Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = intercellular signaling peptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2451 KiB  
Article
The Proteomic and Peptidomic Response of Wheat (Triticum aestivum L.) to Drought Stress
by Regina Azarkina, Arina Makeeva, Anna Mamaeva, Sergey Kovalchuk, Daria Ganaeva, Igor Tikhonovich and Igor Fesenko
Plants 2025, 14(14), 2168; https://doi.org/10.3390/plants14142168 - 14 Jul 2025
Viewed by 484
Abstract
Drought conditions impact plants at the morphological, physiological, and molecular levels. Plant tolerance to drought conditions is frequently associated with maintaining proteome stability, highlighting the significance of proteomic analysis in understanding the mechanisms underlying plant resilience. Here, we performed proteomic and peptidomic analysis [...] Read more.
Drought conditions impact plants at the morphological, physiological, and molecular levels. Plant tolerance to drought conditions is frequently associated with maintaining proteome stability, highlighting the significance of proteomic analysis in understanding the mechanisms underlying plant resilience. Here, we performed proteomic and peptidomic analysis of spring wheat (Triticum aestivum L.) under drought stress conditions. Using isobaric tags for relative and absolute quantitation (iTRAQ), we identified 497 and 157 differentially abundant protein (DAP) groups in leaves and roots, respectively. The upregulated DAP groups in leaves were primarily involved in stress responses, such as oxidative stress and heat response, whereas those in roots were associated with responses to water deprivation and sulfur compound metabolic processes. The analysis of the extracellular root peptidome revealed 2294 native peptides, including members of small secreted peptide (SSP) families. In the peptidomes of stress-induced plants, we identified 16 SSPs as well as peptides derived from proteins involved in cell wall catabolism, intercellular signaling, and stress response. These peptides represent potential candidates as regulators of drought responses. Our results help us to understand adaptation mechanisms and develop new agricultural technologies to increase productivity. Full article
Show Figures

Figure 1

19 pages, 8437 KiB  
Review
Research Progress of CLE and Its Prospects in Woody Plants
by Zewen Song, Wenjun Zhou, Hanyu Jiang and Yifan Duan
Plants 2025, 14(10), 1424; https://doi.org/10.3390/plants14101424 - 9 May 2025
Viewed by 562
Abstract
The peptide ligands of the CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) family have been previously identified as essential signals for both short- and long-distance communication in plants, particularly during stem cell homeostasis, cell fate determination, and growth and development. To date, most studies on the [...] Read more.
The peptide ligands of the CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) family have been previously identified as essential signals for both short- and long-distance communication in plants, particularly during stem cell homeostasis, cell fate determination, and growth and development. To date, most studies on the CLE family have focused on model plants and especially those involving stem and apical meristems. Relatively little is known about the role of CLE peptides in tall trees and other plant meristems. In this review, we summarize the role of CLE genes in regulating plant Root Apical Meristem (RAM), Shoot Apical Meristem (SAM), Procambium, Leaf and Floral Meristem (FM), as well as their involvement in multiple signaling pathways. We also highlight the evolutionary conservation of the CLE gene family and provide a comprehensive summary of its distribution across various plant developmental tissues. This paper aims to provide insights into novel regulatory networks of CLE in plant meristems, offering guidance for understanding intercellular signaling pathways in forest trees and the development of new plant organs. Full article
Show Figures

Figure 1

15 pages, 3414 KiB  
Article
Extracellular Competing Endogenous RNA Networks Reveal Key Regulators of Early Amyloid Pathology Propagation in Alzheimer’s Disease
by Misael Leonardo López-Cepeda, Andrea Angarita-Rodríguez, Alexis Felipe Rojas-Cruz, Julián Pérez Mejia, Robin Khatri, Michael Brehler, Eduardo Martínez-Martínez, Andrés Pinzón, Andrés Felipe Aristizabal-Pachon and Janneth González
Int. J. Mol. Sci. 2025, 26(8), 3544; https://doi.org/10.3390/ijms26083544 - 9 Apr 2025
Viewed by 903
Abstract
Extracellular vesicles (EVs) are small capsular bodies released by cells, mediating responses in intercellular communication. The role of EVs in Aβ pathology spreading in the Alzheimer’s disease (AD) brain has been evidenced, although whether this occurs due to the co-transportation of Aβ peptides [...] Read more.
Extracellular vesicles (EVs) are small capsular bodies released by cells, mediating responses in intercellular communication. The role of EVs in Aβ pathology spreading in the Alzheimer’s disease (AD) brain has been evidenced, although whether this occurs due to the co-transportation of Aβ peptides or contribution of other factors, such as EV-associated transcripts, remains uncertain. In vitro studies of miRNA cargo in neuron-derived extracellular vesicles (NDEVs) show that Aβ hyperexpression alters the transcriptomic profile; however, it is not clear to what extent this causes changes at the organ level. By utilizing datasets from published studies, we generated competing endogenous RNA (ceRNA) networks for miRNAs co-expressed in NDEVs and the brain in different stages of pathology, using both an APP overexpressing neuronal model (in vitro) and brain cortices from 6- and 9-month-old APP/PSEN1 mice (in vivo). Networks integrating information from mRNAs, lncRNAs, and circRNAs showed two candidate lncRNAs (Kcnq1ot1 and Gm42969) and a circRNA (Pum1), while enrichment analyses detected that NDEVs miRNAs signal to other CNS cells and that this signal can be disrupted by Aβ pathology, contributing to the loss of long-term potentiation seen in early AD. Full article
Show Figures

Figure 1

29 pages, 3810 KiB  
Review
Peptides and Reactive Oxygen Species Regulate Root Development
by Larisa Ivanovna Fedoreyeva and Neonila Vasilievna Kononenko
Int. J. Mol. Sci. 2025, 26(7), 2995; https://doi.org/10.3390/ijms26072995 - 25 Mar 2025
Cited by 1 | Viewed by 684
Abstract
Like phytohormones, peptide hormones participate in many cellular processes, participate in intercellular communications, and are involved in signal transmission. The system of intercellular communications based on peptide–receptor interactions plays a critical role in the development and functioning of plants. One of the most [...] Read more.
Like phytohormones, peptide hormones participate in many cellular processes, participate in intercellular communications, and are involved in signal transmission. The system of intercellular communications based on peptide–receptor interactions plays a critical role in the development and functioning of plants. One of the most important molecules are reactive oxygen species (ROS). ROS participate in signaling processes and intercellular communications, including the development of the root system. ROS are recognized as active regulators of cell division and differentiation, which depend on the oxidation–reduction balance. The stem cell niche and the size of the root meristem are maintained by the intercellular interactions and signaling networks of peptide hormone and ROS. Therefore, peptides and ROS can interact with each other both directly and indirectly and function as regulators of cellular processes. Peptides and ROS regulate cell division and stem cell differentiation through a negative feedback mechanism. In this review, we focused on the molecular mechanisms regulating the development of the main root, lateral roots, and nodules, in which peptides and ROS participate. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

25 pages, 14640 KiB  
Article
Genome-Wide Identification and Functional Analysis of CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) in Three Populus Species
by Zheng Li, Feng-Xin Chen, Ming-Ming Li, Xian-Li Tang, Yu-Qi Liu, Meng-Bo Huang, Hao-Qiang Niu, Chao Liu, Hou-Ling Wang, Xin-Li Xia and Wei-Lun Yin
Int. J. Mol. Sci. 2025, 26(5), 1944; https://doi.org/10.3390/ijms26051944 - 24 Feb 2025
Viewed by 812
Abstract
Intercellular communication mediated by CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides and their receptors is crucial for plant development and environmental adaptation. In this study, 45 and 89 CLEs were identified in Populus tomentosa and Populus alba × Populus glandulosa, respectively, and, together with [...] Read more.
Intercellular communication mediated by CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides and their receptors is crucial for plant development and environmental adaptation. In this study, 45 and 89 CLEs were identified in Populus tomentosa and Populus alba × Populus glandulosa, respectively, and, together with the 52 CLEs in Populus trichocarpa, the chromosome localization, gene and protein characteristics, collinearity and gene duplication events, cis-acting regulatory elements in promoters and evolutionary relationships of CLEs in these three poplar species were analyzed. The CLEs of three poplar species were divided into four subfamilies. Among them, the CLEs in subfamilies I, II and IV were A-type CLEs, while those in subfamily III were B-type CLEs. During the evolutionary process of poplar, the selection pressure faced by whole-genome duplication or segmental duplication was purifying selection, and the duplication events led to the expansion of the CLE family in poplar. The exogenous addition of a certain concentration of poplar CLE13 peptides inhibits the root growth of Arabidopsis thaliana and poplar and simultaneously reduces the expression levels of ARFs and LBDs in the roots. In addition, drought stress induces the expression of PtrCLE13A. The overexpression of preCLE13A significantly enhances the osmotic and drought tolerance in Populus tomentosa. These results have provided valuable information for further research on the molecular mechanisms of CLE peptide signaling pathways in the woody model plant poplar regarding plant growth and stress resistance. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

25 pages, 6918 KiB  
Review
G-Protein-Coupled Receptor (GPCR) Signaling and Pharmacology in Metabolism: Physiology, Mechanisms, and Therapeutic Potential
by Yun Yeong Cho, Soyeon Kim, Pankyung Kim, Min Jeong Jo, Song-E Park, Yiju Choi, Su Myung Jung and Hye Jin Kang
Biomolecules 2025, 15(2), 291; https://doi.org/10.3390/biom15020291 - 15 Feb 2025
Cited by 3 | Viewed by 4101
Abstract
G-protein coupled receptors (GPCRs), the largest family of integral membrane proteins, enable cells to sense and appropriately respond to the environment through mediating extracellular signaling to intercellular messenger molecules. GPCRs’ pairing with a diverse array of G protein subunits and related downstream secondary [...] Read more.
G-protein coupled receptors (GPCRs), the largest family of integral membrane proteins, enable cells to sense and appropriately respond to the environment through mediating extracellular signaling to intercellular messenger molecules. GPCRs’ pairing with a diverse array of G protein subunits and related downstream secondary messengers, combined with their ligand versatility-from conventional peptide hormone to numerous bioactive metabolites, allow GPCRs to comprehensively regulate metabolism and physiology. Consequently, GPCRs have garnered significant attention for their therapeutic potential in metabolic diseases. This review focuses on six GPCRs, GPR40, GPR120, GLP-1R, and ß-adrenergic receptors (ADRB1, ADRB2, and ADRB3), with GLP-1R recognized as a prominent regulator of system-level metabolism, while the roles of GPR40, GPR120 and ß-adrenergic receptors in central carbon metabolism and energy homeostasis are increasingly appreciated. Here, we discuss their physiological functions in metabolism, the current pharmacological landscape, and the intricacies of their signaling pathways via G protein and ß-arrestin activation. Additionally, we discuss the limitations of existing GPCR-targeted strategies for treating metabolic diseases and offer insights into future perspectives for advancing GPCR pharmacology. Full article
Show Figures

Figure 1

21 pages, 2629 KiB  
Article
Peptide AEDL and Glutathione Stimulates Root Development Nicotiana tabacum
by Neonila Vasilievna Kononenko and Larisa Ivanovna Fedoreyeva
Int. J. Mol. Sci. 2025, 26(1), 289; https://doi.org/10.3390/ijms26010289 - 31 Dec 2024
Cited by 2 | Viewed by 787
Abstract
Reactive oxygen species (ROS) are essential molecules involved in intercellular communication, signal transduction, and metabolic processes. Abiotic stresses cause the accumulation of excess ROS in plant cells. The issue of regulating the antioxidant protection of plants using natural and synthetic compounds with antioxidant [...] Read more.
Reactive oxygen species (ROS) are essential molecules involved in intercellular communication, signal transduction, and metabolic processes. Abiotic stresses cause the accumulation of excess ROS in plant cells. The issue of regulating the antioxidant protection of plants using natural and synthetic compounds with antioxidant activity still remains one of the most important and relevant areas of fundamental and applied research. Glutathione (GSH) plays an important role in the stress resistance and redox homeostasis of plant cells and effectively protects the cell from the stress-induced generation of ROS. An increase in the GSH content in plant cells can contribute to an increase in plant resistance to various types of stressors. We have shown that growing Nicotiana tabacum in the presence of tetrapeptide AEDL (AlaGluAspLeu) contributes to an increase in the GSH content by 3.24 times. At the same time, the tobacco plant was more developed, especially its root system. A scheme of the mechanism behind the regulation of the redox balance in the stem cell niche and the participation of the AEDL and GSH peptides in the regulation of the fate of stem cells was proposed. Full article
(This article belongs to the Special Issue Signaling and Stress Adaptation in Plants)
Show Figures

Figure 1

15 pages, 907 KiB  
Review
Signal Peptides and Their Fragments in Post-Translation: Novel Insights of Signal Peptides
by Kenji Ono
Int. J. Mol. Sci. 2024, 25(24), 13534; https://doi.org/10.3390/ijms252413534 - 18 Dec 2024
Cited by 4 | Viewed by 1995
Abstract
Signal peptides (SPs), peptide sequences located at the N-terminus of newly synthesized proteins, are primarily known for their role in targeting proteins to the endoplasmic reticulum (ER). It has traditionally been assumed that cleaved SPs are rapidly degraded and digested near the ER. [...] Read more.
Signal peptides (SPs), peptide sequences located at the N-terminus of newly synthesized proteins, are primarily known for their role in targeting proteins to the endoplasmic reticulum (ER). It has traditionally been assumed that cleaved SPs are rapidly degraded and digested near the ER. However, recent evidence has demonstrated that cleaved SP fragments can be detected in extracellular fluids such as blood flow, where they exhibit bioactivity. In addition, SP fragments are delivered to extracellular fluids via extracellular vesicles such as exosomes and microvesicles, which are important mediators of intercellular communication. These findings suggest that SPs and their fragments may have physiological roles beyond their classical function. This review aims to provide a comprehensive overview of these novel roles and offer new insights into the potential functions of SPs and their fragments in post-translational regulation and intercellular communication. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 8177 KiB  
Article
The Protective Role of Intermedin in Contrast-Induced Acute Kidney Injury: Enhancing Peritubular Capillary Endothelial Cell Adhesion and Integrity Through the cAMP/Rac1 Pathway
by Tingting Gao, Ruiyuan Gu, Heng Wang, Lizheng Li, Bojin Zhang, Jie Hu, Qinqin Tian, Runze Chang, Ruijing Zhang, Guoping Zheng and Honglin Dong
Int. J. Mol. Sci. 2024, 25(20), 11110; https://doi.org/10.3390/ijms252011110 - 16 Oct 2024
Viewed by 1445
Abstract
Contrast-induced acute kidney injury (CIAKI) is a common complication with limited treatments. Intermedin (IMD), a peptide belonging to the calcitonin gene-related peptide family, promotes vasodilation and endothelial stability, but its role in mitigating CIAKI remains unexplored. This study investigates the protective effects of [...] Read more.
Contrast-induced acute kidney injury (CIAKI) is a common complication with limited treatments. Intermedin (IMD), a peptide belonging to the calcitonin gene-related peptide family, promotes vasodilation and endothelial stability, but its role in mitigating CIAKI remains unexplored. This study investigates the protective effects of IMD in CIAKI, focusing on its mechanisms, particularly the cAMP/Rac1 signaling pathway. Human umbilical vein endothelial cells (HUVECs) were treated with iohexol to simulate kidney injury in vitro. The protective effects of IMD were assessed using CCK8 assay, flow cytometry, ELISA, and Western blotting. A CIAKI rat model was utilized to evaluate renal peritubular capillary endothelial cell injury and renal function through histopathology, immunohistochemistry, immunofluorescence, Western blotting, and transmission electron microscopy. In vitro, IMD significantly enhanced HUVEC viability and mitigated iohexol-induced toxicity by preserving intercellular adhesion junctions and activating the cAMP/Rac1 pathway, with Rac1 inhibition attenuating these protective effects. In vivo, CIAKI caused severe damage to peritubular capillary endothelial cell junctions, impairing renal function. IMD treatment markedly improved renal function, an effect negated by Rac1 inhibition. IMD protects against renal injury in CIAKI by activating the cAMP/Rac1 pathway, preserving peritubular capillary endothelial integrity and alleviating acute renal injury from contrast media. These findings suggest that IMD has therapeutic potential in CIAKI and highlight the cAMP/Rac1 pathway as a promising target for preventing contrast-induced acute kidney injury in at-risk patients, ultimately improving clinical outcomes. Full article
Show Figures

Figure 1

10 pages, 243 KiB  
Review
Recent Advances of Exosomes Derived from Skeletal Muscle and Crosstalk with Other Tissues
by Jia Luo, Qiang Pu and Xiaoqian Wu
Int. J. Mol. Sci. 2024, 25(20), 10877; https://doi.org/10.3390/ijms252010877 - 10 Oct 2024
Cited by 6 | Viewed by 2607
Abstract
Skeletal muscle plays a crucial role in movement, metabolism, and energy homeostasis. As the most metabolically active endocrine organ in the body, it has recently attracted widespread attention. Skeletal muscle possesses the ability to release adipocytokines, bioactive peptides, small molecular metabolites, nucleotides, and [...] Read more.
Skeletal muscle plays a crucial role in movement, metabolism, and energy homeostasis. As the most metabolically active endocrine organ in the body, it has recently attracted widespread attention. Skeletal muscle possesses the ability to release adipocytokines, bioactive peptides, small molecular metabolites, nucleotides, and other myogenic cell factors; some of which have been shown to be encapsulated within small vesicles, particularly exosomes. These skeletal muscle exosomes (SKM-Exos) are released into the bloodstream and subsequently interact with receptor cell membranes to modulate the physiological and pathological characteristics of various tissues. Therefore, SKM-Exos may facilitate diverse interactions between skeletal muscle and other tissues while also serving as biomarkers that reflect the physiological and pathological states of muscle function. This review delves into the pivotal role and intricate molecular mechanisms of SKM-Exos and its derived miRNAs in the maturation and rejuvenation of skeletal muscle, along with their intercellular signaling dynamics and physiological significance in interfacing with other tissues. Full article
Show Figures

Graphical abstract

20 pages, 2723 KiB  
Review
Small Peptides: Orchestrators of Plant Growth and Developmental Processes
by Shuaiqi Lu and Fei Xiao
Int. J. Mol. Sci. 2024, 25(14), 7627; https://doi.org/10.3390/ijms25147627 - 11 Jul 2024
Cited by 10 | Viewed by 3567
Abstract
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, [...] Read more.
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, maturation, and stress responses. As vital mediators of intercellular signaling, SPs have garnered significant attention in plant biology research. This comprehensive review delves into SPs’ structure, classification, and identification, providing a detailed understanding of their significance. Additionally, we summarize recent findings on the biological functions and signaling pathways of prominent SPs that regulate plant growth and development. This review also offers a perspective on future research directions in peptide signaling pathways. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 3690 KiB  
Review
New Developments in Pharmacological Treatment of Obesity and Type 2 Diabetes—Beyond and within GLP-1 Receptor Agonists
by Ferenc Sztanek, László Imre Tóth, Attila Pető, Marcell Hernyák, Ágnes Diószegi and Mariann Harangi
Biomedicines 2024, 12(6), 1320; https://doi.org/10.3390/biomedicines12061320 - 13 Jun 2024
Cited by 11 | Viewed by 5841
Abstract
Guidelines for the management of obesity and type 2 diabetes (T2DM) emphasize the importance of lifestyle changes, including a reduced-calorie diet and increased physical activity. However, for many people, these changes can be difficult to maintain over the long term. Medication options are [...] Read more.
Guidelines for the management of obesity and type 2 diabetes (T2DM) emphasize the importance of lifestyle changes, including a reduced-calorie diet and increased physical activity. However, for many people, these changes can be difficult to maintain over the long term. Medication options are already available to treat obesity, which can help reduce appetite and/or reduce caloric intake. Incretin-based peptides exert their effect through G-protein-coupled receptors, the receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and glucagon peptide hormones are important regulators of insulin secretion and energy metabolism. Understanding the role of intercellular signaling pathways and inflammatory processes is essential for the development of effective pharmacological agents in obesity. GLP-1 receptor agonists have been successfully used, but it is assumed that their effectiveness may be limited by desensitization and downregulation of the target receptor. A growing number of new agents acting on incretin hormones are becoming available for everyday clinical practice, including oral GLP-1 receptor agonists, the dual GLP-1/GIP receptor agonist tirzepatide, and other dual and triple GLP-1/GIP/glucagon receptor agonists, which may show further significant therapeutic potential. This narrative review summarizes the therapeutic effects of different incretin hormones and presents future prospects in the treatment of T2DM and obesity. Full article
Show Figures

Figure 1

18 pages, 4058 KiB  
Review
Cilia Provide a Platform for the Generation, Regulated Secretion, and Reception of Peptidergic Signals
by Raj Luxmi and Stephen M. King
Cells 2024, 13(4), 303; https://doi.org/10.3390/cells13040303 - 6 Feb 2024
Cited by 2 | Viewed by 2606
Abstract
Cilia are microtubule-based cellular projections that act as motile, sensory, and secretory organelles. These structures receive information from the environment and transmit downstream signals to the cell body. Cilia also release vesicular ectosomes that bud from the ciliary membrane and carry an array [...] Read more.
Cilia are microtubule-based cellular projections that act as motile, sensory, and secretory organelles. These structures receive information from the environment and transmit downstream signals to the cell body. Cilia also release vesicular ectosomes that bud from the ciliary membrane and carry an array of bioactive enzymes and peptide products. Peptidergic signals represent an ancient mode of intercellular communication, and in metazoans are involved in the maintenance of cellular homeostasis and various other physiological processes and responses. Numerous peptide receptors, subtilisin-like proteases, the peptide-amidating enzyme, and bioactive amidated peptide products have been localized to these organelles. In this review, we detail how cilia serve as specialized signaling organelles and act as a platform for the regulated processing and secretion of peptidergic signals. We especially focus on the processing and trafficking pathways by which a peptide precursor from the green alga Chlamydomonas reinhardtii is converted into an amidated bioactive product—a chemotactic modulator—and released from cilia in ectosomes. Biochemical dissection of this complex ciliary secretory pathway provides a paradigm for understanding cilia-based peptidergic signaling in mammals and other eukaryotes. Full article
(This article belongs to the Special Issue Cilia-Mediated Signaling Pathways)
Show Figures

Figure 1

14 pages, 3947 KiB  
Article
Mapping the Anti-Cancer Activity of α-Connexin Carboxyl-Terminal (aCT1) Peptide in Resistant HER2+ Breast Cancer
by Kimberly M. Baker, Melissa Abt, Emma H. Doud, Adrian L. Oblak and Elizabeth S. Yeh
Cancers 2024, 16(2), 423; https://doi.org/10.3390/cancers16020423 - 19 Jan 2024
Cited by 3 | Viewed by 2683
Abstract
Connexin 43 (Cx43) is a protein encoded by the GJA1 gene and is a component of cell membrane structures called gap junctions, which facilitate intercellular communication. Prior evidence indicates that elevated GJA1 expression in the HER2-positive (HER2+) subtype of breast cancer is associated [...] Read more.
Connexin 43 (Cx43) is a protein encoded by the GJA1 gene and is a component of cell membrane structures called gap junctions, which facilitate intercellular communication. Prior evidence indicates that elevated GJA1 expression in the HER2-positive (HER2+) subtype of breast cancer is associated with poor prognosis. Prior evidence also suggests that HER2+ breast cancers that have become refractory to HER2-targeted agents have a loss of Cx43 gap junction intercellular communication (GJIC). In this study, a Cx43-targeted agent called alpha-connexin carboxyl-terminal peptide (aCT1) is examined to determine whether GJIC can be rescued in refractory HER2+ breast cancer cells. A proposed mechanism of action for aCT1 is binding to the tight junction protein Zonal Occludens-1 (ZO-1). However, the true scope of activity for aCT1 has not been explored. In this study, mass spectrometry proteomic analysis is used to determine the breadth of aCT1-interacting proteins. The NanoString nCounter Breast Cancer 360 panel is also used to examine the effect of aCT1 on cancer signaling in HER2+ breast cancer cells. Findings from this study show a dynamic range of binding partners for aCT1, many of which regulate gene expression and RNA biology. nCounter analysis shows that a number of pathways are significantly impacted by aCT1, including upregulation of apoptotic factors, leading to the prediction and demonstration that aCT1 can boost the cell death effects of cisplatin and lapatinib in HER2+ breast cancer cells that have become resistant to HER2-targeted agents. Full article
(This article belongs to the Special Issue Cellular Communication, Carcinogenesis and Targeted Interventions)
Show Figures

Graphical abstract

14 pages, 3234 KiB  
Article
Distribution of Signal Peptides in Microvesicles from Activated Macrophage Cells
by Kenji Ono, Junpei Sato, Hiromi Suzuki and Makoto Sawada
Int. J. Mol. Sci. 2023, 24(15), 12131; https://doi.org/10.3390/ijms241512131 - 28 Jul 2023
Cited by 1 | Viewed by 1737
Abstract
Extracellular vesicles, such as microvesicles (LEV) and exosomes (SEV), play an important role in intercellular signaling by encapsulating functional molecules and delivering them to specific cells. Recent studies showed that signal peptides (SPs), which are derived from sequences at the N-terminal of newly [...] Read more.
Extracellular vesicles, such as microvesicles (LEV) and exosomes (SEV), play an important role in intercellular signaling by encapsulating functional molecules and delivering them to specific cells. Recent studies showed that signal peptides (SPs), which are derived from sequences at the N-terminal of newly synthesized proteins, exhibited biological activity in the extracellular fluid. We previously reported that SPs were secreted into the extracellular fluid via SEV; however, it remains unclear whether the release of SPs occurs via LEV. In the present study, we demonstrated that SP fragments from human placental secreted alkaline phosphatase (SEAP) were present in LEV as well as SEV released from RAW-Blue cells, which stably express an NF-κB-inducible SEAP reporter. When RAW-Blue cells were treated with LPS at 0–10,000 ng/mL, SEAP SP fragments per particle were more abundant in LEV than in SEV, with fragments in LEV and SEV reaching a maximum at 1000 and 100 ng/mL, respectively. The content of SEAP SP fragments in LEV from IFNγ-stimulated RAW-Blue cells was higher than those from TNFα-stimulated cells, whereas that in SEV from TNFα-stimulated RAW-Blue cells was higher than those from IFNγ−stimulated cells. Moreover, the content of SEAP SP fragments in LEV and SEV decreased in the presence of W13, a calmodulin inhibitor. Collectively, these results indicate that the transportation of SP fragments to extracellular vesicles was changed by cellular activation, and calmodulin was involved in their transportation to LEV and SEV. Full article
(This article belongs to the Special Issue Extracellular Vesicles in Human Diseases)
Show Figures

Figure 1

Back to TopTop