Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = intermittent hypoxia training

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1312 KiB  
Review
Exploring the Relationship Between Obstructive Sleep Apnea and Olfactory Function
by Antonino Maniaci, Mario Lentini, Maria Rita Bianco, Daniele Salvatore Paternò, Salvatore Lavalle, Annalisa Pace, Giannicola Iannella, Paolo Boscolo-Rizzo, Miguel Mayo-Yanez, Christian Calvo-Henriquez, Jerome R. Lechien and Luigi La Via
Life 2025, 15(4), 675; https://doi.org/10.3390/life15040675 - 21 Apr 2025
Viewed by 1160
Abstract
Obstructive sleep apnea (OSA) is increasingly recognized as a chronic condition that is closely interrelated to olfactory disorders, with a significant contribution to quality of health and overall quality of life. This narrative review aims to provide a thorough overview of the emerging [...] Read more.
Obstructive sleep apnea (OSA) is increasingly recognized as a chronic condition that is closely interrelated to olfactory disorders, with a significant contribution to quality of health and overall quality of life. This narrative review aims to provide a thorough overview of the emerging evidence that now integrates these two previously considered distinct physiologic systems. Studies published recently have reported a significantly higher frequency of olfactory dysfunction among OSA patients compared to the general population, which raises the possibility of a causal relationship. We explore the postulated mechanisms behind this association, namely, the chronic intermittent hypoxia, local inflammatory effect, and neuroanatomical changes attributed to OSA. The review further explores the clinical impacts of this relationship through proposing the potential for an olfactory assessment to be used as a diagnostic modality for OSA and the effects of OSA treatment on olfactory function. Thus, we explore the difficulties in treating patients who experience both and suggest future areas for research. This review attempts to bridge the gap between the existing literature and impending investigation necessary for a better management of the interaction of sleep apnea and the human sense of smell. Full article
Show Figures

Figure 1

28 pages, 6097 KiB  
Article
L-Arginine and Intermittent Hypoxia Are Stress-Limiting Factors in Male Wistar Rat Models
by Natalia Kurhaluk, Oleksandr Lukash, Piotr Kamiński and Halina Tkaczenko
Int. J. Mol. Sci. 2024, 25(22), 12364; https://doi.org/10.3390/ijms252212364 - 18 Nov 2024
Cited by 3 | Viewed by 1354
Abstract
The aim of this study was to evaluate the combined effects of L-arginine, intermittent hypoxia training (IHT), and acute stress on oxygen-dependent processes in rats, including mitochondrial oxidative phosphorylation, microsomal oxidation, and the intensity of lipoperoxidation processes. In addition, our study investigated how [...] Read more.
The aim of this study was to evaluate the combined effects of L-arginine, intermittent hypoxia training (IHT), and acute stress on oxygen-dependent processes in rats, including mitochondrial oxidative phosphorylation, microsomal oxidation, and the intensity of lipoperoxidation processes. In addition, our study investigated how the modulatory effect of the NO synthase mechanism on the concentration of catecholamines (CA), such as adrenaline and noradrenaline, and their biosynthetic precursors (DOPA, dopamine) varies depending on the cholinergic (acetylcholine, Ach-acetylcholinesterase, AChE) status in rats. This study investigated the protective stress-limiting effects of L-arginine impact and IHT in the blood and liver of rats. The results showed that L-arginine promoted the maintenance of NAD-dependent oxidation in mitochondria, which was detrimental compared to succinate oxidation, and was accompanied by depletion of respiratory activity reserves under stress induced by high concentrations of CA. The interdependence of SC-dependent oxidation and the functional role of NAD-dependent substrate oxidation in the mitochondrial respiratory chain in stress conditions induced using inhibitors revealed the importance of the NO system. Administration of L-arginine during the IHT course prior to stress exposure increased the compensatory capacity of the organism. L-arginine increased the compensatory capacity of the sympathoadrenal system in stress-exposed rats. In the early stages of IHT, modulation of the CA concentration was observed with a concomitant increase in lipoperoxidation processes, and in the final stages of IHT, the CA concentrations increased, but there was also an inhibition of lipoperoxidation, which was particularly enhanced by the administration of L-arginine. The increase in blood concentrations of CA and ACh was accompanied by a decrease in AChE activity at different stages of adaptation to hypoxia induced by IHT (days 5, 10, and 14). Thus, the IHT method significantly mobilises the reserve capacity of oxygen-dependent processes through the system of CA, ACh-AChE mediated by nitric oxide. Full article
(This article belongs to the Special Issue Amino Acids and Related Compounds in Health and Disease)
Show Figures

Figure 1

7 pages, 1220 KiB  
Case Report
Effects of a Combined Method of Normobaric Hypoxia on the Repeated Sprint Ability Performance of a Nine-Time World Champion Triathlete: A Case Report
by Adrian Gonzalez-Custodio, Carmen Crespo, Rafael Timón and Guillermo Olcina
Behav. Sci. 2024, 14(11), 1084; https://doi.org/10.3390/bs14111084 - 12 Nov 2024
Cited by 2 | Viewed by 1214
Abstract
Elite athletes are an under-represented population in scientific studies, and there are no works analysing the influence of hypoxia in elite triathletes. The aim of this study was to analyse the influence of different methods of normobaric hypoxia on repeated sprint ability (RSA) [...] Read more.
Elite athletes are an under-represented population in scientific studies, and there are no works analysing the influence of hypoxia in elite triathletes. The aim of this study was to analyse the influence of different methods of normobaric hypoxia on repeated sprint ability (RSA) performance. This study was a case study with an elite triathlete who has won nine triathlon world championships. The study used a combination of different methods of normobaric hypoxia. The three methods combined were as follows: live high-train low interspersed; intermittent hypoxic training; and intermittent hypoxic exposure. This study analysed the influence of these methods on RSA performance in variables such as power output, saturation of muscular oxygen, heart rate and ventilatory variables (VO2 and VCO2). The triathlete was measured before the training protocol (PRE), just after (POST-D3) and 21 days after the end of the protocol (POST-D21). This type of protocol has shown that it can lead to an improvement in RSA performance in the number of sprints (PRE vs. POST-D3 vs. POST-D21: 19 vs. 24 vs. 28), power output (PRE 615 W vs. POST-D3 685 W vs. POST-D21 683W) and efficiency of the triathlete. This work may be useful in improving power output and repeated sprint ability for elite triathletes. Full article
Show Figures

Figure 1

13 pages, 2739 KiB  
Article
Exploring the Impact of Resistance Training at Moderate Altitude on Metabolic Cytokines in Humans: Implications for Adipose Tissue Dynamics
by Sergio Pérez-Regalado, Josefa Leon, Paulino Padial, Cristina Benavente, Filipa Almeida, Juan Bonitch-Góngora, Blanca de la Fuente and Belén Feriche
Int. J. Mol. Sci. 2024, 25(21), 11418; https://doi.org/10.3390/ijms252111418 - 24 Oct 2024
Cited by 3 | Viewed by 1339
Abstract
Hypobaric hypoxia (HH) limits oxygen supply to tissues and increases metabolic demands, especially during exercise. We studied the influence of HH exposure on the subcutaneous adipose tissue (SAT) thickness and circulating metabolic-related cytokines levels after a resistance training (RT) program. Twenty [...] Read more.
Hypobaric hypoxia (HH) limits oxygen supply to tissues and increases metabolic demands, especially during exercise. We studied the influence of HH exposure on the subcutaneous adipose tissue (SAT) thickness and circulating metabolic-related cytokines levels after a resistance training (RT) program. Twenty trained men participated in a traditional hypertrophy RT for 8 weeks (three sessions/week) under intermittent terrestrial HH (2320 m) or normoxia (N, 690 m) conditions. Before, at week 6, and after the RT, SAT, and vastus lateralis (VL) muscle thickness were measured by ultrasound. Blood samples were taken to analyse serum cytokines (IL-6, IL-15, irisin, and myostatin) by multiplex immunoassay. Our findings revealed a moderate reduction in IL-6 and irisin in HH following the RT (ES < −0.64; p < 0.05). Additionally, RT in HH promoted serum IL-15 release (ES = 0.890; p = 0.062), which exhibited a trivial inverse association with the reductions observed on SAT (−17.69%; p < 0.001) compared with N. RT in HH explained ~50% of SAT variance (p < 0.001). These results highlight the benefit of stressor factors linked to RT in HH on SAT through the modulation of serum metabolic cytokine profiles, suggesting a potential effect on overall body composition. Full article
Show Figures

Figure 1

15 pages, 1535 KiB  
Review
Relationship between Hypoxia and Hypercapnia Tolerance and Life Expectancy
by Pavel P. Tregub, Yulia K. Komleva, Vladimir P. Kulikov, Pavel A. Chekulaev, Oksana F. Tregub, Larisa D. Maltseva, Zaripat Sh. Manasova, Inga A. Popova, Natalia S. Andriutsa, Natalia V. Samburova, Alla B. Salmina and Peter F. Litvitskiy
Int. J. Mol. Sci. 2024, 25(12), 6512; https://doi.org/10.3390/ijms25126512 - 13 Jun 2024
Cited by 1 | Viewed by 3140
Abstract
The review discusses the potential relationship between hypoxia resistance and longevity, the influence of carbon dioxide on the mechanisms of aging of the mammalian organism, and intermittent hypercapnic–hypoxic effects on the signaling pathways of aging mechanisms. In the article, we focused on the [...] Read more.
The review discusses the potential relationship between hypoxia resistance and longevity, the influence of carbon dioxide on the mechanisms of aging of the mammalian organism, and intermittent hypercapnic–hypoxic effects on the signaling pathways of aging mechanisms. In the article, we focused on the potential mechanisms of the gero-protective efficacy of carbon dioxide when combined with hypoxia. The review summarizes the possible influence of intermittent hypoxia and hypercapnia on aging processes in the nervous system. We considered the perspective variants of the application of hypercapnic–hypoxic influences for achieving active longevity and the prospects for the possibilities of developing hypercapnic–hypoxic training methods. Full article
(This article belongs to the Special Issue Essential Molecules in Life: Regulation, Defense, and Longevity)
Show Figures

Figure 1

2 pages, 143 KiB  
Retraction
RETRACTED: Serebrovska et al. Intermittent Hypoxia-Hyperoxia Training Improves Cognitive Function and Decreases Circulating Biomarkers of Alzheimer’s Disease in Patients with Mild Cognitive Impairment: A Pilot Study. Int. J. Mol. Sci. 2019, 20, 5405
by Zoya O. Serebrovska, Tetiana V. Serebrovska, Viktor A. Kholin, Lesya V. Tumanovska, Angela M. Shysh, Denis A. Pashevin, Sergii V. Goncharov, Dmytro Stroy, Oksana N. Grib, Valeriy B. Shatylo, Natalia Yu. Bachinskaya, Egor Egorov, Lei Xi and Victor E. Dosenko
Int. J. Mol. Sci. 2024, 25(9), 5039; https://doi.org/10.3390/ijms25095039 - 7 May 2024
Viewed by 2174
Abstract
The journal Int [...] Full article
(This article belongs to the Special Issue Adaptation to Hypoxia: A Chimera?)
17 pages, 5113 KiB  
Article
The Impact of Normobaric Hypoxia and Intermittent Hypoxic Training on Cardiac Biomarkers in Endurance Athletes: A Pilot Study
by Jakub Goliniewski, Miłosz Czuba, Kamila Płoszczyca, Małgorzata Chalimoniuk, Robert Gajda, Adam Niemaszyk, Katarzyna Kaczmarczyk and Józef Langfort
Int. J. Mol. Sci. 2024, 25(9), 4584; https://doi.org/10.3390/ijms25094584 - 23 Apr 2024
Viewed by 3201
Abstract
This study explores the effects of normobaric hypoxia and intermittent hypoxic training (IHT) on the physiological condition of the cardiac muscle in swimmers. Hypoxia has been reported to elicit both beneficial and adverse changes in the cardiovascular system, but its impact on the [...] Read more.
This study explores the effects of normobaric hypoxia and intermittent hypoxic training (IHT) on the physiological condition of the cardiac muscle in swimmers. Hypoxia has been reported to elicit both beneficial and adverse changes in the cardiovascular system, but its impact on the myocardium during acute exercise and altitude/hypoxic training remains less understood. We aimed to determine how a single bout of intense interval exercise and a four-week period of high-intensity endurance training under normobaric hypoxia affect cardiac marker activity in swimmers. Sixteen young male swimmers were divided into two groups: one undergoing training in hypoxia and the other in normoxia. Cardiac markers, including troponin I and T (cTnI and cTnT), heart-type fatty acid-binding protein (H-FABP), creatine kinase-MB isoenzyme (CK-MB), and myoglobin (Mb), were analyzed to assess the myocardium’s response. We found no significant differences in the physiological response of the cardiac muscle to intense physical exertion between hypoxia and normoxia. Four weeks of IHT did not alter the resting levels of cTnT, cTnI, and H-FABP, but it resulted in a noteworthy decrease in the resting concentration of CK-MB, suggesting enhanced cardiac muscle adaptation to exercise. In contrast, a reduction in resting Mb levels was observed in the control group training in normoxia. These findings suggest that IHT at moderate altitudes does not adversely affect cardiac muscle condition and may support cardiac muscle adaptation, affirming the safety and efficacy of IHT as a training method for athletes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

28 pages, 2920 KiB  
Review
Molecular Mechanisms of Neuroprotection after the Intermittent Exposures of Hypercapnic Hypoxia
by Pavel P. Tregub, Vladimir P. Kulikov, Irada Ibrahimli, Oksana F. Tregub, Artem V. Volodkin, Michael A. Ignatyuk, Andrey A. Kostin and Dmitrii A. Atiakshin
Int. J. Mol. Sci. 2024, 25(7), 3665; https://doi.org/10.3390/ijms25073665 - 25 Mar 2024
Cited by 8 | Viewed by 3414
Abstract
The review introduces the stages of formation and experimental confirmation of the hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and signaling pathways involved in the [...] Read more.
The review introduces the stages of formation and experimental confirmation of the hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and signaling pathways involved in the formation of ischemic tolerance in the brain during intermittent hypercapnic hypoxia. Importantly, the combined effect of hypoxia and hypercapnia exerts a more pronounced neuroprotective effect compared to their separate application. Some signaling systems are associated with the predominance of the hypoxic stimulus (HIF-1α, A1 receptors), while others (NF-κB, antioxidant activity, inhibition of apoptosis, maintenance of selective blood–brain barrier permeability) are mainly modulated by hypercapnia. Most of the molecular and cellular mechanisms involved in the formation of brain tolerance to ischemia are due to the contribution of both excess carbon dioxide and oxygen deficiency (ATP-dependent potassium channels, chaperones, endoplasmic reticulum stress, mitochondrial metabolism reprogramming). Overall, experimental studies indicate the dominance of hypercapnia in the neuroprotective effect of its combined action with hypoxia. Recent clinical studies have demonstrated the effectiveness of hypercapnic–hypoxic training in the treatment of childhood cerebral palsy and diabetic polyneuropathy in children. Combining hypercapnic hypoxia with pharmacological modulators of neuro/cardio/cytoprotection signaling pathways is likely to be promising for translating experimental research into clinical medicine. Full article
(This article belongs to the Special Issue Advances in the Prevention and Treatment of Ischemic Diseases)
Show Figures

Figure 1

12 pages, 1634 KiB  
Article
The Effects of Intermittent Hypoxic Training on Anaerobic Performance in Young Men
by Marcin Maciejczyk, Tomasz Palka, Magdalena Wiecek, Sebastian Masel and Zbigniew Szygula
Appl. Sci. 2024, 14(2), 676; https://doi.org/10.3390/app14020676 - 12 Jan 2024
Cited by 1 | Viewed by 2651
Abstract
This study aimed to comprehensively evaluate the effects of intermittent hypoxic training (IHT) on anaerobic performance in young, untrained men. Young men (n = 48) were randomly divided into two training groups and a control group. The training groups performed the same submaximal [...] Read more.
This study aimed to comprehensively evaluate the effects of intermittent hypoxic training (IHT) on anaerobic performance in young, untrained men. Young men (n = 48) were randomly divided into two training groups and a control group. The training groups performed the same submaximal interval training (three times a week for 4 weeks) in normoxia (200 m asl) or in hypoxia (IHT) (FIO2 = 14.4%). The workloads for the interval training corresponded to the intensity of the ventilatory thresholds determined in a graded test. Participants performed a supramaximal all-out sprint test in normoxia twice: before and after the training. Significant improvement in both absolute peak power (p < 0.001; ES = 0.34) and relative peak power (p < 0.001; ES = 0.54) was noted after IHT. Similar changes were not observed either after training in normoxia (p = 0.14 and p = 0.26, for absolute and relative peak power, respectively) or in the control group (p = 0.34 and p = 0.51, for absolute and relative peak power, respectively). Compared to baseline, there were no significant changes in the absolute and relative mean power of either group after training. Intermittent hypoxic training in young, untrained men can be effective in improving their peak power, but does not significantly affect their mean power. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

12 pages, 749 KiB  
Article
Effects of Different Protocols of Moderate-Intensity Intermittent Hypoxic Training on Mental Health and Quality of Life in Brazilian Adults Recovered from COVID-19: The AEROBICOVID Double-Blind Randomized Controlled Study
by Eugenio Merellano-Navarro, Marta Camacho-Cardenosa, Gabriel Peinado Costa, Ester Wiggers, Germano Marcolino Putti, Jonatas Evandro Nogueira, Elisangela Aparecida da Silva Lizzi and Átila Alexandre Trapé
Healthcare 2023, 11(23), 3076; https://doi.org/10.3390/healthcare11233076 - 30 Nov 2023
Cited by 3 | Viewed by 2700
Abstract
The aim of this study was to investigate the effects of different protocols of moderate-intensity intermittent hypoxic training in patients who had recovered from COVID-19 on quality of life (QoL) and mental health. The sample of this clinical trial-controlled double-blind study consisted of [...] Read more.
The aim of this study was to investigate the effects of different protocols of moderate-intensity intermittent hypoxic training in patients who had recovered from COVID-19 on quality of life (QoL) and mental health. The sample of this clinical trial-controlled double-blind study consisted of 67 participants aged 30–69 years, who were organized randomly according to Normoxia, Hypoxia, Hypoxia Recovery or Control Group. Eight weeks of cycle ergometer training were performed with a frequency of three training sessions per week in normoxic or hypoxic conditions (with or without hypoxic recovery). Health-related QoL and Mental Health Status were evaluated by 12-Item Short Form Survey and Depression Anxiety and Stress Scale instruments, respectively. All training groups improved the QoL’s physical dimensions (Baseline–Post: Normoxia Group 42.1 (11.0)–48.7 (7.0), Hypoxia Group 46.9 (11.8)–53.5 (6.6) and Hypoxia Recovery Group 45.8 (9.2)–51.1 (5.3)) and mental dimensions (Baseline–Post: Normoxia Group 48.8 (7.9)–54.6 (4.6), Hypoxia Group 45.2 (7.7)–53.2 (3.8) and Hypoxia Recovery Group 46.5 (9.7)–52.0 (9.9)). Regarding mental health outcomes, all training groups decreased depressive symptoms (66.7% Normoxia, 31.2% Hypoxia Recovery and 31% Hypoxia groups), anxiety symptoms (46.5% Normoxia, 45.9% Hypoxia Recovery and 39.5% in the Hypoxia groups) and stress symptoms (40.6% Normoxia, 36.3% Hypoxia Recovery and 22.1% Hypoxia groups). Significant statistical difference was not found between groups. Normoxic and hypoxic training showed a similar effect on QoL and the mental health of Brazilian adults who had recovered from COVID-19. Full article
Show Figures

Figure 1

29 pages, 759 KiB  
Systematic Review
Neuroprotective Effects of Moderate Hypoxia: A Systematic Review
by Viktoria Damgaard, Johanna Mariegaard, Julie Marie Lindhardsen, Hannelore Ehrenreich and Kamilla Woznica Miskowiak
Brain Sci. 2023, 13(12), 1648; https://doi.org/10.3390/brainsci13121648 - 27 Nov 2023
Cited by 8 | Viewed by 5838
Abstract
Emerging evidence highlights moderate hypoxia as a candidate treatment for brain disorders. This systematic review examines findings and the methodological quality of studies investigating hypoxia (10–16% O2) for ≥14 days in humans, as well as the neurobiological mechanisms triggered by hypoxia [...] Read more.
Emerging evidence highlights moderate hypoxia as a candidate treatment for brain disorders. This systematic review examines findings and the methodological quality of studies investigating hypoxia (10–16% O2) for ≥14 days in humans, as well as the neurobiological mechanisms triggered by hypoxia in animals, and suggests optimal treatment protocols to guide future studies. We followed the preferred reporting items for systematic reviews and meta-analysis (PRISMA) 2020. Searches were performed on PubMed/MEDLINE, PsycInfo, EMBASE, and the Cochrane Library, in May–September 2023. Two authors independently reviewed the human studies with the following tools: (1) revised Cochrane collaboration’s risk of bias for randomized trials 2.0; (2) the risk of bias in nonrandomized studies of interventions. We identified 58 eligible studies (k = 8 human studies with N = 274 individuals; k = 48 animal studies) reporting the effects of hypoxia on cognition, motor function, neuroimaging, neuronal/synaptic morphology, inflammation, oxidative stress, erythropoietin, neurotrophins, and Alzheimer’s disease markers. A total of 75% of human studies indicated cognitive and/or neurological benefits, although all studies were evaluated ashigh risk of bias due to a lack of randomization and assessor blinding. Low-dose intermittent or continuous hypoxia repeated for 30–240 min sessions, preferably in combination with motor-cognitive training, produced beneficial effects, and high-dose hypoxia with longer (≥6 h) durations and chronic exposure produced more adverse effects. Larger and methodologically stronger translational studies are warranted. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Graphical abstract

10 pages, 268 KiB  
Review
Simulated Altitude Training and Sport Performance: Protocols and Physiological Effects
by Wu-Yeh Chang, Kuo-Cheng Wu, Ai-Lun Yang and Yi-Liang Chen
Appl. Sci. 2023, 13(20), 11381; https://doi.org/10.3390/app132011381 - 17 Oct 2023
Cited by 2 | Viewed by 7186
Abstract
This article explores the physiological mechanisms and effects of simulated hypoxia environment training on sports performance. Different training protocols, including hypoxia high-intensity interval training (HHIIT), incremental hypoxia training, hypoxia submaximal exercise training and combined training, and hypoxia training in the recovery and sleep [...] Read more.
This article explores the physiological mechanisms and effects of simulated hypoxia environment training on sports performance. Different training protocols, including hypoxia high-intensity interval training (HHIIT), incremental hypoxia training, hypoxia submaximal exercise training and combined training, and hypoxia training in the recovery and sleep states, are discussed. HHIIT combines intermittent hypoxia exposure with high-intensity interval training, and has been shown to increase the maximum oxygen intake compare to the state of normoxia, improving cardiorespiratory fitness, skeletal muscle oxygen utilization, power performance, hematological adaptations, and sports performance. Incremental hypoxia training involves the gradual decrease in oxygen concentration while maintaining exercise intensity. It has been found to improve aerobic capacity; however, fewer effects were observed in hematological variables. Hypoxia submaximal exercise training and combined training in a hypoxia environment has shown to increase VO2 and VE, and only improve hemodynamic function in combined training with hypoxia. Hypoxia during the recovery state has been associated with improvements in maximum oxygen uptake, also providing benefits to sports performance. Overall, exposure to a hypoxia environment has been demonstrated to improve cardiorespiratory endurance, power performance, and specific physiological adaptations in training and resting states. However, the optimal training protocols and their effects on different sports and athlete proficiency require further research to optimize training and enhance athletic performance in hypoxia environments. Full article
(This article belongs to the Collection Sports Performance and Health)
15 pages, 602 KiB  
Review
Effectiveness of Intermittent Hypoxia–Hyperoxia Therapy in Different Pathologies with Possible Metabolic Implications
by Andreea-Bianca Uzun, Mădălina Gabriela Iliescu, Liliana-Elena Stanciu, Elena-Valentina Ionescu, Rodica Ana Ungur, Viorela Mihaela Ciortea, Laszlo Irsay, Irina Motoașcă, Marius Nicolae Popescu, Florina Ligia Popa, Loredana Pazara and Doina-Ecaterina Tofolean
Metabolites 2023, 13(2), 181; https://doi.org/10.3390/metabo13020181 - 25 Jan 2023
Cited by 19 | Viewed by 5220
Abstract
Intermittent oxygen therapy (IHT), initially used in the hypoxic administration variant, has been shown to be effective in various pathologies studied, from cardiopulmonary to vascular and metabolic pathologies and more. IHT used to prevent and treat various diseases has thus gained more and [...] Read more.
Intermittent oxygen therapy (IHT), initially used in the hypoxic administration variant, has been shown to be effective in various pathologies studied, from cardiopulmonary to vascular and metabolic pathologies and more. IHT used to prevent and treat various diseases has thus gained more and more attention as the years have passed. The mechanisms underlying the beneficial effects have been investigated at multiple biological levels, from systemic physiological reactions to genomic regulation. In the last decade, a new method of intermittent oxygen therapy has been developed that combines hypoxic and hyperoxic periods. They can be applied both at rest and during physical exercise, hence the specific indications in sports medicine. It has been hypothesized that replacing normoxia with moderate hyperoxia may increase the adaptive response to the intermittent hypoxic stimulus by upregulating reactive oxygen species and hypoxia-inducible genes. This systematic literature review is based on the “Preferred Reporting Items for Systematic Reviews and Meta-Analysis”—“PRISMA”—methodology, the widely internationally accepted method. Full article
Show Figures

Figure 1

15 pages, 987 KiB  
Review
Mimicking Gene–Environment Interaction of Higher Altitude Dwellers by Intermittent Hypoxia Training: COVID-19 Preventive Strategies
by Rashmi Supriya, Kumar Purnendu Singh, Yang Gao, Dan Tao, Sarah Cheour, Frederic Dutheil and Julien S. Baker
Biology 2023, 12(1), 6; https://doi.org/10.3390/biology12010006 - 21 Dec 2022
Cited by 3 | Viewed by 3794
Abstract
Cyclooxygenase 2 (COX2) inhibitors have been demonstrated to protect against hypoxia pathogenesis in several investigations. It has also been utilized as an adjuvant therapy in the treatment of COVID-19. COX inhibitors, which have previously been shown to be effective in treating previous viral [...] Read more.
Cyclooxygenase 2 (COX2) inhibitors have been demonstrated to protect against hypoxia pathogenesis in several investigations. It has also been utilized as an adjuvant therapy in the treatment of COVID-19. COX inhibitors, which have previously been shown to be effective in treating previous viral and malarial infections are strong candidates for improving the COVID-19 therapeutic doctrine. However, another COX inhibitor, ibuprofen, is linked to an increase in the angiotensin-converting enzyme 2 (ACE2), which could increase virus susceptibility. Hence, inhibiting COX2 via therapeutics might not always be protective and we need to investigate the downstream molecules that may be involved in hypoxia environment adaptation. Research has discovered that people who are accustomed to reduced oxygen levels at altitude may be protected against the harmful effects of COVID-19. It is important to highlight that the study’s conclusions only applied to those who regularly lived at high altitudes; they did not apply to those who occasionally moved to higher altitudes but still lived at lower altitudes. COVID-19 appears to be more dangerous to individuals residing at lower altitudes. The downstream molecules in the (COX2) pathway have been shown to adapt in high-altitude dwellers, which may partially explain why these individuals have a lower prevalence of COVID-19 infection. More research is needed, however, to directly address COX2 expression in people living at higher altitudes. It is possible to mimic the gene–environment interaction of higher altitude people by intermittent hypoxia training. COX-2 adaptation resulting from hypoxic exposure at altitude or intermittent hypoxia exercise training (IHT) seems to have an important therapeutic function. Swimming, a type of IHT, was found to lower COX-2 protein production, a pro-inflammatory milieu transcription factor, while increasing the anti-inflammatory microenvironment. Furthermore, Intermittent Hypoxia Preconditioning (IHP) has been demonstrated in numerous clinical investigations to enhance patients’ cardiopulmonary function, raise cardiorespiratory fitness, and increase tissues’ and organs’ tolerance to ischemia. Biochemical activities of IHP have also been reported as a feasible application strategy for IHP for the rehabilitation of COVID-19 patients. In this paper, we aim to highlight some of the most relevant shared genes implicated with COVID-19 pathogenesis and hypoxia. We hypothesize that COVID-19 pathogenesis and hypoxia share a similar mechanism that affects apoptosis, proliferation, the immune system, and metabolism. We also highlight the necessity of studying individuals who live at higher altitudes to emulate their gene–environment interactions and compare the findings with IHT. Finally, we propose COX2 as an upstream target for testing the effectiveness of IHT in preventing or minimizing the effects of COVID-19 and other oxygen-related pathological conditions in the future. Full article
Show Figures

Figure 1

10 pages, 725 KiB  
Article
Carbonic Anhydrase IX as a Marker of Disease Severity in Obstructive Sleep Apnea
by Ayşegül Altıntop Geçkil, Tuğba Raika Kıran, Nurcan Kırıcı Berber, Önder Otlu, Mehmet Erdem and Erdal İn
Medicina 2022, 58(11), 1643; https://doi.org/10.3390/medicina58111643 - 14 Nov 2022
Cited by 4 | Viewed by 2216
Abstract
Background and Objectives: Carbonic anhydrase (CA) enzymes are a family of metalloenzymes that contain a zinc ion in their active sites. CA enzymes have been implied in important situations such as CO2 transport, pH regulation, and oncogenesis. CA-IX is a transmembrane glycoprotein [...] Read more.
Background and Objectives: Carbonic anhydrase (CA) enzymes are a family of metalloenzymes that contain a zinc ion in their active sites. CA enzymes have been implied in important situations such as CO2 transport, pH regulation, and oncogenesis. CA-IX is a transmembrane glycoprotein and stimulates the expression of hypoxia-inducible factor-1 (HIF-1) CA-IX. This study aimed to determine serum CA-IX levels in OSA patients in whom intermittent hypoxia is important and to investigate the relationship between serum CA-IX levels and disease severity. Materials and Methods: The study included 88 people who applied to Malatya Turgut Özal University Training and Research Hospital Sleep Disorders Center without a history of respiratory disease, malignancy, and smoking. Patients were divided into three groups: control (AHI < 5, n = 31), mild–moderate OSA (AHI = 5–30, n = 27) and severe OSA (AHI > 30, n = 30). The analysis of the data included in the research was carried out with the SPSS (IBM Statistics 25, NY, USA). The Shapiro–Wilk Test was used to check whether the data included in the study had a normal distribution. Comparisons were made with ANOVA in multivariate groups and the t-test in bivariate groups. ANCOVA was applied to determine the effect of the CA-IX parameter for OSA by controlling the effect of independent variables. The differentiation in CA-IX and OSA groups was analyzed regardless of BMI, age, gender, and laboratory variables. ROC analysis was applied to determine the parameter cut-off point. Sensitivity, specificity, and cut-off were calculated, and the area under the curve (AUC) value was calculated. Results: Serum CA-IX levels were 126.3 ± 24.5 pg/mL in the control group, 184.6 ± 59.1 pg/mL in the mild–moderate OSA group, and 332.0 ± 39.7 pg/mL in the severe OSA group. Serum CA-IX levels were found to be higher in the severe OSA group compared to the mild–moderate OSA group and control group and higher in the mild–moderate OSA group compared to the control group (p < 0.001, p < 0.001, p < 0.001, respectively). In addition, a negative correlation between CA-IX and minimum SaO2 and mean SaO2 (r = –0.371, p = 0.004; r = –0.319, p = 0.017, respectively). A positive correlation between CA-IX and desaturation index (CT90) was found (r = 0.369, p = 0.005). A positive correlation was found between CA-IX and CRP (r = 0.340, p = 0.010). When evaluated by ROC curve analysis, the area under the curve (AUC) value was determined as 0.940 (95% CI 0.322–0.557; p < 0.001). When the cut-off value for CA-IX was taken as 254.5 pg/mL, it was found to have 96.7% sensitivity and 94.8% specificity in demonstrating severe OSA. Conclusions: Our study found that serum CA-IX value was higher in OSA patients than in control patients, and this elevation was associated with hypoxemia and inflammation. CA-IX value can be a fast, precise, and useful biomarker to predict OSA. Full article
(This article belongs to the Section Pulmonology)
Show Figures

Figure 1

Back to TopTop