Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = inter-story drifts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5980 KiB  
Article
Seismic Performance of Cladding-Panel-Equipped Frames with Novel Friction-Energy-Dissipating Joints
by Xi-Long Chen, Xian Gao, Li Xu, Jian-Wen Zhao and Lian-Qiong Zheng
Buildings 2025, 15(15), 2618; https://doi.org/10.3390/buildings15152618 - 24 Jul 2025
Viewed by 190
Abstract
Based on the need to enhance the seismic performance of point-supported steel frame precast cladding panel systems, this study proposes a novel friction-energy-dissipating connection joint. Through establishing refined finite element models, low-cycle reversed loading analyses and elastoplastic time-history analyses were conducted on three [...] Read more.
Based on the need to enhance the seismic performance of point-supported steel frame precast cladding panel systems, this study proposes a novel friction-energy-dissipating connection joint. Through establishing refined finite element models, low-cycle reversed loading analyses and elastoplastic time-history analyses were conducted on three frame systems. These included a benchmark bare frame and two cladding-panel-equipped frame structures configured with energy-dissipating joints using different specifications of high-strength bolts (M14 and M20, respectively). The low-cycle reversed loading results demonstrate that the friction energy dissipation of the novel joints significantly improved the seismic performance of the frame structures. Compared to the bare frame, the frames equipped with cladding panels using M14 bolts demonstrated 10.9% higher peak lateral load capacity, 17.6% greater lateral stiffness, and 45.6% increased cumulative energy dissipation, while those with M20 bolts showed more substantial improvements of 22.8% in peak load capacity, 32.0% in lateral stiffness, and 64.2% in cumulative energy dissipation. The elastoplastic time-history analysis results indicate that under seismic excitation, the maximum inter-story drift ratios of the panel-equipped frames with M14 and M20 bolts were reduced by 42.7% and 53%, respectively, compared to the bare frame. Simultaneously, the equivalent plastic strain in the primary structural members significantly decreased. Finally, based on the mechanical equilibrium conditions, a calculation formula was derived to quantify the contribution of joint friction to the horizontal load-carrying capacity of the frame. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 3698 KiB  
Article
Aftershock Effect on Seismic Behavior of 3D Steel Moment-Resisting Frames
by Arezou Behrouz and Kadir Ozakgul
Buildings 2025, 15(15), 2614; https://doi.org/10.3390/buildings15152614 - 23 Jul 2025
Viewed by 270
Abstract
Aftershocks are inevitable phenomena following a mainshock, especially after a major earthquake. However, the cumulative damage caused by aftershocks and its impact on structural performance evaluation has only recently received significant attention. This study explores the effects of mainshock–aftershock (MS–AS) sequences, including multiple [...] Read more.
Aftershocks are inevitable phenomena following a mainshock, especially after a major earthquake. However, the cumulative damage caused by aftershocks and its impact on structural performance evaluation has only recently received significant attention. This study explores the effects of mainshock–aftershock (MS–AS) sequences, including multiple consecutive aftershocks, acting on 3D steel moment-resisting frame structures. Following nonlinear time history analysis, several fundamental variables such as residual interstory drift, maximum displacement, plastic hinge formation, and base shear are evaluated to examine cumulative damage. In this context, the findings depicted in terms of aftershocks play a significant role in exacerbating plastic deformations and damage accumulation in steel moment frames. Subsequently, to mitigate cumulative damage on steel moment frames, retrofitting strategies were implemented. Retrofitting strategies effectively reduce cumulative damage and improve seismic resilience under multiple earthquake events. This research highlights the limitations of single-event seismic assessments and the need to incorporate sequential earthquake effects in design and retrofit practices. Furthermore, it provides new insights into mitigating further damage by retrofitting existing structures under multiple earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 9795 KiB  
Article
Evaluation of Viscoelastic and Rotational Friction Dampers for Coupled Shear Wall System
by Zafira Nur Ezzati Mustafa, Ryo Majima and Taiki Saito
Appl. Sci. 2025, 15(15), 8185; https://doi.org/10.3390/app15158185 - 23 Jul 2025
Viewed by 163
Abstract
This research experimentally and numerically evaluates the effectiveness of viscoelastic (VE) and rotational friction (RF) dampers in enhancing the seismic performance of coupled shear wall (CSW) systems. This study consists of two phases: (1) element testing to characterize the hysteretic behavior and energy [...] Read more.
This research experimentally and numerically evaluates the effectiveness of viscoelastic (VE) and rotational friction (RF) dampers in enhancing the seismic performance of coupled shear wall (CSW) systems. This study consists of two phases: (1) element testing to characterize the hysteretic behavior and energy dissipation capacity of VE and RF dampers, and (2) shake table testing of a large-scale CSW structure equipped with these dampers under the white noise, sinusoidal and Kokuji waves. The experimental results are validated through numerical analysis using STERA 3D (version 11.5), a nonlinear finite element software, to simulate the dynamic response of the damped CSW system. Key performance indicators, including inter-story drift, base shear, and energy dissipation, are compared between experimental and numerical results, demonstrating strong correlation. The findings reveal that VE dampers effectively control high-frequency vibrations, while RF dampers provide stable energy dissipation across varying displacement amplitudes. The validated numerical model facilitates the optimization of damper configurations for performance-based seismic design. This study provides valuable insights into the selection and implementation of supplemental damping systems for CSW structures, contributing to improved seismic resilience in buildings. Full article
(This article belongs to the Special Issue Nonlinear Dynamics and Vibration)
Show Figures

Figure 1

33 pages, 5572 KiB  
Article
Machine Learning-Based Methods for the Seismic Damage Classification of RC Buildings
by Sung Hei Luk
Buildings 2025, 15(14), 2395; https://doi.org/10.3390/buildings15142395 - 8 Jul 2025
Viewed by 361
Abstract
This paper aims to investigate the feasibility of machine learning methods for the vulnerability assessment of buildings and structures. Traditionally, the seismic performance of buildings and structures is determined through a non-linear time–history analysis, which is an accurate but time-consuming process. As an [...] Read more.
This paper aims to investigate the feasibility of machine learning methods for the vulnerability assessment of buildings and structures. Traditionally, the seismic performance of buildings and structures is determined through a non-linear time–history analysis, which is an accurate but time-consuming process. As an alternative, structural responses of buildings under earthquakes can be obtained using well-trained machine learning models. In the current study, machine learning models for the damage classification of RC buildings are developed using the datasets generated from numerous incremental dynamic analyses. A variety of earthquake and structural parameters are considered as input parameters, while damage levels based on the maximum inter-story drift ratio are selected as the output. The performance and effectiveness of several machine learning algorithms, including ensemble methods and artificial neural networks, are investigated. The importance of different input parameters is studied. The results reveal that well-prepared machine learning models are also capable of predicting damage levels with an adequate level of accuracy and minimal computational effort. In this study, the XGBoost method generally outperforms the other algorithms, with the highest accuracy and generalizability. Simplified prediction models are also developed for preliminary estimation using the selected input parameters for practical usage. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 5158 KiB  
Article
Seismic Demand Prediction in Laminated Bamboo Frame Structures: A Comparative Study of Intensity Measures for Performance-Based Design
by Yantai Zhang, Jingpu Zhang, Yujie Gu, Jinglong Zhang and Kaiqi Zheng
Buildings 2025, 15(12), 2039; https://doi.org/10.3390/buildings15122039 - 13 Jun 2025
Viewed by 463
Abstract
Engineered laminated bamboo frame structures have seen notable advancements in China, driven by their potential in sustainable construction. However, accurately predicting their seismic performance remains a pivotal challenge. Structural and non-structural damage caused by earthquakes can severely compromise building operability, lead to substantial [...] Read more.
Engineered laminated bamboo frame structures have seen notable advancements in China, driven by their potential in sustainable construction. However, accurately predicting their seismic performance remains a pivotal challenge. Structural and non-structural damage caused by earthquakes can severely compromise building operability, lead to substantial economic losses, and disrupt safe evacuation processes, collectively exacerbating disaster impacts. To address this, three laminated bamboo frame models (3-, 4-, and 5-story) were developed, integrating energy-dissipating T-shaped steel plate beam–column connections. Two engineering demand parameters—peak inter-story drift ratio (PIDR) and peak floor acceleration (PFA)—were selected to quantify seismic responses under near-field and far-field ground motions. The study systematically evaluates suitable intensity measures for these parameters, emphasizing efficiency and sufficiency criteria. Regarding efficiency, the applicable intensity measures for PFA differ from those for PIDR. The measures for PFA tend to focus more on acceleration amplitude-related measures such as peak ground accelerations (PGA), sustained maximum acceleration (SMA), effective design acceleration (EDA), and A95 (the acceleration at 95% Arias intensity), while the measures for PIDR are primarily based on spectral acceleration-related measures such as Sa(T1) (spectral acceleration at fundamental period), etc. Concerning sufficiency, significant differences exist in the applicable measures for PFA and PIDR, and they are greatly influenced by ground motion characteristics. Full article
Show Figures

Figure 1

18 pages, 19694 KiB  
Article
Seismic Response Analysis of Multi-Floored Grain Warehouses with Composite Structures Under Varying Grain-Loading Conditions
by Zidan Li, Yonggang Ding, Jinquan Zhao, Chengzhou Guo, Zhenhua Xu, Guoqi Ren, Qikeng Xu, Qingjun Xian and Rongyu Yang
Appl. Sci. 2025, 15(11), 5970; https://doi.org/10.3390/app15115970 - 26 May 2025
Viewed by 283
Abstract
Multi-floored grain warehouses are widely used in China due to their efficient space utilization and high storage capacity. This study evaluates the seismic performance of such structures using a Composite Structure of Steel and Concrete (CSSC) system under various grain-loading conditions. A finite [...] Read more.
Multi-floored grain warehouses are widely used in China due to their efficient space utilization and high storage capacity. This study evaluates the seismic performance of such structures using a Composite Structure of Steel and Concrete (CSSC) system under various grain-loading conditions. A finite element model was developed in OpenSees based on actual loading scenarios, with both pushover and time history analyses conducted. Results show that the EEF condition (E = Empty, F = Full; top–middle–bottom = Empty–Empty–Full) leads to a 35.14% increase in peak base shear compared to the FEE condition (grain on the top floor only). Capacity spectrum analysis indicates that EEF provides higher initial stiffness and lower displacement across all performance points. Time history results reveal that configurations with lighter upper mass (EFF, EEE) are more prone to top-floor acceleration amplification, while FFF and FFE demonstrate more stable responses due to balanced mass distribution. The maximum inter-story drift consistently occurs at the second floor, with FFF and FFE showing the most significant deformation. All drift ratios meet code limits, confirming the safety and applicability of the CSSC system under various storage scenarios. Full article
Show Figures

Figure 1

20 pages, 5087 KiB  
Article
Modified Energy-Based Design Method of the Precast Partially Steel-Reinforced Concrete Beam–CFST Column Eccentrically Braced Frame
by Fugui Hou, Weiguang Chong, Yu Lin, Xijun He and Guanglei Zhang
Buildings 2025, 15(11), 1797; https://doi.org/10.3390/buildings15111797 - 24 May 2025
Viewed by 432
Abstract
The eccentrically braced frame (EBF) is a typical structural system used in high-rise buildings. Current related design methods focus on the concrete and steel structures rather than on the complex composite structure. In addition, they tend to overlook the contribution of the energy-dissipation [...] Read more.
The eccentrically braced frame (EBF) is a typical structural system used in high-rise buildings. Current related design methods focus on the concrete and steel structures rather than on the complex composite structure. In addition, they tend to overlook the contribution of the energy-dissipation unit and its corresponding additional influence on the structure. In this study, a precast composite EBF structure is selected as a case study, including the partially steel-reinforced concrete (PSRC) beam and the concrete-filled steel tubular (CFST) column. A modified energy-based design method is proposed to leverage the excellent seismic performance of the precast composite EBF structure. The multi-stage energy-dissipation mechanism and the additional influence of the eccentric braces are systematically considered through the energy distribution coefficient and the layout of dampers. A case study of a 12-floor, three-bay precast composite EBF structure is conducted using a series of nonlinear time-history analyses. Critical seismic responses, including the maximum inter-story drift ratio, residual inter-story drift ratio, and peak acceleration, are systematically analyzed to evaluate the effectiveness of the proposed design theory. The distribution coefficient is recommended to range from 0.70 to 0.80 to balance the energy-dissipation contribution between the frame and the eccentric braces. In terms of the damper layout, the energy-dissipation contribution of the eccentric brace should differ among the lower, middle, and upper floors. Full article
(This article belongs to the Special Issue Advances in Novel Precast Concrete Structures)
Show Figures

Figure 1

22 pages, 10784 KiB  
Article
Structural Reliability Assessment of Dual RC Buildings for Different Shear Wall Configuration
by Fernando Velarde, Juan Bojórquez, Edén Bojórquez, Henry Reyes, Alfredo Reyes-Salazar, Robespierre Chávez, Mario D. Llanes-Tizoc, Federico Valenzuela-Beltrán, José I. Torres, Daniel Yee and Victor Baca
Buildings 2025, 15(11), 1783; https://doi.org/10.3390/buildings15111783 - 23 May 2025
Viewed by 522
Abstract
Shear walls, integrated into conventional reinforced concrete (RC) moment-resisting frame systems (RC frame–shear wall building), have proven to be effective in improving the structural performance and reliability of buildings; however, the seismic behavior of the building depends directly on the location of these [...] Read more.
Shear walls, integrated into conventional reinforced concrete (RC) moment-resisting frame systems (RC frame–shear wall building), have proven to be effective in improving the structural performance and reliability of buildings; however, the seismic behavior of the building depends directly on the location of these elements. For this reason, this paper evaluates the structural reliability of ten medium-rise RC buildings designed based on the Mexico City Building Code, considering different shear wall configurations. With the aim to estimate and compare the seismic reliability, the buildings are modeled as complex 3D structures via the OpenSees 3.5 software, which are subjected to different ground motion records representative of the soft soil of Mexico City scaled at different intensity values in order to compute incremental dynamic analysis (IDA). Furthermore, the parameter used to estimate the reliability is the maximum interstory drift (MID), which is obtained from the incremental dynamic analysis in order to assess the structural fragility curves. Finally, the structural reliability estimation is computed via probabilistic models by combining the fragility and seismic hazard curves. It is concluded from the results that the structural reliability is maximized when shear walls are symmetrically distributed. On the other hand, the configuration with walls concentrated in the center of the building tends to oversize the frames to reach a reliability level comparable to that of symmetrical arrangements. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

34 pages, 19699 KiB  
Article
Comprehensive Material Characterization and Seismic Performance Evaluation of a Traditional Masonry Residential Building with Reinforced Concrete Slabs
by Basak Boduroglu Yazici and Oguz Uzdil
Buildings 2025, 15(10), 1710; https://doi.org/10.3390/buildings15101710 - 18 May 2025
Cited by 1 | Viewed by 1053
Abstract
Reinforced concrete began replacing traditional masonry construction in the early 20th century, yet hybrid buildings combining unreinforced masonry (URM) walls with concrete slabs remain prevalent in Istanbul. Understanding their seismic behavior is critical for risk mitigation and heritage preservation. This study investigates a [...] Read more.
Reinforced concrete began replacing traditional masonry construction in the early 20th century, yet hybrid buildings combining unreinforced masonry (URM) walls with concrete slabs remain prevalent in Istanbul. Understanding their seismic behavior is critical for risk mitigation and heritage preservation. This study investigates a seven-story masonry residential building with cast-in-place reinforced concrete slabs constructed in 1953. The assessment involved non-destructive inspections, double flat-jack and shear tests, and geophysical site surveys. A finite element model was developed using Midas Gen software v2020 and analyzed through linear response spectrum and nonlinear pushover analyses based on TBSC-18 and SRMGHS-17. The modulus of elasticity ranged from 200.2 MPa to 1062.2 MPa, and bed joint shear strength varied between 0.50 MPa and 0.79 MPa. The building satisfied inter-story drift criteria for limited damage (SL-3), controlled damage (SL-2), and pre-collapse (SL-1). However, it failed to meet the shear force requirements at all levels. Pushover analysis revealed ultimate lateral capacities of 11,997 kN in the x-direction and 16,209 kN in the y-direction. The findings highlight the shear vulnerability of such hybrid systems and underscore the importance of combining experimental characterization with numerical modeling to develop effective retrofitting strategies. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 5400 KiB  
Article
Rapid Damage Assessment and Bayesian-Based Debris Prediction for Building Clusters Against Earthquakes
by Xiaowei Zheng, Yaozu Hou, Jie Cheng, Shuai Xu and Wenming Wang
Buildings 2025, 15(9), 1481; https://doi.org/10.3390/buildings15091481 - 27 Apr 2025
Cited by 2 | Viewed by 442
Abstract
In the whole service life of building clusters, they will encounter multiple hazards, including the disaster chain of earthquakes and building debris. The falling debris may block the post-earthquake roads and even severely affect the evacuation, emergency, and recovery operations. It is of [...] Read more.
In the whole service life of building clusters, they will encounter multiple hazards, including the disaster chain of earthquakes and building debris. The falling debris may block the post-earthquake roads and even severely affect the evacuation, emergency, and recovery operations. It is of great significance to develop a surrogate model for predicting seismic responses of building clusters as well as a prediction model of post-earthquake debris. This paper presents a general methodology for developing a surrogate model for rapid seismic responses calculation of building clusters and probabilistic prediction model of debris width. Firstly, the building cluster is divided into several types of representative buildings according to the building function. Secondly, the finite element (FE) method and discrete element (DE) method are, respectively, used to generate the data pool of structural floor responses and debris width. Finally, with the structural response data of maximum floor displacement, a surrogate model for rapidly calculating seismic responses of structures is developed based on the XGBoost algorithm, achieving R2 > 0.99 for floor displacements and R2 = 0.989 for maximum inter-story drift ratio (MIDR) predictions. In addition, an unbiased probabilistic prediction model for debris width of blockage is established with Bayesian updating rule, reducing the standard deviation of model error by 60% (from σ = 10.2 to σ = 4.1). The presented models are applied to evaluate the seismic damage of the campus building complex in China University of Mining and Technology, and then to estimate the range of post-earthquake falling debris. The results indicate that the surrogate model reduces computational time by over 90% compared to traditional nonlinear time-history analysis. The application in this paper is helpful for the development of disaster prevention and mitigation policies as well as the post-earthquake rescue and evacuation strategies for urban building complexes. Full article
Show Figures

Figure 1

21 pages, 9086 KiB  
Article
Effect of Local Strengthening on the Overall Seismic Performance of Reinforced Concrete Frame Structures
by Gengqi Zhao, Chenbo Li, Dapeng Zhao, Qing Li and Huiying Du
Buildings 2025, 15(8), 1326; https://doi.org/10.3390/buildings15081326 - 17 Apr 2025
Viewed by 509
Abstract
The seismic performance of industrial and civil buildings is severely challenged by natural or man-made actions over a long period of time in service. Local strengthening is often carried out to avoid extensive strength reduction. However, current research primarily focuses on enhancing the [...] Read more.
The seismic performance of industrial and civil buildings is severely challenged by natural or man-made actions over a long period of time in service. Local strengthening is often carried out to avoid extensive strength reduction. However, current research primarily focuses on enhancing the mechanical performance of individual strengthened members, with little attention to the impact of local strengthening on the overall structure. In this study, the effect of layout symmetry on the overall seismic performance of a six-story reinforced concrete (RC) frame when locally strengthened by the strengthening bonding method is investigated by means of finite element analysis. Four strengthening schemes are considered: single-corner asymmetric, single-end asymmetric, quadrilateral symmetric, and central symmetric strengthening. The modal analysis confirms the enhanced stiffness in the strengthened structure. Asymmetric schemes yield uneven stiffness distributions, leading to pronounced vertical vibrations in higher modes. Conversely, symmetrical strengthening minimizes stiffness disparities through an optimized layout, yielding superior stiffness enhancements. The pushover analysis reveals a 53.6% increase in the lateral load-bearing capacity relative to the original configuration. Increasing the strengthening layers in symmetrical schemes further improves the lateral stiffness and performance reserve. However, when the number of strengthening layers exceeds four, the benefits become limited, and asymmetric strengthening significantly increases the inter-story drift ratio compared to its symmetric counterpart. Additionally, asymmetric strengthening leads to substantial lateral displacement discrepancies, thereby diminishing the overall structural coordination. Therefore, practical applications should adopt a holistic approach by favoring symmetrical strengthening and selecting an optimal number of strengthening layers to maximize the benefits. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

43 pages, 31984 KiB  
Article
Advanced Seismic Analysis of a 44-Story Reinforced Concrete Building: A Comparison of Code-Based and Performance Based Design Approaches
by Mistreselasie Abate, Ana Catarina Jorge Evangelista and Vivian W. Y. Tam
Infrastructures 2025, 10(4), 93; https://doi.org/10.3390/infrastructures10040093 - 9 Apr 2025
Viewed by 2097
Abstract
Conventional seismic design regulations, even when rigorously adapted to local conditions, often fail to ensure the resilience of reinforced concrete buildings. Code-based prescriptive methods rely on simplified assumptions that do not fully capture the complex nonlinear behavior of structures during strong earthquakes, potentially [...] Read more.
Conventional seismic design regulations, even when rigorously adapted to local conditions, often fail to ensure the resilience of reinforced concrete buildings. Code-based prescriptive methods rely on simplified assumptions that do not fully capture the complex nonlinear behavior of structures during strong earthquakes, potentially underestimating seismic demands and structural vulnerabilities. This study evaluates the seismic performance of a 44-story reinforced concrete building designed per the EN-2015 code, currently adopted in Ethiopia. The building was analyzed using Response Spectrum Analysis (RSA), Linear Dynamic Time History Analysis (LDTHA), and Classical Modal Analysis in ETABS v19, with 11 ground motions from the PEER database. Ground motion scaling was performed using SeismoMatch and ETABS. Results indicate that LDTHA predicts 25.68% higher maximum story displacement, 26.49% greater inter-story drift ratios, 15.35% higher story shear, and 27.5% greater overturning moments compared to RSA. The fundamental time period for the first mode was found to be 3.956 s in Classical Modal Analysis, 3.806 s in RSA, and 3.883 s in LDTHA. These discrepancies highlight the limitations of code-based design and underscore the necessity of performance-based seismic design for achieving safer, more resilient structures in high-seismic regions. Full article
Show Figures

Figure 1

25 pages, 6327 KiB  
Article
Improving Seismic Performance of RC Structures with Innovative TnT BRBs: A Shake Table and Finite Element Investigation
by Evrim Oyguc, Resat Oyguc, Onur Seker, Abdul Hayir, Jay Shen and Bulent Akbas
Appl. Sci. 2025, 15(7), 3844; https://doi.org/10.3390/app15073844 - 1 Apr 2025
Cited by 1 | Viewed by 796
Abstract
Addressing the critical seismic vulnerabilities of reinforced concrete (RC) beam-column joints remains an imperative research priority in earthquake engineering. This study presents an experimental and analytical investigation into the seismic performance enhancement of non-ductile RC frames using an innovative all-steel Tube-in-Tube Buckling-Restrained Brace [...] Read more.
Addressing the critical seismic vulnerabilities of reinforced concrete (RC) beam-column joints remains an imperative research priority in earthquake engineering. This study presents an experimental and analytical investigation into the seismic performance enhancement of non-ductile RC frames using an innovative all-steel Tube-in-Tube Buckling-Restrained Brace (TnT BRB) system. Shake table tests were performed on one-third scale RC frame specimens, including a baseline structure representing conventional substandard design and a counterpart retrofitted with the proposed TnT BRBs. Experimental results revealed that the unretrofitted specimen experienced pronounced brittle shear failures, excessive lateral deformations, and significant degradation of beam-column joints under cyclic seismic loading. In contrast, the TnT BRB-retrofitted specimen exhibited substantially improved seismic behavior, characterized by enhanced energy dissipation, controlled inter-story drifts, and preserved joint integrity. Advanced fiber-based finite element modeling complemented the experimental efforts, accurately capturing critical nonlinear phenomena such as hysteretic energy dissipation, stiffness degradation, and localized damage evolution within the structural components. Despite inherent modeling limitations regarding bond-slip effects and micro-level cracking, strong correlation between numerical and experimental results affirmed the efficacy of the TnT BRB retrofit solution. This integrated experimental-analytical approach offers a robust, cost-effective pathway for upgrading seismically deficient RC structures in earthquake-prone regions. Full article
(This article belongs to the Special Issue Structural Analysis and Seismic Resilience in Civil Engineering)
Show Figures

Figure 1

21 pages, 6134 KiB  
Article
Collapse Potential of an Existing Reinforced Concrete Bridge Structure
by Zeynep Yılmaz and Murat Serdar Kirçil
Appl. Sci. 2025, 15(7), 3500; https://doi.org/10.3390/app15073500 - 22 Mar 2025
Viewed by 611
Abstract
This article presents the results of a study conducted to obtain the fragility curves of an existing reinforced concrete highway bridge in Kocaeli, Turkey, to investigate the collapse potential. Bridges are key components of transportation systems, providing convenient and efficient access to different [...] Read more.
This article presents the results of a study conducted to obtain the fragility curves of an existing reinforced concrete highway bridge in Kocaeli, Turkey, to investigate the collapse potential. Bridges are key components of transportation systems, providing convenient and efficient access to different locations. However, these structures are susceptible to forces that can cause significant damage in the event of seismic activity. Thus, the fundamental target of designing earthquake-resistant bridges is to ensure that they can remain functional at an acceptable level during seismic activity. At least, they are expected to survive strong earthquakes without collapse. Turkey is a country located on active fault lines and has experienced devastating earthquakes in the past. This high earthquake risk requires the design and construction of bridges that are a critical part of the transportation infrastructure having adequate safety levels so that the collapse risk can be minimized. Therefore, damage estimation of bridges is an important part of earthquake preparedness and the response plans that will be followed immediately after earthquakes. In this study, the fragility curves of an existing reinforced concrete highway were obtained to investigate the collapse potential. The interstory drift limits related to the performance levels defined by the Turkish Bridge Seismic Design Code 2020 were determined by the incremental dynamic analysis method, and fragility curves were obtained using 10 different earthquake records based on these determined limits. The results showed that the target performance level Uninterrupted Occupancy and Collapse Prevention performance level requirements, as defined by the Turkish Bridge Seismic Design, were not met, and the Collapse Probability is %100. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 13499 KiB  
Article
Effect of Viscous Dampers with Variable Capacity on the Response of Steel Buildings
by Panagiotis Mavroeidakos, Panagiota Katsimpini and George Papagiannopoulos
Vibration 2025, 8(1), 11; https://doi.org/10.3390/vibration8010011 - 18 Mar 2025
Cited by 1 | Viewed by 700
Abstract
The objective of this study was to examine the seismic behavior of steel buildings equipped with linear and nonlinear viscous dampers that may exhibit variable capacity. More specifically, nonlinear time history analyses were conducted on two three-dimensional steel buildings utilizing a number of [...] Read more.
The objective of this study was to examine the seismic behavior of steel buildings equipped with linear and nonlinear viscous dampers that may exhibit variable capacity. More specifically, nonlinear time history analyses were conducted on two three-dimensional steel buildings utilizing a number of recorded seismic motions. Initially, it was assumed that the distribution of viscous dampers was uniform along the height of the building and, thus, the damping coefficients used to size the viscous dampers were derived. Subsequently, nonlinear time history analyses were performed assuming either linear or nonlinear viscous dampers, which may operate at 80%, 100%, and 120% of their capacity. The response parameters extracted by these analyses included the base shear (structural and inertial), the inter-story drift ratio (IDR), the residual inter-story drift ratio (RIDR), the absolute floor accelerations, the formation of plastic hinges, and the forces experienced by the dampers. On the basis of these response parameters, the most appropriate type of viscous dampers was indicated. Full article
(This article belongs to the Special Issue Vibration Damping)
Show Figures

Figure 1

Back to TopTop