 2025, 15(15), 1914; https://doi.org/10.3390/diagnostics15151914 - 30 Jul 2025
Viewed by 1157
Abstract
Healthcare data rapidly increases, and patients seek customized, effective healthcare services. Big data and machine learning (ML) enabled smart healthcare systems hold revolutionary potential. Unlike previous reviews that separately address AI or big data, this work synthesizes their convergence through real-world case studies, [...] Read more.
Healthcare data rapidly increases, and patients seek customized, effective healthcare services. Big data and machine learning (ML) enabled smart healthcare systems hold revolutionary potential. Unlike previous reviews that separately address AI or big data, this work synthesizes their convergence through real-world case studies, cross-domain ML applications, and a critical discussion on ethical integration in smart diagnostics. The review focuses on the role of big data analysis and ML towards better diagnosis, improved efficiency of operations, and individualized care for patients. It explores the principal challenges of data heterogeneity, privacy, computational complexity, and advanced methods such as federated learning (FL) and edge computing. Applications in real-world settings, such as disease prediction, medical imaging, drug discovery, and remote monitoring, illustrate how ML methods, such as deep learning (DL) and natural language processing (NLP), enhance clinical decision-making. A comparison of ML models highlights their value in dealing with large and heterogeneous healthcare datasets. In addition, the use of nascent technologies such as wearables and Internet of Medical Things (IoMT) is examined for their role in supporting real-time data-driven delivery of healthcare. The paper emphasizes the pragmatic application of intelligent systems by highlighting case studies that reflect up to 95% diagnostic accuracy and cost savings. The review ends with future directions that seek to develop scalable, ethical, and interpretable AI-powered healthcare systems. It bridges the gap between ML algorithms and smart diagnostics, offering critical perspectives for clinicians, data scientists, and policymakers. Full article
(This article belongs to the Special Issue Machine-Learning-Based Disease Diagnosis and Prediction)
Show Figures

Figure 1

22 pages, 1386 KB  
Article
A Scalable Approach to IoT Interoperability: The Share Pattern
by Riccardo Petracci and Rosario Culmone
Sensors 2025, 25(15), 4701; https://doi.org/10.3390/s25154701 - 30 Jul 2025
Viewed by 323
Abstract
The Internet of Things (IoT) is transforming how devices communicate, with more than 30 billion connected units today and projections exceeding 40 billion by 2025. Despite this growth, the integration of heterogeneous systems remains a significant challenge, particularly in sensitive domains like healthcare, [...] Read more.
The Internet of Things (IoT) is transforming how devices communicate, with more than 30 billion connected units today and projections exceeding 40 billion by 2025. Despite this growth, the integration of heterogeneous systems remains a significant challenge, particularly in sensitive domains like healthcare, where proprietary standards and isolated ecosystems hinder interoperability. This paper presents an extended version of the Share design pattern, a lightweight and contract-based mechanism for dynamic service composition, tailored for resource-constrained IoT devices. Share enables decentralized, peer-to-peer integration by exchanging executable code in our examples written in the LUA programming language. This approach avoids reliance on centralized infrastructures and allows services to discover and interact with each other dynamically through pattern-matching and contract validation. To assess its suitability, we developed an emulator that directly implements the system under test in LUA, allowing us to verify both the structural and behavioral constraints of service interactions. Our results demonstrate that Share is scalable and effective, even in constrained environments, and supports formal correctness via design-by-contract principles. This makes it a promising solution for lightweight, interoperable IoT systems that require flexibility, dynamic configuration, and resilience without centralized control. Full article
(This article belongs to the Special Issue Secure and Decentralised IoT Systems)
Show Figures

Figure 1

Back to TopTop