Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = integral abutment bridge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5280 KiB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 (registering DOI) - 2 Aug 2025
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

42 pages, 3024 KiB  
Article
Developing a Research Roadmap for Highway Bridge Infrastructure Innovation: A Case Study
by Arya Ebrahimpour, Aryan Baibordy and Ahmed Ibrahim
Infrastructures 2025, 10(6), 133; https://doi.org/10.3390/infrastructures10060133 - 30 May 2025
Viewed by 1062
Abstract
Bridges are assets in every society, and their deterioration can have severe economic, social, and environmental consequences. Therefore, implementing effective asset management strategies is crucial to ensure bridge infrastructure’s long-term performance and safety. Roadmaps can serve as valuable tools for bridge asset managers, [...] Read more.
Bridges are assets in every society, and their deterioration can have severe economic, social, and environmental consequences. Therefore, implementing effective asset management strategies is crucial to ensure bridge infrastructure’s long-term performance and safety. Roadmaps can serve as valuable tools for bridge asset managers, helping bridge engineers make informed decisions that enhance bridge safety while maintaining controlled life cycle costs. Although some bridge asset management roadmaps exist, such as the one published by the United States Federal Highway Administration (FHWA), there is a lack of structured research roadmaps that are both region-specific and adaptable as guiding frameworks for similar studies. For instance, the FHWA roadmap cannot be universally applied across diverse regional contexts. This study addresses this critical gap by developing a research roadmap tailored to Idaho, USA. The roadmap was developed using a three-phase methodological approach: (1) a comprehensive analysis of past and ongoing Department of Transportation (DOT)-funded research projects over the last five years, (2) a nationwide survey of DOT funding and research practices, and (3) a detailed assessment of Idaho Transportation Department (ITD) deficiently rated bridge inventory, including individual element condition states. In the first phase, three filtering stages were implemented to identify the top 25 state projects. A literature review was conducted for each project to provide ITD’s Technical Advisory Committee (TAC) members with insights into research undertaken by various state DOTs. Moreover, in the second phase, approximately six questionnaires were designed and distributed to other state DOTs. These questionnaires primarily covered topics related to bridge research priorities and funding allocation. In the final phase, a condition state analysis was conducted using data-driven methods. Key findings from this three-phase methodological approach highlight that ultra-high-performance concrete (UHPC), bridge deck preservation, and maintenance strategies are high-priority research areas across many DOTs. Furthermore, according to the DOT responses, funding is most commonly allocated to projects related to superstructure and deck elements. Finally, ITD found that the most deficient elements in Idaho bridges are reinforced concrete abutments, reinforced concrete pile caps and footings, reinforced concrete pier walls, and movable bearing systems. These findings were integrated with insights from ITD’s TAC to generate a prioritized list of 23 high-impact research topics aligned with Idaho’s specific needs and priorities. From this list, the top six topics were selected for further investigation. By adopting this strategic approach, ITD aims to enhance the efficiency and effectiveness of its bridge-related research efforts, ultimately contributing to safer and more resilient transportation infrastructure. This paper could be a helpful resource for other DOTs seeking a systematic approach to addressing their bridge research needs. Full article
Show Figures

Figure 1

22 pages, 3594 KiB  
Article
Estimation of Equilibrium Scour Depth Around Abutments Using Artificial Intelligence
by Yusuf Uzun and Serife Yurdagul Kumcu
Water 2025, 17(7), 1010; https://doi.org/10.3390/w17071010 - 29 Mar 2025
Viewed by 413
Abstract
This study compares various machine learning models to determine the method with the highest accuracy rate to predict the equilibrium scour depth of bridge abutments. Unlike in previous studies, hyperparameter optimization is focused on increasing model performance in small datasets, and feature importance [...] Read more.
This study compares various machine learning models to determine the method with the highest accuracy rate to predict the equilibrium scour depth of bridge abutments. Unlike in previous studies, hyperparameter optimization is focused on increasing model performance in small datasets, and feature importance ranking is analyzed. This study employs Multiple Linear Regression (MLR), Support Vector Regression (SVR), Decision Tree Regressor (DTR), Random Forest Regressor (RFR), XGBoost, and Artificial Neural Networks (ANNs) to predict the Dse. The dataset consists of 150 records with the following key hydraulic parameters: the flow depth (Y), abutment length (L), channel width (B), flow velocity (V), and median grain size (d50). The results show that DTR achieved the highest accuracy (R2 = 0.992, accuracy = 99.28%), followed by XGBoost (R2 = 0.990, accuracy = 99.21%) and ANNs (R2 = 0.981, accuracy = 98.77%). Traditional MLR exhibited lower accuracy (R2 = 0.806, accuracy = 81.14%), confirming the superiority of AI-based models. These findings highlight the effectiveness of machine learning in scour prediction, providing a reliable alternative to conventional methods. This study underscores the potential of AI in hydraulic engineering, facilitating efficient bridge design and maintenance strategies. Future research should explore real-time data integration and hybrid AI models for improved interpretability and robustness. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

18 pages, 4728 KiB  
Article
Influence of Pontic Length on the Structural Integrity of Zirconia Fixed Partial Dentures (FPDs)
by Tareq Hajaj, Ioana Elena Lile, Ioana Veja, Florina Titihazan, Mihai Rominu, Meda Lavinia Negruțiu, Cosmin Sinescu, Andreea Codruta Novac, Serban Talpos Niculescu and Cristian Zaharia
J. Funct. Biomater. 2025, 16(4), 116; https://doi.org/10.3390/jfb16040116 - 25 Mar 2025
Cited by 3 | Viewed by 941
Abstract
Objective: This study aims to evaluate the influence of pontic length and design on the fracture resistance of zirconia fixed dental prostheses (FDPs). By assessing different span lengths under controlled mechanical loading conditions, the research seeks to provide insights into optimizing the structural [...] Read more.
Objective: This study aims to evaluate the influence of pontic length and design on the fracture resistance of zirconia fixed dental prostheses (FDPs). By assessing different span lengths under controlled mechanical loading conditions, the research seeks to provide insights into optimizing the structural integrity of zirconia dental bridges. Materials and Methods: A total of 20 zirconia bridges were fabricated and tested in vitro. Ten bridges were designed to replace a single missing molar (tooth 46), with a pontic span of 11 mm, while the remaining ten were crafted for two missing teeth (35 and 36), featuring a longer pontic span of 17 mm. The zirconia frameworks were milled using the Wieland Zenotec® Select Hybrid system and cemented onto metal abutments with Voco Meron Plus QM resin-reinforced glass ionomer cement. The specimens were subjected to occlusal loading using a ZwickRoell ProLine Z005 testing machine at a crosshead speed of 1 mm/min until fracture occurred. Results: The mechanical testing revealed a significant correlation between pontic length and fracture resistance. The mean fracture resistance for three-unit bridges (single pontic) was 3703 N, whereas four-unit bridges (double pontic) exhibited a significantly lower resistance of 1713 N. These findings indicate that increased span length reduces the fracture resistance of zirconia restorations due to higher stress accumulation and reduced rigidity. Conclusions: This study underscores the importance of pontic length and design in determining the fracture resistance of zirconia restorations. Shorter spans exhibit greater structural stability, reinforcing the need for careful treatment planning when designing multi-unit zirconia bridges. By optimizing bridge parameters, clinicians can improve clinical outcomes and extend the longevity of zirconia prostheses in restorative dentistry. Full article
Show Figures

Figure 1

15 pages, 3464 KiB  
Article
Retrofitting of a Multi-Span Simply Supported Bridge into a Semi-Integral Bridge
by Zhen Xu, Xiaoye Luo, Khaled Sennah, Baochun Chen and Yizhou Zhuang
Appl. Sci. 2025, 15(1), 455; https://doi.org/10.3390/app15010455 - 6 Jan 2025
Viewed by 1196
Abstract
Thousands of multi-span, simply supported beam bridges with short or medium spans have been built in China. They often suffer from problems of cracks in the link slabs over piers, and the deterioration and damage of deck expansion joints at abutments. To address [...] Read more.
Thousands of multi-span, simply supported beam bridges with short or medium spans have been built in China. They often suffer from problems of cracks in the link slabs over piers, and the deterioration and damage of deck expansion joints at abutments. To address these problems, one approach is to retrofit them by converting the simply supported box beams into continuous structures over the piers and jointless bridges over the abutments. This paper discusses the design methodology and details for retrofitting the Jinpu Bridge in Zhangzhou, Fujian, China, from a simply supported bridge into a semi-integral bridge, in which semi-fixed dowel joints are used to connect the superstructure and the substructure, including piers and abutments. Simultaneously, the finite element software is used to calculate the internal forces and displacements of the structure. The analysis reveals an 11.1% reduction in the maximum positive moment at the midspan of the main beam in the semi-integral bridge compared to the simply supported bridge. However, the shear forces at the interior pier increase by 6.4%. According to the response spectrum analysis, the maximum longitudinal displacement of the semi-integral bridge’s main beam is 11.6 mm, reduced by 80.1% compared to the simply supported bridge under a dead load and earthquake effects. The maximum bending moment and shear force on the pier of the semi-integral bridge are 984.7 kN·m and 312.6 kN, respectively, both below their ultimate bearing capacities. The maximum displacement at the top of the pier is 7.7 mm, which is below the allowable 52.4 mm displacement. The calculated results conform to the design requirements specified by the code. Full article
(This article belongs to the Special Issue Risk Control and Performance Design of Bridge Structures)
Show Figures

Figure 1

17 pages, 4246 KiB  
Article
Seismic Response Analysis of Continuous Girder Bridges Crossing Faults with Assembled Rocking-Self-Centering Piers
by Tianyi Zhou, Yingxin Hui, Junlu Liu and Jiale Lv
Buildings 2024, 14(12), 4061; https://doi.org/10.3390/buildings14124061 - 21 Dec 2024
Viewed by 807
Abstract
Under the action of cross-fault ground motion, bridge piers can experience significant residual displacements, which can irreversibly impact the integrity and reliability of the bridge structure. Traditional seismic mitigation measures struggle to effectively prevent multi-span chain collapses caused by the tilting of bridge [...] Read more.
Under the action of cross-fault ground motion, bridge piers can experience significant residual displacements, which can irreversibly impact the integrity and reliability of the bridge structure. Traditional seismic mitigation measures struggle to effectively prevent multi-span chain collapses caused by the tilting of bridge piers. Therefore, it is of practical engineering significance to explore the effectiveness of rocking self-centering (RSC) piers as seismic mitigation measures for such bridges. In this paper, cross-fault ground motion with sliding effects is artificially synthesized based on the characteristics of the fault seismogenic mechanism. A finite element model of a cross-fault bridge is established using the OpenSees platform. The applicability of RSC piers to cross-fault bridges is explored. The results show that RSC piers can significantly reduce residual displacement during cross-fault ground motions, facilitating rapid recovery after an earthquake. RSC piers significantly reduce residual displacement in cross-fault bridges, with the most notable vibration reduction effects observed in piers adjacent to the fault. When an 80 cm fault displacement occurs, the vibration reduction rate reaches 48%. Additionally, when the fault’s permanent displacement increases the risk of pier toppling, the vibration reduction effect of the RSC pier is positively correlated with the degree of fault displacement. However, the amplification effect of RSC piers on the maximum relative displacement of bearings in cross-fault bridges cannot be ignored. In this study, for the first time, RSC piers were assembled on bridges spanning faults to investigate their seismic damping effect. When the degree of fault misalignment is greater than 60cm, the seismic damping effect of RSC abutments is positively correlated with the degree of fault misalignment, and its amplifying effect on the maximum relative displacement of the bearing becomes more and more obvious with the increase of permanent displacement. For example, when the fault misalignment degree is 60cm, the vibration reduction rate is 39%, and when the fault misalignment degree is 90cm, the vibration reduction rate is 54%. Designers should rationally configure RSC piers according to the specific bridge and site conditions to achieve optimal vibration reduction effects. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 3159 KiB  
Review
Transition Effects in Bridge Structures and Their Possible Reduction Using Recycled Materials
by Mariusz Spyrowski, Krzysztof Adam Ostrowski and Kazimierz Furtak
Appl. Sci. 2024, 14(23), 11305; https://doi.org/10.3390/app142311305 - 4 Dec 2024
Cited by 1 | Viewed by 2475
Abstract
This article serves as a review of the current challenges in bridge engineering, specifically addressing the transition effect and the utilization of recycled materials. It aims to identify research gaps and propose innovative approaches, paving the way for future experimental studies. As a [...] Read more.
This article serves as a review of the current challenges in bridge engineering, specifically addressing the transition effect and the utilization of recycled materials. It aims to identify research gaps and propose innovative approaches, paving the way for future experimental studies. As a review article, the authors critically analyze the existing literature on the transition effects in bridge construction, their causes, and their negative impacts. Integral bridges are discussed as a solution designed to work in conjunction with road or rail embankments to transfer loads, minimizing maintenance and construction costs while increasing durability. Particular attention is given to the potential use of modified plastic composites as an alternative material in integral bridge structures. This concept not only addresses the issue of plastic waste but also promotes the long-term use of recycled materials, a key consideration given recycling limitations. This article highlights the importance of the connection between the embankment and the abutment and provides examples of polymer applications in bridge engineering. By outlining the state of the art, this review identifies future development paths in this niche, but promising, field. Almost 240 literature items were analyzed in detail, and works containing 475 different key words contained in about 3500 individual works were used for scientometric analysis. The results of the analysis clearly indicate the novelty of the presented subject matter. Full article
Show Figures

Figure 1

19 pages, 6629 KiB  
Article
Experimental Investigations of Seismic Performance of Girder–Integral Abutment–Reinforced-Concrete Pile–Soil Systems
by Weiqiang Guo, Bruno Briseghella, Junqing Xue, Camillo Nuti and Fuyun Huang
Appl. Sci. 2024, 14(22), 10166; https://doi.org/10.3390/app142210166 - 6 Nov 2024
Viewed by 872
Abstract
Integral abutment bridges (IABs) have been widely applied in bridge engineering because of their excellent seismic performance, long service life, and low maintenance cost. The superstructure and substructure of an IAB are integrally connected to reduce the possibility of collapse or girders falling [...] Read more.
Integral abutment bridges (IABs) have been widely applied in bridge engineering because of their excellent seismic performance, long service life, and low maintenance cost. The superstructure and substructure of an IAB are integrally connected to reduce the possibility of collapse or girders falling during an earthquake. The soil behind the abutment can provide a damping effect to reduce the deformation of the structure under a seismic load. Girders have not been considered in some of the existing published experimental tests on integral abutment–reinforced-concrete (RC) pile (IAP)–soil systems, which may not accurately represent real conditions. A pseudo-static low-cycle test on a girder–integral abutment–RC pile (GIAP)–soil system was conducted for an IAB in China. The experiment’s results for the GIAP specimen were compared with those of the IAP specimen, including the failure mode, hysteretic curve, energy dissipation capacity, skeleton curve, stiffness degradation, and displacement ductility. The test results indicate that the failure modes of both specimens were different. For the IAP specimen, the pile cracked at a displacement of +2 mm, while the abutment did not crack during the test. For the GIAP specimen, the pile cracked at a displacement of −8 mm, and the abutment cracked at a displacement of 50 mm. The failure mode of the specimen changed from severe damage to the pile top under a small displacement to damage to both the abutment and pile top under a large displacement. Compared with the IAP specimen, the initial stiffness under positive horizontal displacement (39.2%), residual force accumulation (22.6%), residual deformation (12.6%), range of the elastoplastic stage in the skeleton curve, and stiffness degradation of the GIAP specimen were smaller; however, the initial stiffness under negative horizontal displacement (112.6%), displacement ductility coefficient (67.2%), average equivalent viscous damping ratio (30.8%), yield load (20.4%), ultimate load (7.8%), and range of the elastic stage in the skeleton curve of the GIAP specimen were larger. In summary, the seismic performance of the GIAP–soil system was better than that of the IAP–soil system. Therefore, to accurately reflect the seismic performance of GIAP–soil systems in IABs, it is suggested to consider the influence of the girder. Full article
(This article belongs to the Special Issue Structural Analysis and Seismic Resilience in Civil Engineering)
Show Figures

Figure 1

28 pages, 17917 KiB  
Review
Research Progress on Shear Characteristics and Rapid Post-Disaster Construction of Narrow-Width Steel Box–UHPC Composite Beams
by Yunteng Chen, Jiawei Xu, Peilong Yuan, Qiang Wang, Guanhua Cui and Xulin Su
Buildings 2024, 14(7), 1930; https://doi.org/10.3390/buildings14071930 - 25 Jun 2024
Cited by 1 | Viewed by 1295
Abstract
The narrow-width steel box girder is an important type of steel–concrete composite bridge structure, which is usually composed of reinforced concrete wing plates, narrow steel boxes partially injected with concrete, and shear connectors that promote shear force transfer. The utilization of narrow-width steel [...] Read more.
The narrow-width steel box girder is an important type of steel–concrete composite bridge structure, which is usually composed of reinforced concrete wing plates, narrow steel boxes partially injected with concrete, and shear connectors that promote shear force transfer. The utilization of narrow-width steel box girders, augmented by partially filled concrete, embodies the synthesis of steel and concrete elements, fostering structural efficiency. Moreover, its attributes, including reduced structural weight, diminished vertical profile, enhanced load-bearing capacity, and augmented stiffness, have prompted its gradual integration into bridge engineering applications. In this study, the calculated values of shear strength under three current design codes were reviewed, and the shear failure phenomena and its determinants of narrow-width steel box–ultra-high-performance concrete (UHPC) composite beams under negative bending moment conditions were investigated, which were mainly determined by shear span ratio, concrete wing plate, UHPC steel fiber content, UHPC plate thickness, and transverse partition inside the box. Concurrently, this paper evaluates two innovative structural designs, including a double-narrow steel box girder and a three-narrow steel box girder. In addition, strategies to reduce crack formation under the negative bending moment of long-span continuous narrow and wide box girder abutments are discussed, and we show that this measure can effectively control the formation of cracks to support the negative bending moment zone. At the same time, the scope of the application of a narrow-width steel box girder composite bridge is reviewed, and the conclusion is that a narrow-width steel box girder is mainly used in small-radius flat-curved bridges or widened-ramp bridges with a span of 30 m or more in interworking areas and in the main line with a 60–100 m span in mountainous or urban areas. Finally, the research direction of the shear resistance of the UHPC–narrow steel box girder under negative bending moments is proposed. Full article
(This article belongs to the Special Issue Advances in Steel–Concrete Composite Structures)
Show Figures

Figure 1

18 pages, 9912 KiB  
Article
Force Performance Analysis and Numerical Simulation of Assembled Ribbed-Slab Abutments
by Qiaozhu He, Ying Sun, Yin Gu and Tong Wu
Appl. Sci. 2024, 14(8), 3224; https://doi.org/10.3390/app14083224 - 11 Apr 2024
Cited by 1 | Viewed by 1390
Abstract
This study investigates the structural performance of assembled rib-plate bridge abutments (ARBAs) with two different connection methods: bull leg bolt and flange connections. In addition, we explored the bending and shear performance of the connection parts and related areas to assess the damage [...] Read more.
This study investigates the structural performance of assembled rib-plate bridge abutments (ARBAs) with two different connection methods: bull leg bolt and flange connections. In addition, we explored the bending and shear performance of the connection parts and related areas to assess the damage characteristics and modes of these ARBAs. Utilizing model testing, a numerical analysis was conducted to define the force performance of the ARBA, with reference to a cast-in-place rib-plate abutment. The research results indicate that the bearing capacity and deformation capacity of the cap part of the assembled ribbed slab abutment model with cow leg connections are lower than those of the cast-in-place structure. When the structure fails, a 45° diagonal crack develops from the cross-section at the mid-span joint to the connection between the rib slab and the cap, until the concrete protective layer at the joint is crushed, exhibiting a shear failure mode. The bearing capacity of the assembly rib plate type abutment cap connected by the flange plate is basically the same as that of the cast-in-place structure, and the deformation capacity is weaker than that of the cast-in-place rib plate type abutment. The expansion of structural cracks is consistent with that of the rib plate type abutment connected by the cow leg. When the flange plate at the mid span is damaged, the contact surface between the flange plate and the concrete is pried off, resulting in the inability of the structure to continue bearing, exhibiting a shear failure mode. Through numerical simulation, taking the stress performance of the integral cast-in-place ribbed slab abutment as a reference, the assembled ribbed slab abutment connected by the flange plate is basically consistent with the integral cast-in-place ribbed slab abutment in terms of ultimate load, concrete damage, and steel reinforcement skeleton stress, and the connection device has not yet reached the yield state. The ultimate displacement is slightly weaker than that of the integral cast-in-place ribbed slab abutment. By comparison, it can be seen that the ultimate bearing capacity of the assembled ribbed slab abutment connected by the flange is basically the same as that of the cast-in-place ribbed slab abutment, and the stress performance can reach an “equivalent cast-in-place”, making it the preferred solution for the assembled abutment structure. The finite element parameter analysis of the flanged ARBA revealed that the thickness of the stiffening ribs, the number of bolts, and length of the flange plate anchoring steel plate were proportional to the ultimate load-bearing capacity of the prefabricated ARBA. In the case of no change in the structural damage mode, considering the economic benefits and load-bearing capacity of the structure, the following parameter combinations of the flanged ARBA are recommended: a thickness of 30 mm of the stiffening ribs, the number of bolts is 12, and a length of 50 cm of the length of flange plate anchoring steel plate. Full article
Show Figures

Figure 1

17 pages, 6906 KiB  
Article
Effects of Geogrid Reinforcement on the Backfill of Integral Bridge Abutments
by Visar Farhangi, Mehdi Zadehmohamad, Armaghan Monshizadegan, MohammadAli Izadifar, Mohammad Javad Moradi and Hamed Dabiri
Buildings 2023, 13(4), 853; https://doi.org/10.3390/buildings13040853 - 24 Mar 2023
Cited by 16 | Viewed by 3109
Abstract
The construction of integral bridges is one of the most effective methods to reduce bridges’ construction and in-service costs. However, there are associated geotechnical problems with their abutments backfill due to the integrated abutments. The main goal of this study is to evaluate [...] Read more.
The construction of integral bridges is one of the most effective methods to reduce bridges’ construction and in-service costs. However, there are associated geotechnical problems with their abutments backfill due to the integrated abutments. The main goal of this study is to evaluate and quantify the benefits of geogrid reinforcement for reducing the backfill’s geotechnical problems. For this purpose, using small-scale physical modeling, the benefits of geogrid reinforcing of the backfill of an integral abutment bridge subjected to cyclic movements are evaluated. The results are then compared with a previous study performed on unreinforced backfill and two types of geocells. In this study, 120 loading cycles are applied to geogrid-reinforced soil to simulate the cyclic loadings on integral abutment backfill due to seasonal abutment displacement. The horizontal reaction load at the top of the wall, changes in pressure behind the wall, and deformation in backfill soil are measured during the test. Then the results are discussed in terms of equivalent peak lateral soil coefficient (Kpeak), lateral earth pressure coefficient (K*), and normalized settlement behind the wall (Sg/H). The derived lateral soil coefficients and settlement behind the abutment show that geogrid substantially reduces pressure and settlements after 120 cyclic loads. Based on the results, Kpeak and K* of the geogrid-reinforced backfill decrease by up to 36%, and Sg/H behind the wall decreases by 62%. In addition, the comparison of the results for geogrid with two geocell types shows that geogrid is more efficient in terms of lateral soil coefficients. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 6566 KiB  
Article
Influence of Guardrails on Track–Bridge Interaction with a Longitudinal Resistance Test of the Fastener
by Kaize Xie, Weiwu Dai, Hao Xu and Weigang Zhao
Appl. Sci. 2023, 13(6), 3750; https://doi.org/10.3390/app13063750 - 15 Mar 2023
Cited by 2 | Viewed by 2646
Abstract
The guardrail is an indispensable part of ballasted track structures on bridges. In order to reveal its influence on the track–bridge interaction of continuous welded rail (CWR), the longitudinal resistance model of the guardrail fastener and its influential factors are established through tests. [...] Read more.
The guardrail is an indispensable part of ballasted track structures on bridges. In order to reveal its influence on the track–bridge interaction of continuous welded rail (CWR), the longitudinal resistance model of the guardrail fastener and its influential factors are established through tests. By taking a continuous girder bridge (CGB) for railways as an example, a stock rail-guardrail-sleeper-bridge-pier integrated simulation model is developed. The effects of the guardrails, installation torque of the guardrail fastener, and joint resistance of the guardrail under typical conditions are carefully examined. The research results indicate that the nominal longitudinal resistance of the guardrail fastener and the elastic longitudinal displacement of the rail prior to sliding approximately grow linearly with the growth of the installation torque. The presence of a guardrail can alleviate the track–bridge interaction in the range of the CGB, but exacerbate the interaction near the abutment with moveable bearings. This fact enables the abutment position to be considered as a new control point for the design of CWR on bridges. Considering the changing rules of the rail longitudinal force and rail gap, it is recommended that the installation torques of the guardrail fastener and guardrail joint are 40–60 N·m and 700–800 N·m, respectively. The recommended maximum longitudinal stiffness of piers for CGBs is evaluated. When the longitudinal stiffness of the pier for a CGB is lower than the recommended value, the influence of the guardrail can be neglected in the design of the CWR. Full article
Show Figures

Figure 1

16 pages, 5691 KiB  
Article
Structural Integrity of Anterior Ceramic Resin-Bonded Fixed Partial Denture: A Finite Element Analysis Study
by Mas Linda Mohd Osman, Tong Wah Lim, Hung-Chih Chang, Amir Radzi Ab Ghani, James Kit Hon Tsoi and Siti Mariam Ab Ghani
J. Funct. Biomater. 2023, 14(2), 108; https://doi.org/10.3390/jfb14020108 - 15 Feb 2023
Cited by 5 | Viewed by 4098
Abstract
This study was conducted as a means to evaluate the stress distribution patterns of anterior ceramic resin-bonded fixed partial dentures derived from different materials and numerous connector designs that had various loading conditions imposed onto them through the utilization of the finite element [...] Read more.
This study was conducted as a means to evaluate the stress distribution patterns of anterior ceramic resin-bonded fixed partial dentures derived from different materials and numerous connector designs that had various loading conditions imposed onto them through the utilization of the finite element method. A finite element model was established on the basis of the cone beam computed tomography image of a cantilevered resin-bonded fixed partial denture with a central incisor as an abutment and a lateral incisor as a pontic. Sixteen finite element models representing different conditions were simulated with lithium disilicate and zirconia. Connector height, width, and shape were set as the geometric parameters. Static loads of 100 N, 150 N, and 200 N were applied at 45 degrees to the pontic. The maximum equivalent stress values obtained for all finite element models were compared with the ultimate strengths of their materials. Higher load exhibited greater maximum equivalent stress in both materials, regardless of the connector width and shape. Loadings of 200 N and 150 N that were correspondingly simulated on lithium disilicate prostheses of all shapes and dimensions resulted in connector fractures. On the contrary, loadings of 200 N, 150 N, and 100 N with rectangular-shaped connectors correspondingly simulated on zirconia were able to withstand the loads. However, two of the trapezoidal-shaped zirconia connectors were unable to withstand the loads and resulted in fractures. It can be deduced that material type, shape, and connector dimensions concurrently influenced the integrity of the bridge. Full article
(This article belongs to the Special Issue State of the Art in Dental Materials)
Show Figures

Figure 1

19 pages, 5385 KiB  
Article
Environment-Induced Performance of End Concrete Diaphragm in Skewed Semi-Integral Bridges
by Husam H. Hussein, Issam Khoury and Joshua S. Lucas
Buildings 2022, 12(11), 1985; https://doi.org/10.3390/buildings12111985 - 16 Nov 2022
Cited by 2 | Viewed by 2592
Abstract
Past research has shown that as skewed bridges change temperature, additional lateral movement or forces will occur along with the elongation of the bridge. Even though past research has documented this behavior, lateral movements of semi-integral bridge superstructure associated with temperature effects on [...] Read more.
Past research has shown that as skewed bridges change temperature, additional lateral movement or forces will occur along with the elongation of the bridge. Even though past research has documented this behavior, lateral movements of semi-integral bridge superstructure associated with temperature effects on bridge skewness have not been well predicted. In this study, the seasonal movements of a 24-year-old semi-integral bridge caused by temperature effects with skewed abutment have been investigated by conducting a series of field measurements on bridges subjected to various environmental climates. The measured data showed that as the bridge heated up, the superstructure tended to move toward the acute corner of the bridge, and the bridge would contract towards its obtuse corner with a negative temperature change. During warm weather, the cracks on the end diaphragm tended to open with a positive temperature change and close with a negative temperature change, which was much more predictable than the cold weather behavior. This behavior confirms that even though the bridge moves linearly with temperature, the end diaphragm response to the temperature depends on the season. Movement of the bridge superstructure from temperature change has caused cracks in the end diaphragm, which are now propagating to the deck. These cracks could damage the bridge enough that it would require repair work in the future. The evidence in this study will help provide a complete picture of seasonal jointless bridge behavior so future semi-integral bridges can be made safer and more efficient. Full article
(This article belongs to the Special Issue Structural Health Monitoring of Buildings, Bridges and Dams)
Show Figures

Graphical abstract

18 pages, 13370 KiB  
Review
Dynamic Behavior of the Transition Zone of an Integral Abutment Bridge
by Akshay Sakhare, Hafsa Farooq, Sanjay Nimbalkar and Goudappa R. Dodagoudar
Sustainability 2022, 14(7), 4118; https://doi.org/10.3390/su14074118 - 30 Mar 2022
Cited by 11 | Viewed by 2748
Abstract
Weaker sections of a railway track, such as the approach sections, are prone to differential settlement under the action of repeated train loads. The railway tracks degrade more quickly at a critical section adjacent to a traditional rail bridge because of progressive deterioration. [...] Read more.
Weaker sections of a railway track, such as the approach sections, are prone to differential settlement under the action of repeated train loads. The railway tracks degrade more quickly at a critical section adjacent to a traditional rail bridge because of progressive deterioration. Opting for an integral abutment instead of a traditional bridge is gaining importance due to its improved performance in terms of track stiffness and reduced settlement. It is essential to understand such issues with the appropriate methodologies. This study investigates the behavior of an integral abutment bridge with the transition zone subjected to train loading. Generally, the transition zone is a two-part wedge section consisting of unbound granular material and cement bound mixture. A field monitored traditional abutment bridge system is used to validate the developed two-dimensional Finite Element (FE) model. The model is further developed to simulate the dynamic behavior of the transition zone against the varying speeds of the train. The parametric study is performed on the transition zone by varying its geometric configurations and considering different materials for the backfill. The results indicate that the trapezoidal approach slab influences the track displacement significantly. The transition zone thickness and material properties of the backfill have a greater effect on the overall track response. Based on the results, the stable transition zones are identified to cater to the gradual stiffness variation during train–track interaction. Full article
Show Figures

Figure 1

Back to TopTop