Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = integrated stress response (ISR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7081 KiB  
Article
A Potential Role for c-MYC in the Regulation of Meibocyte Cell Stress
by Isabella Boyack, Autumn Berlied and Cornelia Peterson
Cells 2025, 14(10), 709; https://doi.org/10.3390/cells14100709 - 14 May 2025
Viewed by 633
Abstract
The integrated stress response (ISR) is a key regulator of cell survival, promoting apoptosis through the effector protein CHOP in instances of prolonged or severe stress. The ISR’s role in the initiation and progression of epithelial malignancies has been investigated; however, the ISR [...] Read more.
The integrated stress response (ISR) is a key regulator of cell survival, promoting apoptosis through the effector protein CHOP in instances of prolonged or severe stress. The ISR’s role in the initiation and progression of epithelial malignancies has been investigated; however, the ISR has not been evaluated in ocular adnexal sebaceous carcinoma (SebCA). Though uncommon, mortality rates of up to 40% have been reported, and the mechanisms underlying SebCA tumorigenesis remain unresolved; however, c-MYC upregulation has been documented. Our objective was to determine the role of MYC in modulating the ISR in the Meibomian gland. Human Meibomian gland epithelial cells (HMGECs) were subject to both pharmacologic and genetic manipulations of MYC expression. Cytotoxicity, proliferation, and changes in protein and gene expression were assessed. Conditionally MYC-overexpressing mice were subject to topical 4-hydroxytamoxifen (4-OHT) induction of the eyelids prior to tissue harvest for histology, immunohistochemistry, immunoblotting, and qPCR. MYC-inhibited HMGECs exhibited dose-dependent decreased proliferation, increased CHOP expression, and increased apoptosis. Conversely, MYC-overexpressing HMGECs and Meibomian glands from 4-OHT-induced mice demonstrated suppressed CHOP expression, reduced apoptosis, and upregulated fatty acid synthase expression. These results suggest that MYC inhibition induces the ISR and promotes apoptosis, while MYC induction suppresses CHOP expression. High MYC expression may, therefore, serve as a mechanism for SebCA to elude cell death by promoting lipogenesis. Full article
(This article belongs to the Special Issue Sebaceous Gland in Skin Health and Disease)
Show Figures

Graphical abstract

23 pages, 4894 KiB  
Article
Hydrogen Sulfide (H2S) Metabolism, Iron Overload, and Apoptosis–Autophagy Equilibrium in Vascular Smooth Muscle Cells
by Hassan Mustafa Arif, Ming Fu and Rui Wang
Antioxidants 2025, 14(5), 560; https://doi.org/10.3390/antiox14050560 - 8 May 2025
Cited by 1 | Viewed by 806
Abstract
Iron overload contributes to proliferative vascular diseases, yet its interplay with hydrogen sulfide (H2S) in vascular smooth muscle cell (VSMC) proliferation remains poorly understood. This study elucidates H2S’s role in mitigating iron-overload-induced oxidative stress and cellular damage. Using aortic [...] Read more.
Iron overload contributes to proliferative vascular diseases, yet its interplay with hydrogen sulfide (H2S) in vascular smooth muscle cell (VSMC) proliferation remains poorly understood. This study elucidates H2S’s role in mitigating iron-overload-induced oxidative stress and cellular damage. Using aortic VSMCs from wildtype (WT) and cystathionine γ-lyase-knockout (CSE-KO) mice treated with ferric ammonium citrate (FAC) at concentrations equivalent to serum levels of iron and citrate, we demonstrate that FAC triggers the integrated stress response (ISR) in WT cells, upregulating CSE to enhance H2S production. The ISR mediator ATF4 activates caspases but simultaneously induces CSE, which inhibits caspase activity and promotes autophagy via AMPK signaling. In CSE-KO cells, iron overload leads to diminished Ferritin upregulation, unchecked Caspase activation, and impaired autophagy compared to WT cells. Exogenous H2S restored iron homeostasis by enhancing Ferritin expression, activating NRF2 antioxidant pathways, and restoring apoptosis–autophagy equilibrium in both WT and KO cells. These findings establish H2S as a critical regulator of iron-induced VSMC dysfunction, highlighting its therapeutic potential in managing vascular pathologies linked to iron dysregulation. Full article
Show Figures

Graphical abstract

136 pages, 24434 KiB  
Perspective
Alzheimer’s Is a Multiform Disease of Sustained Neuronal Integrated Stress Response Driven by the C99 Fragment Generated Independently of AβPP; Proteolytic Production of Aβ Is Suppressed in AD-Affected Neurons: Evolution of a Theory
by Vladimir Volloch and Sophia Rits-Volloch
Int. J. Mol. Sci. 2025, 26(9), 4252; https://doi.org/10.3390/ijms26094252 - 29 Apr 2025
Viewed by 1349
Abstract
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of [...] Read more.
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of the ACH2.0, Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ), accumulated to neuronal integrated stress response (ISR)-eliciting levels, triggers AD. The neuronal ISR, in turn, activates the AβPP-independent production of its C99 fragment that is processed into iAβ, which drives the disease. The second iteration of the ACH2.0 stemmed from the realization that AD is, in fact, a disease of the sustained neuronal ISR. It introduced two categories of AD—conventional and unconventional—differing mainly in the manner of their causation. The former is caused by the neuronal ISR triggered by AβPP-derived iAβ, whereas in the latter, the neuronal ISR is elicited by stressors distinct from AβPP-derived iAβ and arising from brain trauma, viral and bacterial infections, and various types of inflammation. Moreover, conventional AD always contains an unconventional component, and in both forms, the disease is driven by iAβ generated independently of AβPP. In its third, the current, iteration, the ACH2.0 posits that proteolytic production of Aβ is suppressed in AD-affected neurons and that the disease is driven by C99 generated independently of AβPP. Suppression of Aβ production in AD seems an oxymoron: Aβ is equated with AD, and the later is inconceivable without the former in an ingrained Amyloid Cascade Hypothesis (ACH)-based notion. But suppression of Aβ production in AD-affected neurons is where the logic leads, and to follow it we only need to overcome the inertia of the preexisting assumptions. Moreover, not only is the generation of Aβ suppressed, so is the production of all components of the AβPP proteolytic pathway. This assertion is not a quantum leap (unless overcoming the inertia counts as such): the global cellular protein synthesis is severely suppressed under the neuronal ISR conditions, and there is no reason for constituents of the AβPP proteolytic pathway to be exempted, and they, apparently, are not, as indicated by the empirical data. In contrast, tau protein translation persists in AD-affected neurons under ISR conditions because the human tau mRNA contains an internal ribosomal entry site in its 5′UTR. In current mouse models, iAβ derived from AβPP expressed exogenously from human transgenes elicits the neuronal ISR and thus suppresses its own production. Its levels cannot principally reach AD pathology-causing levels regardless of the number of transgenes or the types of FAD mutations that they (or additional transgenes) carry. Since the AβPP-independent C99 production pathway is inoperative in mice, the current transgenic models have no potential for developing the full spectrum of AD pathology. What they display are only effects of the AβPP-derived iAβ-elicited neuronal ISR. The paper describes strategies to construct adequate transgenic AD models. It also details the utilization of human neuronal cells as the only adequate model system currently available for conventional and unconventional AD. The final alteration of the ACH2.0, introduced in the present Perspective, is that AβPP, which supports neuronal functionality and viability, is, after all, potentially produced in AD-affected neurons, albeit not conventionally but in an ISR-driven and -compatible process. Thus, the present narrative begins with the “omnipotent” Aβ capable of both triggering and driving the disease and ends up with this peptide largely dislodged from its pedestal and retaining its central role in triggering the disease in only one, although prevalent (conventional), category of AD (and driving it in none). Among interesting inferences of the present Perspective is the determination that “sporadic AD” is not sporadic at all (“non-familial” would be a much better designation). The term has fatalistic connotations, implying that the disease can strike at random. This is patently not the case: The conventional disease affects a distinct subpopulation, and the basis for unconventional AD is well understood. Another conclusion is that, unless prevented, the occurrence of conventional AD is inevitable given a sufficiently long lifespan. This Perspective also defines therapeutic directions not to be taken as well as auspicious ways forward. The former category includes ACH-based drugs (those interfering with the proteolytic production of Aβ and/or depleting extracellular Aβ). They are legitimate (albeit inefficient) preventive agents for conventional AD. There is, however, a proverbial snowball’s chance in hell of them being effective in symptomatic AD, lecanemab, donanemab, and any other “…mab” or “…stat” notwithstanding. They comprise Aβ-specific antibodies, inhibitors of beta- and gamma-secretase, and modulators of the latter. In the latter category, among ways to go are the following: (1) Depletion of iAβ, which, if sufficiently “deep”, opens up a tantalizing possibility of once-in-a-lifetime preventive transient treatment for conventional AD and aging-associated cognitive decline, AACD. (2) Composite therapy comprising the degradation of C99/iAβ and concurrent inhibition of the neuronal ISR. A single transient treatment could be sufficient to arrest the progression of conventional AD and prevent its recurrence for life. Multiple recurrent treatments would achieve the same outcome in unconventional AD. Alternatively, the sustained reduction/removal of unconventional neuronal ISR-eliciting stressors through the elimination of their source would convert unconventional AD into conventional one, preventable/treatable by a single transient administration of the composite C99/iAβ depletion/ISR suppression therapy. Efficient and suitable ISR inhibitors are available, and it is explicitly clear where to look for C99/iAβ-specific targeted degradation agents—activators of BACE1 and, especially, BACE2. Directly acting C99/iAβ-specific degradation agents such as proteolysis-targeting chimeras (PROTACs) and molecular-glue degraders (MGDs) are also viable options. (3) A circumscribed shift (either upstream or downstream) of the position of transcription start site (TSS) of the human AβPP gene, or, alternatively, a gene editing-mediated excision or replacement of a small, defined segment of its portion encoding 5′-untranslated region of AβPP mRNA; targeting AβPP RNA with anti-antisense oligonucleotides is another possibility. If properly executed, these RNA-based strategies would not interfere with the protein-coding potential of AβPP mRNA, and each would be capable of both preventing and stopping the AβPP-independent generation of C99 and thus of either preventing AD or arresting the progression of the disease in its conventional and unconventional forms. The paper is interspersed with “validation” sections: every conceptually significant notion is either validated by the existing data or an experimental procedure validating it is proposed. Full article
Show Figures

Figure 1

19 pages, 2091 KiB  
Article
GCN2-Mediated eIF2α Phosphorylation Is Required for Central Nervous System Remyelination
by Paulina Falcón, Álvaro Brito, Marcela Escandón, Juan Francisco Roa, Nicolas W. Martínez, Ariel Tapia-Godoy, Pamela Farfán and Soledad Matus
Int. J. Mol. Sci. 2025, 26(4), 1626; https://doi.org/10.3390/ijms26041626 - 14 Feb 2025
Viewed by 1097
Abstract
Under conditions of amino acid deficiency, mammalian cells activate a nutrient-sensing kinase known as general control nonderepressible 2 (GCN2). The activation of GCN2 results in the phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2α), which can be phosphorylated by [...] Read more.
Under conditions of amino acid deficiency, mammalian cells activate a nutrient-sensing kinase known as general control nonderepressible 2 (GCN2). The activation of GCN2 results in the phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2α), which can be phosphorylated by three other three integrated stress response (ISR) kinases, reducing overall protein synthesis. GCN2 activation also promotes the translation of specific mRNAs, some of which encode transcription factors that enhance the transcription of genes involved in the synthesis, transport, and metabolism of amino acids to restore cellular homeostasis. The phosphorylation of eIF2α has been shown to protect oligodendrocytes, the cells responsible for producing myelin in the central nervous system during remyelination. Here, we explore the potential role of the kinase GCN2 in the myelination process. We challenged mice deficient in the GCN2-encoding gene with a pharmacological demyelinating stimulus (cuprizone) and evaluated the recovery of myelin as well as ISR activation through the levels of eIF2α phosphorylation. Our findings indicate that GCN2 controls the establishment of myelin by fine-tuning its abundance and morphology in the central nervous system. We also found that GCN2 is essential for remyelination. Surprisingly, we discovered that GCN2 is necessary to maintain eIF2α levels during remyelination. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

24 pages, 6076 KiB  
Article
Betacoronaviruses Differentially Activate the Integrated Stress Response to Optimize Viral Replication in Lung-Derived Cell Lines
by David M. Renner, Nicholas A. Parenti, Nicole Bracci and Susan R. Weiss
Viruses 2025, 17(1), 120; https://doi.org/10.3390/v17010120 - 16 Jan 2025
Cited by 1 | Viewed by 1534
Abstract
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus—HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)—, to study betacoronavirus interactions [...] Read more.
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus—HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)—, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation. We demonstrate that MERS-CoV, HCoV-OC43, and SARS-CoV-2 all activate PERK and induce responses downstream of p-eIF2α, while only SARS-CoV-2 induces detectable p-eIF2α during infection. Using a small molecule inhibitor of eIF2α dephosphorylation, we provide evidence that MERS-CoV and HCoV-OC43 maximize viral replication through p-eIF2α dephosphorylation. Interestingly, genetic ablation of growth arrest and DNA damage-inducible protein (GADD34) expression, an inducible protein phosphatase 1 (PP1)-interacting partner targeting eIF2α for dephosphorylation, did not significantly alter HCoV-OC43 or SARS-CoV-2 replication, while siRNA knockdown of the constitutive PP1 partner, constitutive repressor of eIF2α phosphorylation (CReP), dramatically reduced HCoV-OC43 replication. Combining GADD34 knockout with CReP knockdown had the maximum impact on HCoV-OC43 replication, while SARS-CoV-2 replication was unaffected. Overall, we conclude that eIF2α dephosphorylation is critical for efficient protein production and replication during MERS-CoV and HCoV-OC43 infection. SARS-CoV-2, however, appears to be insensitive to p-eIF2α and, during infection, may even downregulate dephosphorylation to limit host translation. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals)
Show Figures

Figure 1

90 pages, 16197 KiB  
Perspective
Production of Amyloid-β in the Aβ-Protein-Precursor Proteolytic Pathway Is Discontinued or Severely Suppressed in Alzheimer’s Disease-Affected Neurons: Contesting the ‘Obvious’
by Vladimir Volloch and Sophia Rits-Volloch
Genes 2025, 16(1), 46; https://doi.org/10.3390/genes16010046 - 2 Jan 2025
Cited by 1 | Viewed by 1287
Abstract
A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer’s disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer’s research field. The present Perspective challenges this assumption. It analyses the [...] Read more.
A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer’s disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer’s research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease. This suppression, effectively self-suppression, occurs in the context of the global inhibition of the cellular cap-dependent protein synthesis as a consequence of the neuronal integrated stress response (ISR) elicited by AβPP-derived intraneuronal Aβ (iAβ; hence self-suppression) upon reaching certain levels. Concurrently with the suppression of the AβPP proteolytic pathway, the neuronal ISR activates in human neurons, but not in mouse neurons, the powerful AD-driving pathway generating the C99 fragment of AβPP independently of AβPP. The present study describes molecular mechanisms potentially involved in these phenomena, propounds novel approaches to generate transgenic animal models of AD, advocates for the utilization of human neuronal cells-based models of the disease, makes verifiable predictions, suggests experiments designed to validate the proposed concept, and considers its potential research and therapeutic implications. Remarkably, it opens up the possibility that the conventional production of AβPP, BACE enzymes, and γ-secretase components is also suppressed under the neuronal ISR conditions in AD-affected neurons, resulting in the dyshomeostasis of AβPP. It follows that whereas conventional AD is triggered by AβPP-derived iAβ accumulated to the ISR-eliciting levels, the disease, in its both conventional and unconventional (triggered by the neuronal ISR-eliciting stressors distinct from iAβ) forms, is driven not (or not only) by iAβ produced in the AβPP-independent pathway, as we proposed previously, but mainly, possibly exclusively, by the C99 fragment generated independently of AβPP and not cleaved at the γ-site due to the neuronal ISR-caused deficiency of γ-secretase (apparently, the AD-driving “substance X” predicted in our previous study), a paradigm consistent with a dictum by George Perry that Aβ is “central but not causative” in AD. The proposed therapeutic strategies would not only deplete the driver of the disease and abrogate the AβPP-independent production of C99 but also reverse the neuronal ISR and ameliorate the AβPP dyshomeostasis, a potentially significant contributor to AD pathology. Full article
Show Figures

Figure 1

19 pages, 3079 KiB  
Article
Enhancement of Triple-Negative Breast Cancer-Specific Induction of Cell Death by Silver Nanoparticles by Combined Treatment with Proteotoxic Stress Response Inhibitors
by Christina M. Snyder, Beatriz Mateo, Khushbu Patel, Cale D. Fahrenholtz, Monica M. Rohde, Richard Carpenter and Ravi N. Singh
Nanomaterials 2024, 14(19), 1564; https://doi.org/10.3390/nano14191564 - 27 Sep 2024
Cited by 3 | Viewed by 1999
Abstract
Metal nanoparticles have been tested for therapeutic and imaging applications in pre-clinical models of cancer, but fears of toxicity have limited their translation. An emerging concept in nanomedicine is to exploit the inherent drug-like properties of unmodified nanomaterials for cancer therapy. To be [...] Read more.
Metal nanoparticles have been tested for therapeutic and imaging applications in pre-clinical models of cancer, but fears of toxicity have limited their translation. An emerging concept in nanomedicine is to exploit the inherent drug-like properties of unmodified nanomaterials for cancer therapy. To be useful clinically, there must be a window between the toxicity of the nanomaterial to cancer and toxicity to normal cells. This necessitates identification of specific vulnerabilities in cancers that can be targeted using nanomaterials without inducing off-target toxicity. Previous studies point to proteotoxic stress as a driver of silver nanoparticle (AgNPs) toxicity. Two key cell stress responses involved in mitigating proteotoxicity are the heat shock response (HSR) and the integrated stress response (ISR). Here, we examine the role that these stress responses play in AgNP-induced cytotoxicity in triple-negative breast cancer (TNBC) and immortalized mammary epithelial cells. Furthermore, we investigate HSR and ISR inhibitors as potential drug partners to increase the anti-cancer efficacy of AgNPs without increasing off-target toxicity. We showed that AgNPs did not strongly induce the HSR at a transcriptional level, but instead decreased expression of heat shock proteins (HSPs) at the protein level, possibly due to degradation in AgNP-treated TNBC cells. We further showed that the HSR inhibitor, KRIBB11, synergized with AgNPs in TNBC cells, but also increased off-target toxicity in immortalized mammary epithelial cells. In contrast, we found that salubrinal, a drug that can sustain pro-death ISR signaling, enhanced AgNP-induced cell death in TNBC cells without increasing toxicity in immortalized mammary epithelial cells. Subsequent co-culture studies demonstrated that AgNPs in combination with salubrinal selectively eliminated TNBCs without affecting immortalized mammary epithelial cells grown in the same well. Our findings provide additional support for proteotoxic stress as a mechanism by which AgNPs selectively kill TNBCs and will help guide future efforts to identify drug partners that would be beneficial for use with AgNPs for cancer therapy. Full article
Show Figures

Figure 1

72 pages, 13728 KiB  
Perspective
Quintessential Synergy: Concurrent Transient Administration of Integrated Stress Response Inhibitors and BACE1 and/or BACE2 Activators as the Optimal Therapeutic Strategy for Alzheimer’s Disease
by Vladimir Volloch and Sophia Rits-Volloch
Int. J. Mol. Sci. 2024, 25(18), 9913; https://doi.org/10.3390/ijms25189913 - 13 Sep 2024
Cited by 2 | Viewed by 1493
Abstract
The present study analyzes two potential therapeutic approaches for Alzheimer’s disease (AD). One is the suppression of the neuronal integrated stress response (ISR). Another is the targeted degradation of intraneuronal amyloid-beta (iAβ) via the activation of BACE1 (Beta-site Aβ-protein-precursor Cleaving Enzyme) [...] Read more.
The present study analyzes two potential therapeutic approaches for Alzheimer’s disease (AD). One is the suppression of the neuronal integrated stress response (ISR). Another is the targeted degradation of intraneuronal amyloid-beta (iAβ) via the activation of BACE1 (Beta-site Aβ-protein-precursor Cleaving Enzyme) and/or BACE2. Both approaches are rational. Both are promising. Both have substantial intrinsic limitations. However, when combined in a carefully orchestrated manner into a composite therapy they display a prototypical synergy and constitute the apparently optimal, potentially most effective therapeutic strategy for AD. Full article
(This article belongs to the Special Issue Unveiling the Impact of Metabolism on Neuroscience)
Show Figures

Figure 1

16 pages, 3434 KiB  
Review
Cellular Stress in Dry Eye Disease—Key Hub of the Vicious Circle
by Gysbert-Botho van Setten
Biology 2024, 13(9), 669; https://doi.org/10.3390/biology13090669 - 28 Aug 2024
Cited by 1 | Viewed by 2251
Abstract
Disturbance or insufficiency of the tear film challenges the regulatory systems of the ocular surfaces. The reaction of the surfaces includes temporary mechanisms engaged in the preservation of homeostasis. However, strong or persisting challenges can lead to the potential exhaustion of the coping [...] Read more.
Disturbance or insufficiency of the tear film challenges the regulatory systems of the ocular surfaces. The reaction of the surfaces includes temporary mechanisms engaged in the preservation of homeostasis. However, strong or persisting challenges can lead to the potential exhaustion of the coping capacity. This again activates the vicious circle with chronic inflammation and autocatalytic deterioration. Hence, the factors challenging the homeostasis should be addressed in time. Amongst them are a varying osmolarity, constant presence of small lesions at the epithelium, acidification, attrition with mechanical irritation, and onset of pain and discomfort. Each of them and, especially when occurring simultaneously, impose stress on the coping mechanisms and lead to a stress response. Many stressors can culminate, leading to an exhaustion of the coping capacity, outrunning normal resilience. Reaching the limits of stress tolerance leads to the manifestation of a lubrication deficiency as the disease we refer to as dry eye disease (DED). To postpone its manifestation, the avoidance or amelioration of stress factors is one key option. In DED, this is the target of lubrication therapy, substituting the missing tear film or its components. The latter options include the management of secondary sequelae such as the inflammation and activation of reparative cascades. Preventive measures include the enhancement in resilience, recovery velocity, and recovery potential. The capacity to handle the external load factors is the key issue. The aim is to guard homeostasis and to prevent intercellular stress responses from being launched, triggering and invigorating the vicious circle. Considering the dilemma of the surface to have to cope with increased time of exposure to stress, with simultaneously decreasing time for cellular recovery, it illustrates the importance of the vicious circle as a hub for ocular surface stress. The resulting imbalance triggers a continuous deterioration of the ocular surface condition. After an initial phase of the reaction and adaption of the ocular surface to the surrounding challenges, the normal coping capacity will be exhausted. This is the time when the integrated stress response (ISR), a protector for cellular survival, will inevitably be activated, and cellular changes such as altered translation and ribosome pausing are initiated. Once activated, this will slow down any recovery, in a phase where apoptosis is imminent. Premature senescence of cells may also occur. The process of prematurization due to permanent stress exposures contributes to the risk for constant deterioration. The illustrated flow of events in the development of DED outlines that the ability to cope, and to recover, has limited resources in the cells at the ocular surface. The reduction in and amelioration of stress hence should be one of the key targets of therapy and begin early. Here, lubrication optimization as well as causal treatment such as the correction of anatomical anomalies (leading to anatomical dry eye) should be a prime intent of any therapy. The features of cellular stress as a key hub for the vicious circle will be outlined and discussed. Full article
(This article belongs to the Special Issue New Horizons in Ocular Surface Biology)
Show Figures

Figure 1

66 pages, 14003 KiB  
Perspective
ACH2.0/E, the Consolidated Theory of Conventional and Unconventional Alzheimer’s Disease: Origins, Progression, and Therapeutic Strategies
by Vladimir Volloch and Sophia Rits-Volloch
Int. J. Mol. Sci. 2024, 25(11), 6036; https://doi.org/10.3390/ijms25116036 - 30 May 2024
Cited by 3 | Viewed by 2010
Abstract
The centrality of amyloid-beta (Aβ) is an indisputable tenet of Alzheimer’s disease (AD). It was initially indicated by the detection (1991) of a mutation within Aβ protein precursor (AβPP) segregating with the disease, which served as a basis for the long-standing Amyloid Cascade [...] Read more.
The centrality of amyloid-beta (Aβ) is an indisputable tenet of Alzheimer’s disease (AD). It was initially indicated by the detection (1991) of a mutation within Aβ protein precursor (AβPP) segregating with the disease, which served as a basis for the long-standing Amyloid Cascade Hypothesis (ACH) theory of AD. In the intervening three decades, this notion was affirmed and substantiated by the discovery of numerous AD-causing and AD-protective mutations with all, without an exception, affecting the structure, production, and intraneuronal degradation of Aβ. The ACH postulated that the disease is caused and driven by extracellular Aβ. When it became clear that this is not the case, and the ACH was largely discredited, a new theory of AD, dubbed ACH2.0 to re-emphasize the centrality of Aβ, was formulated. In the ACH2.0, AD is caused by physiologically accumulated intraneuronal Aβ (iAβ) derived from AβPP. Upon reaching the critical threshold, it triggers activation of the autonomous AβPP-independent iAβ generation pathway; its output is retained intraneuronally and drives the AD pathology. The bridge between iAβ derived from AβPP and that generated independently of AβPP is the neuronal integrated stress response (ISR) elicited by the former. The ISR severely suppresses cellular protein synthesis; concurrently, it activates the production of a small subset of proteins, which apparently includes components necessary for operation of the AβPP-independent iAβ generation pathway that are absent under regular circumstances. The above sequence of events defines “conventional” AD, which is both caused and driven by differentially derived iAβ. Since the ISR can be elicited by a multitude of stressors, the logic of the ACH2.0 mandates that another class of AD, referred to as “unconventional”, has to occur. Unconventional AD is defined as a disease where a stressor distinct from AβPP-derived iAβ elicits the neuronal ISR. Thus, the essence of both, conventional and unconventional, forms of AD is one and the same, namely autonomous, self-sustainable, AβPP-independent production of iAβ. What distinguishes them is the manner of activation of this pathway, i.e., the mode of causation of the disease. In unconventional AD, processes occurring at locations as distant from and seemingly as unrelated to the brain as, say, the knee can potentially trigger the disease. The present study asserts that these processes include traumatic brain injury (TBI), chronic traumatic encephalopathy, viral and bacterial infections, and a wide array of inflammatory conditions. It considers the pathways which are common to all these occurrences and culminate in the elicitation of the neuronal ISR, analyzes the dynamics of conventional versus unconventional AD, shows how the former can morph into the latter, explains how a single TBI can hasten the occurrence of AD and why it takes multiple TBIs to trigger the disease, and proposes the appropriate therapeutic strategies. It posits that yet another class of unconventional AD may occur where the autonomous AβPP-independent iAβ production pathway is initiated by an ISR-unrelated activator, and consolidates the above notions in a theory of AD, designated ACH2.0/E (for expanded ACH2.0), which incorporates the ACH2.0 as its special case and retains the centrality of iAβ produced independently of AβPP as the driving agent of the disease. Full article
(This article belongs to the Special Issue New Insights of Biomarkers in Neurodegenerative Diseases)
Show Figures

Figure 1

14 pages, 1643 KiB  
Review
Harnessing Mitochondrial Stress for Health and Disease: Opportunities and Challenges
by Yujia Sun, Linlu Jin, Yixue Qin, Zhi Ouyang, Jian Zhong and Ye Zeng
Biology 2024, 13(6), 394; https://doi.org/10.3390/biology13060394 - 29 May 2024
Cited by 3 | Viewed by 4853
Abstract
Mitochondria, essential organelles orchestrating cellular metabolism, have emerged as central players in various disease pathologies. Recent research has shed light on mitohormesis, a concept proposing an adaptive response of mitochondria to minor disturbances in homeostasis, offering novel therapeutic avenues for mitochondria-related diseases. This [...] Read more.
Mitochondria, essential organelles orchestrating cellular metabolism, have emerged as central players in various disease pathologies. Recent research has shed light on mitohormesis, a concept proposing an adaptive response of mitochondria to minor disturbances in homeostasis, offering novel therapeutic avenues for mitochondria-related diseases. This comprehensive review explores the concept of mitohormesis, elucidating its induction mechanisms and occurrence. Intracellular molecules like reactive oxygen species (ROS), calcium, mitochondrial unfolded proteins (UPRmt), and integrated stress response (ISR), along with external factors such as hydrogen sulfide (H2S), physical stimuli, and exercise, play pivotal roles in regulating mitohormesis. Based on the available evidence, we elucidate how mitohormesis maintains mitochondrial homeostasis through mechanisms like mitochondrial quality control and mitophagy. Furthermore, the regulatory role of mitohormesis in mitochondria-related diseases is discussed. By envisioning future applications, this review underscores the significance of mitohormesis as a potential therapeutic target, paving the way for innovative interventions in disease management. Full article
(This article belongs to the Special Issue Molecular Sciences in Cardiology and Vascular Disorders)
Show Figures

Figure 1

13 pages, 726 KiB  
Review
OMA1-Mediated Mitochondrial Dynamics Balance Organellar Homeostasis Upstream of Cellular Stress Responses
by Robert Gilkerson, Harpreet Kaur, Omar Carrillo and Isaiah Ramos
Int. J. Mol. Sci. 2024, 25(8), 4566; https://doi.org/10.3390/ijms25084566 - 22 Apr 2024
Cited by 5 | Viewed by 3135
Abstract
In response to cellular metabolic and signaling cues, the mitochondrial network employs distinct sets of membrane-shaping factors to dynamically modulate organellar structures through a balance of fission and fusion. While these organellar dynamics mediate mitochondrial structure/function homeostasis, they also directly impact critical cell-wide [...] Read more.
In response to cellular metabolic and signaling cues, the mitochondrial network employs distinct sets of membrane-shaping factors to dynamically modulate organellar structures through a balance of fission and fusion. While these organellar dynamics mediate mitochondrial structure/function homeostasis, they also directly impact critical cell-wide signaling pathways such as apoptosis, autophagy, and the integrated stress response (ISR). Mitochondrial fission is driven by the recruitment of the cytosolic dynamin-related protein-1 (DRP1), while fusion is carried out by mitofusins 1 and 2 (in the outer membrane) and optic atrophy-1 (OPA1) in the inner membrane. This dynamic balance is highly sensitive to cellular stress; when the transmembrane potential across the inner membrane (Δψm) is lost, fusion-active OPA1 is cleaved by the overlapping activity with m-AAA protease-1 (OMA1 metalloprotease, disrupting mitochondrial fusion and leaving dynamin-related protein-1 (DRP1)-mediated fission unopposed, thus causing the collapse of the mitochondrial network to a fragmented state. OMA1 is a unique regulator of stress-sensitive homeostatic mitochondrial balance, acting as a key upstream sensor capable of priming the cell for apoptosis, autophagy, or ISR signaling cascades. Recent evidence indicates that higher-order macromolecular associations within the mitochondrial inner membrane allow these specialized domains to mediate crucial organellar functionalities. Full article
(This article belongs to the Special Issue Mitochondria as a Cellular Hub in Neurological Disorders 2.0)
Show Figures

Figure 1

10 pages, 1451 KiB  
Brief Report
Rescue of Methionine Dependence by Cobalamin in a Human Colorectal Cancer Cell Line
by Sarita Garg and Isabelle R. Miousse
Nutrients 2024, 16(7), 997; https://doi.org/10.3390/nu16070997 - 28 Mar 2024
Cited by 3 | Viewed by 1994
Abstract
Methionine dependence is a characteristic of most cancer cells where they are unable to proliferate when the essential amino acid methionine is replaced with its precursor homocysteine in the growing media. Normal cells, on the other hand, thrive under these conditions and are [...] Read more.
Methionine dependence is a characteristic of most cancer cells where they are unable to proliferate when the essential amino acid methionine is replaced with its precursor homocysteine in the growing media. Normal cells, on the other hand, thrive under these conditions and are referred to as methionine-independent. The reaction that adds a methyl group from 5-methyltetrahydrofolate to homocysteine to regenerate methionine is catalyzed by the enzyme methionine synthase with the cofactor cobalamin (vitamin B12). However, decades of research have shown that methionine dependence in cancer is not due to a defect in the activity of methionine synthase. Cobalamin metabolism has been tied to the dependent phenotype in rare cell lines. We have identified a human colorectal cancer cell line in which the cells regain the ability to proliferation in methionine-free, L-homocystine-supplemented media when cyanocobalamin is supplemented at a level of 1 µg/mL. In human SW48 cells, methionine replacement with L-homocystine does not induce any measurable increase in apoptosis or reactive oxygen species production in this cell line. Rather, proliferation is halted, then restored in the presence of cyanocobalamin. Our data show that supplementation with cyanocobalamin prevents the activation of the integrated stress response (ISR) in methionine-deprived media in this cell line. The ISR-associated cell cycle arrest, characteristic of methionine-dependence in cancer, is also prevented, leading to the continuation of proliferation in methionine-deprived SW48 cells with cobalamin. Our results highlight differences between cancer cell lines in the response to cobalamin supplementation in the context of methionine dependence. Full article
(This article belongs to the Special Issue Methyl Nutrients and One-Carbon Metabolism in Chronic Diseases)
Show Figures

Figure 1

50 pages, 5600 KiB  
Perspective
On the Inadequacy of the Current Transgenic Animal Models of Alzheimer’s Disease: The Path Forward
by Vladimir Volloch and Sophia Rits-Volloch
Int. J. Mol. Sci. 2024, 25(5), 2981; https://doi.org/10.3390/ijms25052981 - 4 Mar 2024
Cited by 5 | Viewed by 1903
Abstract
For at least two reasons, the current transgenic animal models of Alzheimer’s disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of [...] Read more.
For at least two reasons, the current transgenic animal models of Alzheimer’s disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of the AD pathology. Second, they respond spectacularly well to drugs that are completely ineffective in the treatment of symptomatic AD. These observations indicate that both the transgenic animal models and the drugs faithfully reflect the theory that guided the design and development of both, the amyloid cascade hypothesis (ACH), and that both are inadequate because their underlying theory is. This conclusion necessitated the formulation of a new, all-encompassing theory of conventional AD—the ACH2.0. The two principal attributes of the ACH2.0 are the following. One, in conventional AD, the agent that causes the disease and drives its pathology is the intraneuronal amyloid-β (iAβ) produced in two distinctly different pathways. Two, following the commencement of AD, the bulk of Aβ is generated independently of Aβ protein precursor (AβPP) and is retained inside the neuron as iAβ. Within the framework of the ACH2.0, AβPP-derived iAβ accumulates physiologically in a lifelong process. It cannot reach levels required to support the progression of AD; it does, however, cause the disease. Indeed, conventional AD occurs if and when the levels of AβPP-derived iAβ cross the critical threshold, elicit the neuronal integrated stress response (ISR), and trigger the activation of the AβPP-independent iAβ generation pathway; the disease commences only when this pathway is operational. The iAβ produced in this pathway reaches levels sufficient to drive the AD pathology; it also propagates its own production and thus sustains the activity of the pathway and perpetuates its operation. The present study analyzes the reason underlying the evident inadequacy of the current transgenic animal models of AD. It concludes that they model, in fact, not Alzheimer’s disease but rather the effects of the neuronal ISR sustained by AβPP-derived iAβ, that this is due to the lack of the operational AβPP-independent iAβ production pathway, and that this mechanism must be incorporated into any successful AD model faithfully emulating the disease. The study dissects the plausible molecular mechanisms of the AβPP-independent iAβ production and the pathways leading to their activation, and introduces the concept of conventional versus unconventional Alzheimer’s disease. It also proposes the path forward, posits the principles of design of productive transgenic animal models of the disease, and describes the molecular details of their construction. Full article
Show Figures

Figure 1

30 pages, 2160 KiB  
Review
ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor
by Adrien Corne, Florine Adolphe, Jérôme Estaquier, Sébastien Gaumer and Jean-Marc Corsi
Biology 2024, 13(3), 146; https://doi.org/10.3390/biology13030146 - 26 Feb 2024
Cited by 4 | Viewed by 5304
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino [...] Read more.
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host–pathogen interactions. Full article
(This article belongs to the Collection Mitochondria and Stress Responses)
Show Figures

Graphical abstract

Back to TopTop