Transition Effects in Bridge Structures and Their Possible Reduction Using Recycled Materials
Abstract
:1. Introduction
2. Methodology
3. General Purpose of Research
4. Research Area
- Engineering Aspect: Current projects do not entirely solve the issue of stiffness discontinuity (flexibility) in the subgrade for linear structures approaching bridges. According to the authors, further progress supported by appropriately developed materials, and the spatial structure of the joint construction will undoubtedly enrich contemporary bridge engineering with new design solutions that could reduce the transition effect.
- Environmental Aspect: The new material and its application area offer opportunities to utilize large amounts of waste that accumulate in landfills or are incinerated. Due to their longevity anticipated in engineering constructions, the properties of processed waste will serve future generations. Pursuing the idea of sustainable development involves seeking applications for waste that is considered inefficient, difficult, or costly to process. This fact guarantees a constant demand for solutions enabling recycling.
5. Detailed Overview
5.1. Outline
5.2. Engineering Aspect
5.3. Environmental Aspect
5.4. Properties and Use of Polymers in Bridge Structures
5.4.1. Recycling Polymers
5.4.2. Reducing the Transition Effect
6. Perspectives and Research Gaps
7. Conclusions
- The relevance of the transition effect problem in bridge structures and the need for exploring new solutions is still current. The issue of transition zones and the transition effect in bridge engineering is associated with the use of various solutions that lack standardization and have a limited impact on reducing the discussed phenomenon. This topic has been known for quite some time. With the development of transportation, increasing cargo tonnages, and rising speeds, research in this area becomes necessary. The proposed solution related to integral bridges, allowing for the avoidance of expansion joints and bearings, which positively impacts durability and maintenance costs. Transition slabs often do not completely eliminate this and may cause damage.
- The ever-growing volume of waste poses challenges to humanity. Seeking multi-faceted solutions contributing to the common good is the essence of engineers’ and scientists’ efforts. There is the possibility of using substitute materials that are appropriately processed and shaped, which might find application in bridge engineering, representing a cheaper and more ecological alternative to traditional solutions.
- There is an opportunity to propose solutions involving the use of processed waste in the construction of transition zones connecting abutments to embankments, where materials made from waste can fulfill their function and contribute to reducing environmental pollution. The potential of recycling in construction and the use of composite materials based on recyclables reinforced with fibers in bridge engineering can contribute to waste reduction and the sustainable utilization of recycled materials. However, it is crucial to emphasize that polymers, including reinforced polymers, especially those made from recyclables, are not widely used in bridge construction, and their impact on reducing the transition effect has not been thoroughly explored.
- PET (polyethylene terephthalate) has the best strength properties among waste plastics and exhibits good opportunities for creating composites with fibers. Taking into account the fact that the percentage of recycling of this raw material is still not complete, this creates promising applications, including its use as a building material in bridge structures or even as an element of structures reducing the transition effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Perron, B.E.; Victor, B.G.; Hodge, D.R.; Salas-Wright, C.P.; Vaughn, M.G.; Taylor, R.J. Laying the Foundations for Scientometric Research: A Data Science Approach. Res. Soc. Work Pract. 2017, 27, 802–812. [Google Scholar] [CrossRef]
- Zitt, M.; Bassecoulard, E. Challenges for scientometric indicators: Data demining, knowledge-flow measurements and diversity issues. Ethics Sci. Environ. Polit. 2008, 8, 49–60. [Google Scholar] [CrossRef]
- Singh, V.K.; Banshal, S.K.; Singhal, K.; Uddin, A. Scientometric mapping of research on ‘Big Data’. Scientometrics 2015, 105, 727–741. [Google Scholar] [CrossRef]
- Gile, D. Analyzing Translation studies with scientometric data: From CIRIN to citation analysis. Perspectives 2015, 23, 240–248. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2007, 22, 338–342. [Google Scholar] [CrossRef]
- Vieira, E.S.; Gomes, J.A.N.F. A comparison of Scopus and Web of science for a typical university. Scientometrics 2009, 81, 587–600. [Google Scholar] [CrossRef]
- Scopus|Abstract and Citation Database|Elsevier. Available online: https://www.elsevier.com/products/scopus (accessed on 18 November 2023).
- Web of Science Coverage Details—Resources for Librarians—LibGuides at Clarivate Analytics. Available online: https://clarivate.libguides.com/librarianresources/coverage/ (accessed on 18 November 2023).
- VOSviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com/ (accessed on 18 November 2023).
- Brown, D.J. Bridges: Three Thousand Years of Defying Nature; Firefly Books: Richmond Hill, ON, Canada, 2005; ISBN 1554070996. [Google Scholar]
- Troyano, F.L. Bridge Engineering: A Global Perspective; Thomas Telford Pub: London, UK, 2003; ISBN 9780727732156. [Google Scholar]
- Leonhardt, F. Brücken. Asthetik und Gestaltung; MIT Press: Cambridge, UK, 1984; ISBN 0262121050. [Google Scholar]
- Chen, W.-F.; Duan, L. Bridge Engineering: Substructure Design, 1st ed.; CRC Press: Boca Raton, FL, USA, 2003; ISBN 9780429214318. [Google Scholar]
- Bennett, D. The Creation Of Bridges—From Vision To Reality, The Ultimate Challenge of Architecture, Design And Distance, 1st ed.; Aurum Press Ltd.: London, UK, 1999; ISBN 9781854106513. [Google Scholar]
- Bridge Aesthetics Around the World; Transportation Research Board National Research Council (U.S.): Trenton, NJ, USA, 1991; ISBN 0309050723.
- Arockiasamy, M.; Butrieng, N.; Sivakumar, M. State-of-the-Art of Integral Abutment Bridges: Design and Practice. J. Bridg. Eng. 2004, 9, 497–506. [Google Scholar] [CrossRef]
- Madaj, A.; Wołowicki, W. Podstawy Projektowania Budowli Mostowych, 1st ed.; Furtak, K., Weseli, J., Eds.; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 2008. [Google Scholar]
- Gutkowski, R.M.; Kmita, J. Transportation Infrastructure Environmental Challenges in Poland and Neighboring Countries; Springer: Berlin/Heidelberg, Germany, 1996; Volume 5. [Google Scholar]
- Sołkowski, J. Zarys analizy efektu progowego przy łączeniu nawierzchni podsypkowych z innymi typami nawierzchni. TTS Tech. Transp. Szyn. 2009, 15, 59–65. [Google Scholar]
- Sołkowski, J. Efekt Progowy w Nawierzchniach Szynowych; Kłosek, K., Sowiński, B., Eds.; Wydawnictwo PK: Kraków, Poland, 2013. [Google Scholar]
- Rymsza, J.; Biliszczuk, J.; Onysyk, J.; Toczkiewicz, R. Wytyczne Projektowania Elementów Powiązania Drogowych Obiektów Inżynierskich z Terenem i Drogą. Wzorce i standardy rekomendowane przez Ministra właściwego ds. Transport 2020, 1–73. [Google Scholar]
- Standardy Techniczne—Szczegółowe Warunki Techniczne Dla Modernizacji Lub Budowy Linii Kolejowych 2018–2023; PKP Polskie Linie Kolejowe: Warszawa, Poland, 2018.
- Binder, K. Strefa przejściowa pomiędzy obiektem mostowym a nasypem drogowym. Mosty 2012, 4, 55–57. [Google Scholar]
- Cyunel, B.; Kulczycki, B. Kolejowe Budowle Ziemne: Podręcznik Akademicki. T. 2, Technologia, Organizacja Budowy i Modernizacji; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 1987. [Google Scholar]
- Gwizdała, K. Nowy Eurokod 7 w projektowaniu posadowień obiektów mostowych na palach. Mosty 2022, 3, 28–34. [Google Scholar]
- PN-83/B-02482; Fundamenty Budowlane—Nośność Pali i Fundamentów Palowych. Wydawnictwa Normalizacyjne „Alfa”: Warszawa, Poland, 1983.
- PN-69/B-02482; Fundamenty Budowlane—Nośność Pali i Fundamentów Palowych. Wydawnictwa Normalizacyjne „Alfa”: Warszawa, Poland, 1969.
- Sołkowski, J.; Lisowski, S.; Pawlak-Burakowska, A.; Jamka, M. Zarys metodyki badania sztywności nawierzchni i podtorza w strefach przejściowych do obiektów inżynierskich oraz na obiektach. Zesz. Nauk. Tech. Stowarzyszenia Inżynierów Tech. Komun. Krakowie 2012, 3, 285–309. [Google Scholar]
- Sołkowski, J.; Kudła, D. Analiza niejednorodności mechanicznych nawierzchni i podtorza w obrębie obiektu mostowego. Zesz. Nauk. Tech. Stowarzyszenia Inżynierów Tech. Komun. Krakowie 2016, 2, 165–175. [Google Scholar]
- Skrzyński, E. Podtorze na liniach kolejowych dużych prędkości. Probl. Kolejnictwa 2013, 161, 87–124. [Google Scholar]
- Sasaoka, D. Track Transition Designs for Heavy-Axle-Load Service. Railw. Track Struct. 2006, 102, 15–18. [Google Scholar]
- Sañudo, R.; Dell’Olio, L.; Casado, J.A.; Carrascal, I.A.; Diego, S. Track transitions in railways: A review. Constr. Build. Mater. 2016, 112, 140–157. [Google Scholar] [CrossRef]
- Niemierko, A.; Sołkowski, J. Wzmacnianie stref przejściowych na dojazdach do mostów kolejowych. Arch. Inst. Inżynierii Lądowej 2012, 14, 173–183. [Google Scholar]
- Kłosiński, B.; Niemierko, A. ERRI D 230.1/RP 3. Bridge Ends; Embankment Structure Transition; State of the Art Report: Utrecht, The Netherlands, 1999. [Google Scholar]
- Kerr, A.D.; Moroney, B.E. Track transition problems and remedies. Bulletin 1993, 94, 267–298. [Google Scholar]
- Jaup, A.; Kempfert, H.-G. Setzungen in Hinterfüllungsbereich von Eisenbahn-brückenwiederlagern. Bautechnik 2001, 9, 635–640. [Google Scholar] [CrossRef]
- Indraratna, B.; Babar Sajjad, M.; Ngo, T.; Gomes Correia, A.; Kelly, R. Improved performance of ballasted tracks at transition zones: A review of experimental and modelling approaches. Transp. Geotech. 2019, 21, 100260. [Google Scholar] [CrossRef]
- Hunt, H.E.M. Winkler Settlement of railway track near bridge abutment. Proc. Inst. Civ. Eng. Transp. 1996, 123, 68–73. [Google Scholar] [CrossRef]
- Skrzyński, E. Osiadania podtorza gruntowego. Pr. Inst. Kolejnictwa 2019, 161, 28–43. [Google Scholar]
- Bień, J. Uszkodzenia i Diagnostyka Obiektów Mostowych, 1st ed.; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 2010; ISBN 978-83-206-1791-7. [Google Scholar]
- Hebda, M. Materiały Dydaktyczne—Utrzymanie i Remonty Mostów; Katedra Konstrukcji Mostowych, Metalowych i Drewnianych; Wydział Inżynierii Lądowej; Politechnika Krakowska: Kraków, Poland, 2020. [Google Scholar]
- Zauda Coelho, B.E. Dynamics of Railway Transition Zones in Soft Soils. Master’s Thesis, University of Porto Portugal, Porto, Portugal, 2011. [Google Scholar] [CrossRef]
- Bukowski, M.; Łysiak, P.; Oleszek, R.; Trochymiak, W. Przyczyny powstania uskoku pomiędzy wiaduktem a nasypem na trasie Siekierkowskiej. Arch. Inst. Inżynierii Lądowej 2017, 24, 39–58. [Google Scholar] [CrossRef]
- Wang, H.; Chang, L.; Markine, V. Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data. Sensors 2018, 18, 413. [Google Scholar] [CrossRef]
- Sołkowski, J.; Kudła, D. Wykonawstwo stref przejściowych do obiektów mostowych i aspekty modelowania numerycznego oddziaływania. Zesz. Nauk. Tech. Stowarzyszenia Inżynierów Tech. Komun. Krakowie 2013, 2, 275–289. [Google Scholar]
- Sołkowski, J.; Jamka, M. Deformacje nawierzchni i podtorza przy obiektach mostowych—Badania i diagnostyka. Przegląd Komun. 2016, 4, 39–47. [Google Scholar]
- Nicks, J.E. The Bump at the End of the Railway Bridge. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2009. [Google Scholar]
- Krupka, J.; Sobala, D. Stan Techniczny Mostów Zintegrowanych na Przykładzie Wybranych Obiektów w Polsce; Praca Magisterska, Politechnika Rzeszowska: Rzeszów, Poland, 2007; pp. 1–73. [Google Scholar]
- Germaniuk, K. Uszkodzenia nawierzchni na mostach i w strefie połączenia drogi z mostem. Mater. Bud. 2017, 4, 82–85. [Google Scholar] [CrossRef]
- Dreier, D.; Burdet, O.; Muttoni, A. Transition slabs of integral abutment bridges. Struct. Eng. Int. 2011, 21, 144–150. [Google Scholar] [CrossRef]
- Bukowski, M.; Łysiak, P.; Oleszek, R.; Trochymiak, W. Modeling and analysis of ground settlement between a flyover and reinforced soil embankment. Arch. Civ. Eng. 2018, 64, 77–100. [Google Scholar] [CrossRef]
- Asghari, K.; Sotoudeh, S.; Zakeri, J.A. Numerical evaluation of approach slab influence on transition zone behavior in high-speed railway track. Transp. Geotech. 2021, 28, 100519. [Google Scholar] [CrossRef]
- Dahlberg, T.; Larsson, R. Influence of railway track stiffness variations on wheel/rail contact force. In Proceedings of the Tracks for High-Speed Railways; Faculty of Engineering, University of Porto: Porto, Portugal, 2006; p. 67. [Google Scholar]
- Li, D.; Davis, D. Transition of Railroad Bridge Approaches. J. Geotech. Geoenvironmental Eng. 2005, 131, 1392–1398. [Google Scholar] [CrossRef]
- Esveld, C. Modern Railway Track, 2nd ed.; Delft University of Technology: Delft, The Netherlands, 2017; ISBN 90-800324-3-3. [Google Scholar]
- Banimahd, M.; Woodward, P.K.; Kennedy, J.; Medero, G.M. Behaviour of train–track interaction in stiffness transitions. Proc. Inst. Civ. Eng. Transp. 2012, 165, 205–214. [Google Scholar] [CrossRef]
- Sañudo, R.; Jardí, I.; Martínez, J.C.; Sánchez, F.J.; Miranda, M.; Alonso, B.; Dell’olio, L.; Moura, J.L. Monitoring Track Transition Zones in Railways. Sensors 2022, 22, 76. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Burrow, M.P.N.; Chan, A.H.; Wang, Y.J. Measurements and simulation of the dynamic responses of a bridge–embankment transition zone below a heavy haul railway line. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2012, 227, 254–268. [Google Scholar] [CrossRef]
- Chen, C.; McDowell, G.R. An investigation of the dynamic behaviour of track transition zones using discrete element modelling. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2014, 230, 117–128. [Google Scholar] [CrossRef]
- Çati, Y.; Gökçeli, S.; Anil, Ö.; Korkmaz, C.S. Experimental and numerical investigation of usp for optimization of transition zone of railway. Eng. Struct. 2020, 209, 109971. [Google Scholar] [CrossRef]
- Horvath, J.S. Integral-Abutment Bridges: Problems and Innovative Solutions Using EPS Geofoam and Other Geosynthetics; Manhattan College: New York, NY, USA, 2000. [Google Scholar]
- Furtak, K.; Wrana, B. Mosty Zintegrowane, 1st ed.; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 2005; ISBN 83-206-1550-X. [Google Scholar]
- Pisarczyk, S.J. Geoinżynieria: Metody Modyfikacji Podłoża Gruntowego; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2005; ISBN 8372075530. [Google Scholar]
- Łęcki, P.; Różański, M. Wzmacnianie podłoża gruntowego budowli drogowych. Nowocz. Bud. Inżynieryjne 2015, 2, 46–54. [Google Scholar]
- Esmaeili, M.; Gharouni Nik, M.; Khayyer, F. Static and Dynamic Analyses of Micropiles to Reinforce the High Railway Embankments on Loose Beds. J. Rehabil. Civ. Eng. 2013, 1, 80–89. [Google Scholar]
- Duszyńska, A. Zbrojenie Geosyntetyczne Podstawy Nasypu, 1st ed.; Ślączka, W., Ed.; Politechnika Gdańska: Gdańsk, Poland, 2016; p. 106. [Google Scholar]
- Gajewska, B.; Kłosiński, B.; Rychlewski, P.; Grzegorzewicz, K.; Kraszewski, C. Zastosowanie Geosyntetyków w Budowlach Ziemnych; Studium Poznawczo-Techniczne: Warszawa, Poland, 2003. [Google Scholar]
- Ajdukiewicz, J. Strome nasypy drogowe zbrojone geosyntetykami efektem wysokospecjalizowanych prac inżynierskich. Proc. Zesz. Nauk. Bud. Politech. Śląska; Politech. Śląska 2003, 97, 371–386. [Google Scholar]
- Grulkowski, S.; Kędra, Z.; Nowakowski, M.J.; Koc, W. Drogi Szynowe; Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 2013; ISBN 978-83-7348-511-2. [Google Scholar]
- Bednarek, W. Statyczna analiza wybranych imperfekcji podłoża szynowego na dodatkowe ugięcia szyny bezstykowego toru kolejowego. Przegląd Komun. 2016, 11, 20–26. [Google Scholar]
- Kłosek, K.; Sołkowski, J.; Tondera, M. Ocena nośności i stateczności podtorza zgodnie z wymaganiami krajowymi oraz EUROKODU PN-EN 1991:21. Zesz. Nauk. Tech. Stowarzyszenia Inżynierów Tech. Komun. Krakowie 2019, 2, 93–107. [Google Scholar]
- Rychlewski, P. Przemieszczenia Fundamentów Obiektów Inżynierskich; Inżynier Budownictwa: Warszawa, Poland, 2017. [Google Scholar]
- Waniek, G.; Kwiecień, S. Analiza współpracy przyczółka mostowego z nasypem drogowym posadowionym na podłożu gruntowym o małej sztywności. Drogownictwo 2015, 9, 302–305. [Google Scholar]
- Kłosiński, B. Przemieszczenia poziome przyczółków mostowych. Mosty 2012, 2, 32–37. [Google Scholar]
- England, G.L.; Tsang, N.C.M.; Bush, D.I. Integral Bridges: A Fundamental Approach to the Time–Temperature Loading Problem; Emerald Publishing Limited: London, UK, 2000. [Google Scholar]
- Madaj, A.; Wołowicki, W. Budowa i Utrzymanie Mostów, 3rd ed.; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 2007; ISBN 978-83-206-1419-0. [Google Scholar]
- Niemierko, A.; Mieczkowski, P.; Gruszczyński, M.; Krasiński, A. Budownictwo Mostowe Vademecum, 2015 Ed; Dębińska, A., Małek, A., Bień, P., Mioduszewska, J., Eds.; Wydawnictwo Polskiej Izby Inżynierów Budownictwa Sp. z o.o.: Warszawa, Poland, 2015; ISBN 2353-5261. [Google Scholar]
- Musiał, T. Obiekty Mostowe z Przyczółkami Zintegrowanymi; Inżynier Budownictwa, 2012. Available online: https://inzynierbudownictwa.pl/obiekty-mostowe-z-przyczolkami-zintegrowanymi-cz-i/ (accessed on 3 November 2022).
- Steffen, M.; Chongjie, K. Nowa generacja mostów zintegrowanych na liniach kolei dużych prędkości. Inżynieria Bud. 2019, 75, 514–518. [Google Scholar]
- Copija, M.; Arkadiusz, M. Mosty zintegrowane. Mater. Bud. 2008, 4, 81–83. [Google Scholar]
- Copija, M.; Madaj, A. Doświadczenia z projektowania i eksploatacji mostów zintegrowanych. Mater. Bud. 2010, 4, 50–53. [Google Scholar]
- Arsoy, S.; Barker, R.M.; Duncan, J.M. The Behavior of Integral Abutment Bridge; Virginia Polytechnic and State University: Blacksburg, VA, USA, 1999. [Google Scholar]
- Burke, J.M.P. Integral and Semi-Integral Bridges, 1st ed.; Wiley-Blackwell: Chichester, UK, 2009; ISBN 9781405194181. [Google Scholar]
- Burke, J.M.P. Integral Bridges; Transportation Research Record; National Research Council: Washington, DC, USA, 1990; pp. 53–61. [Google Scholar]
- Dicleli, M. Integral Bridges. In Innovative Bridge Design Handbook; Pipinato, A., Ed.; Butterworth-Heinemann: Oxford, UK, 2016; pp. 1–34. [Google Scholar]
- Mitoulis, S.A. Challenges and opportunities for the application of integral abutment bridges in earthquake-prone areas: A review. Soil Dyn. Earthq. Eng. 2020, 135, 106183. [Google Scholar] [CrossRef]
- Mitoulis, S.A.; Argyroudis, S.; Kowalsky, M. Evaluation of the stiffness and damping of abutments to extend direct displacement-based design to the design of integral bridges. In Proceedings of the COMPDYN 2015—5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete Heraklion, Greece, 25–27 May 2015; pp. 1767–1779. [Google Scholar]
- Naji, M.; Firoozi, A.A.; Firoozi, A.A. A review: Study of integral abutment bridge with consideration of soil-structure interaction. Lat. Am. J. Solids Struct. 2020, 17, e252. [Google Scholar] [CrossRef]
- Fiorentino, G.; Cengiz, C.; De Luca, F.; Mylonakis, G.; Karamitros, D.; Dietz, M.; Dihoru, L.; Lavorato, D.; Briseghella, B.; Isakovic, T.; et al. Integral abutment bridges: Investigation of seismic soil-structure interaction effects by shaking table testing. Earthq. Eng. Struct. Dyn. 2020, 50, 1517–1538. [Google Scholar] [CrossRef]
- Marchi, A.; Franchin, P. A pushover method for seismic design of Integral Abutment Bridges. In Proceedings of the 14th Fib PhD Symposium in Civil Engineering, Rome, Italy, 5–7 September 2022; pp. 449–457. [Google Scholar]
- Liu, X. Seismic Pushover Analysis of Steel Integral Abutment Bridge; Fu, C.C., Ed.; ProQuest: College Park, MD, USA, 2018. [Google Scholar]
- Kozak, D.L.; Fahnestock, L.A.; LaFave, J.M. Seismic Behavior and Design of Integral Abutment Bridges in Southern Illinois; University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2018. [Google Scholar]
- Shigeishi, M.; Colombo, S.; Broughton, K.J.; Rutledge, H.; Batchelor, A.J.; Forde, M.C. Acoustic emission to assess and monitor the integrity of bridges. Constr. Build. Mater. 2001, 15, 35–49. [Google Scholar] [CrossRef]
- Jarosz, J. The effect of braking forces on displacement of integral bridges. Bud. Archit. 2013, 12, 023–030. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Calçada, R.; Delgado, R. Dynamic effects induced by abrupt changes in track stiffness in high speed railway lines. In Proceedings of the Applications of Computational Mechanics in Geotechnical Engineering—5th International Workshop on Applications of Computational Mechanics in Geotechnical Engineering, Guimaraes, Portugal, 1–4 April 2007; Sousa, L.R., Fernandes, M.M., Vargas, E.J., Azevedo, R., Eds.; CRC Press Taylor & Francis Group: Guimaraes, Portugal, 2007; pp. 473–483, ISBN 9780415437899. [Google Scholar]
- Jarosz, J. Doświadczalna weryfikacja modelu obliczeniowego zintegrowanego obiektu mostowego. Bud. Archit. 2014, 13, 103–110. [Google Scholar] [CrossRef]
- Eisenmann, J. Dűrchfűrung von Dauerschwellversuchen An Einer Űbergangkonstruktion; Technische UniversitatMűnchen: Bavaria, Germany, 1990. [Google Scholar]
- Diaz, A. La Construcción de Terraplenes y Desmontes; Fundación de los Ferrocarriles Españoles: São Paulo, Brazil, 1993. [Google Scholar]
- Davis, D.; Plotkin, D. Track Settlement at Bridge Approaches. Railw. Track Struct. 2009, 105, 33–38. [Google Scholar]
- Davis, D.D.; Otter, D.; Li, D.; Singh, S. Bridge approach performance in revenue service. Railw. Track Struct. 2003, 99, 18–20. [Google Scholar]
- Česká Agentura Pro Standardizaci. Příloha 24. In ČD S4 Železnični Spodek—Přechodtělesażelezničního Spodku Na Mostníobjekty; Standardizační Nakladatelství: Praha, Czech Republic, 1998. [Google Scholar]
- Sakhare, A.; Farooq, H.; Nimbalkar, S.; Dodagoudar, G.R. Dynamic behavior of the transition zone of an integral abutment bridge. Sustainability 2022, 14, 4118. [Google Scholar] [CrossRef]
- Fröhling, R.D.; Scheffel, H.; Ebersöhn, W. The Vertical Dynamic Response of a Rail Vehicle caused by Track Stiffness Variations along the Track. Veh. Syst. Dyn. 1996, 25, 175–187. [Google Scholar] [CrossRef]
- Sakhare, A.; Punetha, P.; Meena, N.K.; Nimbalkar, S.; Dodagoudar, G.R. Dynamic behavior of integral abutment bridge transition under moving train loads. Transp. Geotech. 2023, 40, 100989. [Google Scholar] [CrossRef]
- Connolly, D.P.; Kouroussis, G.; Woodward, P.K.; Alves Costa, P.; Verlinden, O.; Forde, M.C. Field testing and analysis of high speed rail vibrations. Soil Dyn. Earthq. Eng. 2014, 67, 102–118. [Google Scholar] [CrossRef]
- Connolly, D.P.; Kouroussis, G.; Fan, W.; Percival, M.; Giannopoulos, A.; Woodward, P.K.; Verlinden, O.; Forde, M.C. An experimental analysis of embankment vibrations due to high speed rail. In Proceedings of the 12th International Railway Engineering Conference (Railway Engineering 2013), London, UK, 10–11 July 2013. [Google Scholar]
- Kouroussis, G.; Connolly, D.P.; Forde, M.C.; Verlinden, O. An experimental study of embankment conditions on high-speed railway ground vibrations. In Proceedings of the 20th International Congress on Sound and Vibration (ICSV20), Bangkok, Thailand, 7–11 July 2013. [Google Scholar]
- Connolly, D.P.; Giannopoulos, A.; Forde, M.C. Numerical modelling of ground borne vibrations from high speed rail lines on embankments. Soil Dyn. Earthq. Eng. 2013, 46, 13–19. [Google Scholar] [CrossRef]
- Idczak, W.; Lewandrowski, T.; Pokropski, D.; Rudnicki, T.; Trzmiel, J. Dynamic Impact of a Rail Vehicle on a Rail Infrastructure with Particular Focus on the Phenomenon of Threshold Effect. Energies 2022, 15, 2119. [Google Scholar] [CrossRef]
- Nabochenko, O.; Sysyn, M.; Gerber, U.; Krumnow, N. Analysis of Track Bending Stiffness and Loading Distribution Effect in Rail Support by Application of Bending Reinforcement Methods. Urban Rail Transit 2023, 9, 73–91. [Google Scholar] [CrossRef]
- Shang, Y.; Nogal, M.; Teixeira, R.; Wolfert, A.R.; Rogier, M. Optimal design of rail level crossings and associated transition zones using adaptive surrogate-assisted optimization. Eng. Struct. 2023, 282, 115740. [Google Scholar] [CrossRef]
- What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2020.
- Statistical Data 2021 Luxembourg; Eurostat European Statistical Office: Luxembourg, 2021.
- Statistical Data 2022; UNESCO: Paris, France, 2022.
- Statistical Data 2021; Główny Urząd Satystyczny Rzeczypospolitej Polskiej: Warszawa, Poland, 2021.
- Pathways to A Circular, Climate Neutral Plastics System in Europe; Reshaping Plastics; Plastic Europe, 2022. Available online: https://plasticseurope.org/pl/wp-content/uploads/sites/7/2023/04/Tworzywa-Fakty-2022.pdf (accessed on 1 November 2022).
- Company Research Data; Conversio Market & Strategy GmbH: Mainaschaff, Germany, 2022.
- Branża Tworzyw Sztucznych 2022; Raport Fundacji—PlasticsEurope Polska, Polish Circular Forum, Warszawa, Poland. 2022. Available online: https://plasticseurope.org/pl/knowledge-hub/branza-tworzyw-sztucznych-2022/ (accessed on 1 November 2022).
- Statistical Data 2022; Plastic Europe: Brussels, Belgium, 2022.
- Hamad, K.; Kaseem, M.; Deri, F. Recycling of waste from polymer materials: An overview of the recent works. Polym. Degrad. Stab. 2013, 98, 2801–2812. [Google Scholar] [CrossRef]
- Tworzywa w Obiegu Zamkniętym—Analiza Sytuacji w Europie; Plastics Europe: Brussels, Belgium, 2021.
- Deshmukh, K.; Kovářík, T.; Muzaffar, A.; Basheer Ahamed, M.; Khadheer Pasha, S.K. Mechanical analysis of polymers. In Polymer Science and Innovative Applications: Materials, Techniques, and Future Developments; Elsevier: Amsterdam, The Netherlands, 2020; pp. 117–152. ISBN 9780128168080. [Google Scholar]
- Gościański, M. Struktura i właściwości fizykomechaniczne mieszaniny odpadowych polimerów PA6 +PP—Aspekt ekologiczny i aplikacyjny. J. Res. Appl. Agric. Eng. 2002, 47, 25–30. [Google Scholar]
- Grzesiczak, D.; Postawa, P. Właściwości mechaniczne i termiczne wyprasek po recyklingu odpadów produkcyjnych poduszek powietrznych wykonanych z tworzywa PET. Przetwórstwo Tworzyw 2017, 23, 535–542. [Google Scholar]
- Monnerie, L. Mechanical properties of polymeric materials. In Statistical Models for the Fracture of Disordered Media A Volume in Random Materials and Processes; Herrmann, H.J., Roux, S., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; pp. 66–76. [Google Scholar]
- Ward, I.M.; Sweeney, J. Mechanical Properties of Solid Polymers, 3rd ed.; John Wiley & Sons, Ltd.: Bradford, UK, 2013; ISBN 9781444319507. [Google Scholar]
- Florjańczyk, Z.; Penczek, S. Chemia Polimerów; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2002; ISBN 83-7207-368. [Google Scholar]
- Pielichowski, J.; Puszyński, A. Chemia Polimerów; III; Wydawnictwo Oświatowe FOSZE: Rzeszów, Poland, 2012; ISBN 978-83-7586-068-9. [Google Scholar]
- Stevens, M.P. Polymer Chemistry. An Introduction, 3rd ed.; Oxford University Press: Oxford, UK, 1999; ISBN 9780195124446. [Google Scholar]
- Plastipedia—The Web’s Largest Plastics Encyclopedia. Available online: https://www.bpf.co.uk/plastipedia/Default.aspx#info (accessed on 3 November 2023).
- Blicharski, M. Wstęp Do Inżynierii Materiałowej; Wydawnictwa Naukowo-Techniczne: Warszawa, Poland, 1998; ISBN 8320423015. [Google Scholar]
- Hashmi, M.S.J. Encyclopedia of Materials: Plastics and Polymers; Hashmi, M.S.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-12-823291-0. [Google Scholar]
- Furtak, K.; Śliwiński, J. Materiały Budowlane w Mostownictwie; Wydanie Pi; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 2004; ISBN 83-206-1531-3. [Google Scholar]
- Osiecka, E. Materiały Budowlane: Tworzywa Sztuczne; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2005; ISBN 8372075409. [Google Scholar]
- Eriksen, M.K.; Christiansen, J.D.; Daugaard, A.E.; Astrup, T.F. Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling. Waste Manag. 2019, 96, 75–85. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Plastic Waste and Recycling in the EU: Facts and Figures|News|European Parliament. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20181212STO21610/plastic-waste-and-recycling-in-the-eu-facts-and-figures (accessed on 3 November 2023).
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef]
- Allen, D.; Spoelman, N.; Linsley, C.; Johl, A. The Fraud of Plastic Recycling: How Big Oil and the Plastics Industry Deceived the Public for Decades and Caused the Plastic Waste Crisis; Center for Climate Integrity: Washington, DC, USA, 2024; Available online: https://climateintegrity.org/projects/plastics-fraud (accessed on 1 February 2024).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Feil, A.; Pretz, T.; Jansen, M.; Thoden Van Velzen, E.U. Separate collection of plastic waste, better than technical sorting from municipal solid waste? Waste Manag. Res. 2017, 35, 172–180. [Google Scholar] [CrossRef]
- The Guardian; World Wide Fund for Nature: Gland, Switzerland, 2020.
- Statistical Data 2022; Zero Waste Europe: Brussels, Belgium, 2022.
- Arkenbout, A. Hidden Emissions: A Story from the Netherlands Case Study; Zero Waste Europe: Brussels, Belgium, 2018; pp. 1–11. [Google Scholar]
- Statistical Data 2021; World Bank: Washington, DC, USA, 2021.
- Szkudlarek, Ł. Raport Końcowy—Badanie Ewaluacyjne pn. Recykling Wyeksploatowanych Komponentów Technicznych Odnawialnych źródeł Energii oraz Akumulatorów Pojazdów Elektrycznych jako Element Transformacji w Kierunku Gospodarki o Obiegu Zamkniętym; Wroconsult Sp. z o.o. oraz Ekovert Łukasz Szkudlarek: Wrocław, Poland, 2019. [Google Scholar]
- Drozdowski, W. Łopaty Turbin Wiatrowych Najtrudniejsze do Recyklingu. Available online: https://www.cire.pl/artykuly/opinie/155372-lopaty-turbin-wiatrowych-najtrudniejsze-do-recyklingu (accessed on 30 October 2023).
- Ziegler, L.; Muskulus, M. Lifetime extension of offshore wind monopiles: Assessment process and relevance of fatigue crack inspection. In Proceedings of the 12th EA WE PhD Seminar on Wind Energy in Europe, Lyngby, Denmark, 23 May 2016; pp. 25–27. [Google Scholar]
- Ziegler, L.; Gonzalez, E.; Rubert, T.; Smolka, U.; Melero, J.J. Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK. Renew. Sustain. Energy Rev. 2018, 82, 1261–1271. [Google Scholar] [CrossRef]
- Moc zainstalowana (MW)—Stan na 31.12.2022 r. In Dane Tabelaryczne Dotyczące Poszczególnych Rodzajów Instalacji Odnawialnego Źródła Energii Obejmują Instalacje, Które Uzyskały: Koncesję na Wytwarzanie Energii Elektrycznej; Urząd Regulacji Energetyki: Warszawa, Poland, 2022.
- Wronka, K. Pełny Recykling Łopat Turbin Wiatrowych—Przyszłość Czy Złudna Nadzieja? Available online: https://www.cire.pl/artykuly/brak-kategorii/pelny-recykling-lopat-turbin-wiatrowych---przyszlosc-czy-zludna-nadzieja (accessed on 20 November 2023).
- Albers, H.; Greiner, S.; Seifert, H.; Kuehne, U. Recycling of wind turbine rotor blades. Fact or fiction? DEWI-Magazin 2009, 34, 32–41. [Google Scholar]
- Andersen, P.D.; Borup, M.; Krogh, T. Managing long-term environmental aspects of wind turbines: A prospective case study. Int. J. Technol. Policy Manag. 2007, 7, 339–354. [Google Scholar] [CrossRef]
- Liu, P.; Barlow, C.Y. Wind turbine blade waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef]
- Liu, P.; Meng, F.; Barlow, C.Y. Wind turbine blade end-of-life options: An eco-audit comparison. J. Clean. Prod. 2018, 212, 1268–1281. [Google Scholar] [CrossRef]
- Lefeuvre, A.; Garnier, S.; Jacquemin, L.; Pillain, B.; Sonnemann, G. Anticipating in-use stocks of carbon fibre reinforced polymers and related waste generated by the wind power sector until 2050. Resour. Conserv. Recycl. 2019, 141, 30–39. [Google Scholar] [CrossRef]
- WindEurope|Wind Energy in Europe 2020 Statistics and the Outlook for 2021–2025. Available online: https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2020-statistics-and-the-outlook-for-2021-2025/ (accessed on 18 January 2023).
- Forde, M.C. Sonic and Radar Impulse Non-Destructive Testing of Railroad Bridges. In Transportation Infrastructure; Springer: Berlin/Heidelberg, Germany, 1996; pp. 405–412. [Google Scholar]
- Forde, M.C. Non-destructive evaluation of bridges: Research in progress. Proc. US Eur. Bridg. Eng. Work. Tech. Univ. Catalonia Barcelona 1996, 26, 127–152. [Google Scholar]
- Nadja, H. Non-Destructive Testing of Concrete Bridges. Master’s Thesis, Luleå University of Technology, Luleå, Sweden, 2020; pp. 1–117. [Google Scholar]
- Zobel, H.; Karwowski, W.; Sarnowska, J.; Wróbel, M. Nowa generacja mostów—Cz. I, Mosty z kompozytów polimerowych. Mag. Autostrady 2004, 4, 16–19. [Google Scholar]
- Szruba, M. Kompozyty w budownictwie. Nowocz. Bud. Inżynieryjne 2020, 4, 73–77. [Google Scholar]
- Zobel, H.; Karwowski, W. Kompozyty polimerowe w mostownictwie: Pomosty wielowarstwowe. Geoinżynieria Drog. Most. tunele 2006, 2, 42–49. [Google Scholar]
- Szelka, J.; Kamyk, Z. Kompozytowe mosty wojskowe. Bud. Archit. 2013, 12, 63–70. [Google Scholar] [CrossRef]
- Sobczyk, B.; Pyrzowski, Ł.; Chróścielewski, J.; Miśkiewicz, M. Mosty kompozytowe—Pieśń przyszłości czy teraźniejszość? Mosty 2022, 4, 31–35. [Google Scholar]
- Keller, T. Use of Fibre Reinforced Polymers in Bridge Construction; International Association for Bridge and Structural Engineering (IABSE): Zurich, Switzerland, 2003. [Google Scholar]
- Górski, M.; Kotala, B.; Bialozor, R. Rodzaje i właściwości zbrojenia niemetalicznego. In Proceedings of the XXXIII Warsztaty Pracy Projektanta Konstrukcji, Szczyrk, Poland, 6–9 March 2018. [Google Scholar]
- Tamošaitienė, J.; Parham, S.; Sarvari, H.; Chan, D.W.M.; Edwards, D.J. A Review of the Application of Synthetic and Natural Polymers as Construction and Building Materials for Achieving Sustainable Construction. Buildings 2024, 14, 2569. [Google Scholar] [CrossRef]
- Pimentel Real, L.E. Recycled Materials for Construction Applications: Plastic Products and Composites; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; ISBN 9783031148729. [Google Scholar]
- Lamba, P.; Kaur, D.P.; Raj, S.; Sorout, J. Recycling/reuse of plastic waste as construction material for sustainable development: A review. Environ. Sci. Pollut. Res. 2022, 29, 86156–86179. [Google Scholar] [CrossRef]
- Ornaghi, H.L.; Bolner, A.S.; Fiorio, R.; Zattera, A.J.; Amico, S.C. Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J. Appl. Polym. Sci. 2010, 118, 887–896. [Google Scholar] [CrossRef]
- Ratna, D. Recent Advances and Applications of Thermoset Resins, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 9780323856645. [Google Scholar]
- Sukanto, H.; Raharjo, W.W.; Ariawan, D.; Triyono, J.; Kaavesina, M. Epoxy resins thermosetting for mechanical engineering. Open Eng. 2021, 11, 797–814. [Google Scholar] [CrossRef]
- Kopecky, L.; Machovic, V.; Králík, V.; Bittnar, Z.; Andertová, J.; Šmilauer, V.; Lhotka, M. Surface modification of PET fibers to improve mechanical properties of cement. In Proceedings of the 33rd International Conference on Cement Microscopy, San Francisco, CA, USA, 17–20 April 2011; pp. 355–371. [Google Scholar]
- Primachenko, B.M. Effect of Initial Materials and Uncertainty of Production Technology on the Structure and Mechanical Properties of a Thermosetting Polymer. Fibre Chem. 2023, 55, 106–112. [Google Scholar] [CrossRef]
- Malek, A. Thermosetting polymer composites: Manufacturing and properties study. Rev. Adv. Mater. Sci. 2023, 62, 20230126. [Google Scholar] [CrossRef]
- Vaidya, U.K.; Britt, F. Structural Applications Of Reinforced Thermoplastics. In Proceedings of the International Corrosion Conference Series 2007 CORROSION 2007, Nashville, TN, USA, 11–15 March 2007; OnePetro: Nashville, TN, USA, 2007; pp. 075461–075468. [Google Scholar]
- Moniruzzaman, M.; Christogianni, P.; Kister, G. Self-Healing in Epoxy Thermoset Polymer Films Triggered by UV Light. Procedia Eng. 2016, 148, 114–121. [Google Scholar] [CrossRef]
- Jankowiak, I. Materiały Kompozytowe w Budownictwie Mostowym; Inżynier Budownictwa: 2012. Available online: https://inzynierbudownictwa.pl/materialy-kompozytowe-w-budownictwie-mostowym/ (accessed on 11 March 2024).
- Siwowski, T. Wzmacnianie Mostów Materiałami Kompozytowymi; Izbudujemy.pl, 2016. Available online: https://www.izbudujemy.pl/artykuly/564/Wzmacnianie-mostow-materialami-kompozytowymi (accessed on 11 March 2024).
- Meier, U. Strengthening of structures using carbon fibre/epoxy composites. Constr. Build. Mater. 1995, 9, 341–351. [Google Scholar] [CrossRef]
- Meier, U.; Kotynia, R.; Walendziak, R. Badania Zmęczeniowe Żelbetowych Płyt Wzmocnionych Naprężonymi Taśmami CFRP. In Problemy Naukowo-badawcze Budownictwa; T.2 Konstrukcje Budowlane i Inżynierskie—Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN i Komitetu Nauki PZITB; Bronowicz, M., Prusiel, J.A., Eds.; Wydawnictwo Politechniki Białostockiej: Białystok, Poland, 2007; pp. 141–148. [Google Scholar]
- Łagoda, M. Wzmacnianie Konstrukcji Mostowych Kompozytami Wstępnie Sprężonymi; Nowocz. Bud. Inżynieryjne: Kraków, Poland, 2012; pp. 52–55. [Google Scholar]
- Łagoda, M. Wzmacnianie mostów przy pomocy materiałów kompozytowych, realizacje i założenia do zaleceń stosowania. In Proceedings of the Zeszyt Pokonferencyjny—Konferencja Naukowo-Techniczna Materiały Kompozytowe w Budownictwie mostowym”, Łódź, Poland, 18 December 2000. [Google Scholar]
- Kamiński, M.; Wydra, W. Wzmacnianie konstrukcji żelbetowych za pomocą włókien węglowych z uwzględnieniem wymagań ochrony przeciwpożarowej. In Proceedings of the XIII Ogólnopolska Konferencja „Warsztaty Pracy Projektanta Konstrukcji” 1998, Ustroń, Poland, 22 April 1998; pp. 87–98. [Google Scholar]
- Radomski, W.; Trochymiak, W. Przegląd wspsółczesnych metod wzmacniania mostów betonowych. In Proceedings of the VIII Seminarium Współczesne Metody Wzmacniania i Przebudowy Mostów, Poznań, Poland, 9–10 July 1998; Volume 8, p. 174. [Google Scholar]
- Wołowicki, W. Projekt wykonawczy wzmocnienia mostu przez rzekę Wartę w Śremie; PO.MOST ARS Sp. z o.o.: Poznań, Poland, 1997. [Google Scholar]
- Siwowski, T.; Radomski, W. Pierwsze krajowe zastosowanie taśm kompozytowych do wzmocnienia mostu. Inżynieria Bud. 1998, 54, 382–388. [Google Scholar]
- Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures; American Concrete Institute: Washington, DC, USA, 2008.
- Jankowiak, I. Efektywność Wzmacniania Materiałami Kompozytowymi Żelbetowych Belek Mostowych. Doctoral Thesis, Politechnika Poznańska, Poznań, Poland, 2010. [Google Scholar]
- Cheng, Z.; Li, S.; Lu, Y.; Li, W.; Liu, Z. Dynamic compressive properties of lightweight engineered geopolymer composites containing ceramsite (LW-EGC). Constr. Build. Mater. 2023, 370, 130717. [Google Scholar] [CrossRef]
- Gallegos-Calderón, C.; Oliva-Quecedo, J.; Pulido, M.D.G.; Goicolea, J.M. Influence of the Properties of a Glass Fiber Reinforced Polymer Deck on the Dynamic Response of a Road Bridge. Rev. Politec. 2023, 52, 73–82. [Google Scholar] [CrossRef]
- Dai, L.; Zhu, Z.; Zhang, C.; Zhu, D. Experimental study on the influence of glass fiber reinforced concrete isolation layer on the seismic dynamic response of tunnels. Case Stud. Constr. Mater. 2023, 19, e02303. [Google Scholar] [CrossRef]
- Mincigrucci, L.; Civera, M.; Lenticchia, E.; Ceravolo, R.; Rosano, M.; Russo, S. Comparative Structural Analysis of GFRP, Reinforced Concrete, and Steel Frames under Seismic Loads. Materials 2023, 16, 4908. [Google Scholar] [CrossRef]
- Qureshi, J. A Review of Fibre Reinforced Polymer Bridges. Fibers 2023, 11, 40. [Google Scholar] [CrossRef]
- Russell, J.M.; Wei, X.; Živanović, S.; Kruger, C. Vibration serviceability of a GFRP railway crossing due to pedestrians and train excitation. Eng. Struct. 2020, 219, 110756. [Google Scholar] [CrossRef]
- Mayer, P.; Kaczmar, J. Właściwości i zastosowania włókien węglowych i szklanych. Tworzywa Sztuczne Chem. 2008, 6, 52–56. [Google Scholar]
- Mossakowski, P. Pręty z kompozytów polimerowych z włóknami do zbrojenia betonowych konstrukcji inżynierskich. Drog. Most. 2006, 1, 35–52. [Google Scholar]
- Kráčalík, M.; Pospíšil, L.; Šlouf, M.; Mikešová, J.; Sikora, A.; Šimoník, J.; Fortelný, I. Recycled poly(ethylene terephthalate) reinforced with basalt fibres: Rheology, structure, and utility properties. Polym. Compos. 2008, 29, 437–442. [Google Scholar] [CrossRef]
- Katalagarianakis, A.; Van de Voorde, B.; Pien, N.; Polyzos, E.; Duretek, I.; Holzer, C.; Cardon, L.; Bernaerts, K.V.; Van Hemelrijck, D.; Van Vlierberghe, S.; et al. The effect of carbon fiber content on physico-mechanical properties of recycled poly(ethylene terephthalate) composites additively manufactured with fused filament fabrication. Addit. Manuf. 2022, 60, 103246. [Google Scholar] [CrossRef]
- Liang, Z.; Zhuang, W.; Lin, C.; Liang, F.; Fan, X.; Zhu, Y.; Li, Q.; Li, C.; He, J. Glass fiber network reinforced polyethylene terephthalate composites for support insulators. J. Phys. D Appl. Phys. 2023, 56, 415501. [Google Scholar] [CrossRef]
- Giraldi, A.L.F.D.M.; Bartoli, J.R.; Velasco, J.I.; Mei, L.H.I. Glass fibre recycled poly (ethylene terephthalate) composites: Mechanical and thermal properties. Polym. Test. 2005, 24, 507–512. [Google Scholar] [CrossRef]
- Monti, M.; Scrivani, M.T.; Kociolek, I.; Larsen, Å.G.; Olafsen, K.; Lambertini, V. Enhanced Impact Strength of Recycled PET/Glass Fiber Composites. Polymers 2021, 13, 1471. [Google Scholar] [CrossRef]
- Mondadori, N.M.L.; Nunes, R.C.R.; Canto, L.B.; Zattera, A.J. Composites of Recycled PET Reinforced with Short Glass Fiber. J. Thermoplast. Compos. Mater. 2012, 25, 747–764. [Google Scholar] [CrossRef]
- Worku, B.G.; Alemneh Wubieneh, T. Composite material from waste poly (ethylene terephthalate) reinforced with glass fiber and waste window glass filler. Green Chem. Lett. Rev. 2023, 16, 2169081. [Google Scholar] [CrossRef]
- Amalraj, E.F.P.; Ilangovan, P. Experimental Behavior of High-Strength Concrete Reinforced with Aramid Fiber and Polyurethane Resin. Buildings 2023, 13, 1713. [Google Scholar] [CrossRef]
- Koerner, R.M. Design with Geosythetics, 2nd ed.; PreNTICe Hall: Hoboken, NJ, USA, 1994. [Google Scholar]
- Wesołowski, A.; Krzywosz, Z.; Brandyk, T. Geosyntetyki w Konstrukcjach Inżynierskich; Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego: Warszawa, Poland, 2000. [Google Scholar]
- Wysokiński, L.; Kotlicki, W. Projektowanie Konstrukcji Oporowych, Stromych Skarp i Nasypów z Gruntu Zbrojonego Geosyntetykami; Instytut Techniki Budowlanej: Warszawa, Poland, 2008; pp. 1–51. [Google Scholar]
- Holtz, R.D. Geosynthetics for Soil Reinforcement. Struct. Infrastruct. Eng. 2009, 1–19. [Google Scholar]
- Holtz, R.D.; Christopher, B.R.; Berg, R.R. Geosynthetic Engineering; BiTech Publishers: Richmond, BC, Canada, 1997; ISBN 0921095201. [Google Scholar]
- Jewell, R.A. Soil Reinforcement with Geotextiles; Construction Industry Research and Information Association: London, UK, 1996; ISBN 978-0-86017-425-7. [Google Scholar]
- Kawalec, J. Stabilizacja Podłoża z Wykorzystaniem Georusztów; ImiG: Philadelphia, PA, USA, 2010; Volume 4. [Google Scholar]
- Mieczkowski, P. Hydroizolacja Płyt Pomostów Na Obiektach Mostowych. Available online: https://www.izbudujemy.pl/artykuly/300/Hydroizolacja-plyt-pomostow-na-obiektach-mostowych (accessed on 12 March 2024).
- Bichajło, L.; Siwowski, T. Nawierzchnie na obiektach mostowych—Doświadczenia z nadzoru nad realizacją. Sympozjum: Nawierzchnie i izolacje na obiektach inżynieryjnych betonowych i stalowych. Konsekwencje i możliwości działań. In Proceedings of the XVII Międzynarodowe Targi Budownictwa Drogowego AUTOSTRADA-POLSKA, Kielce, Poland, 18 May 2011; Nowoczesne Budownictwo Inżynieryjne: Kielce, Poland, 2011. [Google Scholar]
- Kilarski, R.; Mąkosa, J.; Germaniuk, K. Analiza i ocena materiałów hydroizolacyjnych na pomosty obiektów mostowych. Pr. Inst. Badaw. Dróg Most. 1996, 3–4, 105–134. [Google Scholar]
- Duszyńska, A.; Sikora, Z. Dobór wyrobów geosyntetycznych do zbrojenia gruntu. Inżynieria Morska Geotech 2014, nr 5, 468–473. [Google Scholar]
- Duszyńska, A.; Szypulski, P. Projektowanie nasypów komunikacyjnych ze zbrojeniem geosyntetycznym podstawy na słabym podłożu gruntowym. Przegląd Komun. 2014, 5, 11–18. [Google Scholar]
- Duszyńska, A.; Makasewicz-Dzieciniak, M. Nasyp z geosyntetycznym wzmocnieniem podstawy posadowiony na pionowych elementach nośnych. Inżynieria Morska Geotech. 2013, 3, 217–224. [Google Scholar]
- Duszyńska, A.; Szypulski, P. Wymiarowanie wzmocnienia geosyntetycznego podstawy nasypu na słabym podłożu. Inżynieria Morska Geotech. 2012, 3, 215–223. [Google Scholar]
- Duszyńska, A.; Bolt, A. Współpraca Georusztu i Gruntu w Badaniu na Wyciąganie; Politechnika Gdańska: Gdańsk, Poland, 2004. [Google Scholar]
- Duszyńska, A. Co warto wiedzieć o geosyntetykach? Inżynieria Morska Geotech 2010, 2, 211–222. [Google Scholar]
- Duszyńska, A. Stateczność nasypów drogowych ze wzmocnieniem geosyntetycznym. Inżynieria Bud. 2014, 70, 256–269. [Google Scholar]
- Abdullah, N.H.H.; Ng, K.S.; Jais, I.B.M.; Idrus, J. Use of geosynthetic reinforced soil-integrated bridge system to alleviate settlement problems at bridge approach: A review. Phys. Chem. Earth Parts A/B/C 2023, 129, 103304. [Google Scholar] [CrossRef]
- Wipf, T.J.; Phares, B.; Dahlberg, J.M.; Lu, P. Investigation and Evaluation of Iowa Department of Transportation Bridge Deck Epoxy Injection Process, February 2019; Bridge Engineering Center: Iowa, IA, USA, 2019. [Google Scholar]
- Banaś, A.; Bałachowski, L.; Kuryłowicz, A.; Poteraj-Oleksiak, A. Innowacyjna metoda wzmocnienia gruntu za przyczółkiem przy użyciu iniekcji geopolimerowych. Builder 2020, 9, 24–28. [Google Scholar] [CrossRef]
- Kokotkiewicz, P. Problemy geotechniczne na styku obiektów inżynierskich z nasypami drogowymi. Mosty 2016, 1, 14–17. [Google Scholar]
- Trojnar, K. Jak projektować nasypy na dojazdach do obiektów mostowych na słabym podłożu? Mosty 2016, 1, 10–13. [Google Scholar]
- Poteraj-Oleksiak, A. Poziomowanie i stabilizacja gruntów—Zalety metody iniekcji geopolimerowych. Mag. Autostrady 2018, 11–12, 46–49. [Google Scholar]
- Gajewska, B.; Kłosiński, B. Rozwój metod wzmacniania podłoża gruntowego. In Proceedings of the Seminarium IBDiM i PZWFS: Wzmacnianie Podłoża i Fundamentów; Instytut Badawczy Dróg i Mostów: Warszawa, Poland, 2011; pp. 1–42. [Google Scholar]
- Jermołowicz, P. Wzmocnienie nasypów drogowych. Zasady projektowania i wykonawstwa. In Zeszyty Naukowo-Techniczne; Stowarzyszenia Inżynierów i Tech. Komun. w Krakowie: Kraków, Poland, 2011. [Google Scholar]
- Jermołowicz, P. Wzmacnianie Nasypów Drogowych Wraz z ich Odwadnianiem. Zasady projektowania i wykonastwa. In Materiały Szkoleniowe; Warmińsko-Mazurska OIIB: Olsztyn, Poland, 2016; pp. 1–157. [Google Scholar]
- Grzegorzewicz, K.; Rychlewski, P. Styropian jako lekkie wypełnienie nasypu przy przeciążonej konstrukcji oporowe. J. Mater. Bud. 2003, 3, 42. [Google Scholar]
- Górecki, Ł.; Grzegorzewicz, K. Keramzyt i Styropian Jako Lekkie Wypełnienia Nasypów Drogowych; Izolacje, 2020, 6. Available online: https://www.izolacje.com.pl/artykul/drogi-mosty/196510,keramzyt-i-styropian-jako-lekkie-wypelnienia-nasypow-drogowych (accessed on 13 March 2024).
- Gajewska, B.; Grzegorzewicz, K.; Kłosiński, B. Wzmacnianie podłoża gruntowego z zastosowaniem lekkich wypełnień. Drogownictwo 2013, 1, 9–14. [Google Scholar]
- Łysoń, M. Przełom w Budownictwie. Ten BETON Z Biowłóknami Przetrwa Wszystko. Available online: https://www.chip.pl/2024/03/galaxy-a55-5g-dopiero-zadebiutowal-a-juz-kupimy-go-w-plusie (accessed on 10 January 2024).
- Houshmand Khaneghahi, M.; Kamireddi, D.; Rahmaninezhad, S.A.; Sadighi, A.; Schauer, C.L.; Sales, C.M.; Najafi, A.R.; Cotton, A.; Street, R.; Farnam, Y. (Amir) Development of a nature-inspired polymeric fiber (BioFiber) for advanced delivery of self-healing agents into concrete. Constr. Build. Mater. 2023, 408, 133765. [Google Scholar] [CrossRef]
- Ostrowski, K.A.; Furtak, K. Influence of Carbon Fibre Reinforced Polymer and Recycled Carbon Fibres on the Compressive Behaviour of Self-Compacting High-Performance Fibre-Reinforced Concrete. Arch. Civ. Eng. 2023, 69, 53–64. [Google Scholar] [CrossRef]
- Rebeiz, K.S.; Fowler, D.W.; Paul, D.R. Recycling Plastics in Polymer Concrete for Construction Applications. J. Mater. Civ. Eng. 1993, 5, 237–248. [Google Scholar] [CrossRef]
- Rebeiz, K.S.; Fowler, D.W.; Paul, D.R. Recycling Plastics in Polymer Concrete Systems for Engineering Applications. Polym. Plast. Technol. Eng. 1991, 30, 809–825. [Google Scholar] [CrossRef]
- Salimi, K.; Ghazavi, M. Soil reinforcement and slope stabilisation using recycled waste plastic sheets. Geomech. Geoengin. 2021, 16, 497–508. [Google Scholar] [CrossRef]
- Tao, Y.; Hadigheh, S.A.; Wei, Y. Recycling of glass fibre reinforced polymer (GFRP) composite wastes in concrete: A critical review and cost benefit analysis. Structures 2023, 53, 1540–1556. [Google Scholar] [CrossRef]
- Marusceac, V.; Vlad, M. A Different Approach to Classic Structural Reinforcements Using Recycled Synthetic Materials. Procedia Eng. 2017, 181, 273–279. [Google Scholar] [CrossRef]
- Dahlbo, H.; Poliakova, V.; Mylläri, V.; Sahimaa, O.; Anderson, R. Recycling potential of post-consumer plastic packaging waste in Finland. Waste Manag. 2018, 71, 52–61. [Google Scholar] [CrossRef]
- Gałczyńska, M. Eko-Asfalt z Plastiku i Piasku? Wynalazł Go Łodzianin, Państwo Nie Było Zainteresowane—Wiadomości; Onet, 2016. Available online: https://wiadomosci.onet.pl/lodz/eko-asfalt-z-plastiku-i-piasku-wynalazl-go-lodzianin-panstwo-nie-bylo-zainteresowane/t775jfs (accessed on 13 March 2024).
- Wei, Q.; Cheng-Hui, L. Performance of Polyurethane Polymer in the Transition Zones of Ballasted and Ballastless Track. In Proceedings of the 1st GeoMEast International Congress and Exhibition, Egypt 2017 on Sustainable Civil Infrastructures, Sharm Elsheikh, Egypt, 15–19 July 2017; Pombo, J., Jing, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 142–152. [Google Scholar]
- Zhao, C.; Wang, P.; Yi, Q.; Meng, D. Application of polyurethane polymer and assistant rails to settling the abnormal vehicle-track dynamic effects in transition zone between ballastless and ballasted track. Shock Vib. 2015, 1, 1–9. [Google Scholar] [CrossRef]
- Xin, T.; Ding, Y.; Wang, P.; Gao, L. Application of rubber mats in transition zone between two different slab tracks in high-speed railway. Constr. Build. Mater. 2020, 243, 118219. [Google Scholar] [CrossRef]
- Idczak, W.; Lewandrowski, T.; Pokropski, D.; Rogojsz, G.; Rudnicki, T. The Influence of the Type of Fibers on the Reduction of the Threshold Effect in the Transition Zone of a Railway Track. Materials 2022, 15, 5730. [Google Scholar] [CrossRef] [PubMed]
- Czarnecki, L. Betony polimerowe. Cem. Wapno Bet. 2010, 15/77, 63–85. [Google Scholar]
- Welle, F. Twenty years of PET bottle to bottle recycling—An overview. Resour. Conserv. Recycl. 2011, 55, 865–875. [Google Scholar] [CrossRef]
- Tsochatzis, E.D.; Lopes, J.A.; Corredig, M. Chemical testing of mechanically recycled polyethylene terephthalate for food packaging in the European Union. Resour. Conserv. Recycl. 2022, 179, 106096. [Google Scholar] [CrossRef]
- Barthélémy, E.; Spyropoulos, D.; Milana, M.R.; Pfaff, K.; Gontard, N.; Lampi, E.; Castle, L. Safety evaluation of mechanical recycling processes used to produce polyethylene terephthalate (PET) intended for food contact applications. Food Addit. Contam. Part A 2014, 31, 490–497. [Google Scholar] [CrossRef]
- Panowicz, R.; Konarzewski, M.; Durejko, T.; Szala, M.; Łazińska, M.; Czerwińska, M.; Prasuła, P. Properties of Polyethylene Terephthalate (PET) after Thermo-Oxidative Aging. Materials 2021, 14, 3833. [Google Scholar] [CrossRef]
- Koo, H.J.; Chang, G.S.; Kim, S.H.; Hahm, W.G.; Park, S.Y. Effects of recycling processes on physical, mechanical and degradation properties of PET yarns. Fibers Polym. 2013, 14, 2083–2087. [Google Scholar] [CrossRef]
- Frounchi, M. Studies on degradation of PET in mechanical recycling. Macromol. Symp. 1999, 144, 465–469. [Google Scholar] [CrossRef]
- Lee, J.H.; Lim, K.S.; Hahm, W.G.; Kim, S.H. Properties of recycled and virgin poly(ethylene terephthalate) blend fibers. J. Appl. Polym. Sci. 2013, 128, 1250–1256. [Google Scholar] [CrossRef]
- Ostrowski, K.A.; Spyrowski, M.M.; Romańska, P.; Furtak, K. Evaluation of mechanical properties of recycled polyethylene terephthalate (rPET) reinforced with glass fibers. In Proceedings of the 4th International Conference on Sustainable Development in Civil, Urban and Transportation Engineering 2024, Wroclaw, Poland, 14–17 October 2024; pp. 1–7. [Google Scholar]
- S355 Structural Steel Grades for Construction—Constructalia. Available online: https://constructalia.arcelormittal.com/en/steel-grades/s355 (accessed on 20 November 2024).
- Steel S235JR: Characteristics, Properties, Analogues—Metinvest. Available online: https://metinvestholding.com/en/products/steel-grades (accessed on 20 November 2024).
- AZO MATERIALS|Polyethylene Terephthalate—PET 55% Glass Fiber Reinforced. Available online: https://www.azom.com/article.aspx?ArticleID=789 (accessed on 13 March 2024).
- AKRO COMPOUNDS|Polyethylene Terephthalate—PET 30% Carbon Fiber Reinforced. Available online: https://akro-plastic.com/en/product/precite-e-icf-30-black-7429-en (accessed on 13 March 2024).
- Global Material Consumption: Infrastructure Sector Dominates Consumption—The World Bank Data. Available online: https://www.gihub.org/infrastructure-monitor/insights/infrastructure-consumes-more-than-half-of-the-world-s-materials/ (accessed on 20 November 2024).
- Zhang, H. Building Materials in Civil Engineering, 1st ed.; Haimei, Z., Ed.; Woodhead Publishing: Cambridge, UK, 2011; ISBN 978-1-84569-956-7. [Google Scholar]
- Górski, J.; Klimowicz, J.; Nowak, A. Application of Pro-Ecological Building Technologies in Contemporary Architecture. In Proceedings of the XV International Conference on Durability of Building Materials and Components DBMC 2020, Barcelona, Spain, 30 June–3 July 2020; pp. 435–442. [Google Scholar] [CrossRef]
Material [-] | Tensile Strength [MPa] | Density [g/cm3] | Strength-to-Weight Ratio [kNm/kg] |
---|---|---|---|
PET reinforced with glass fiber in a ratio of 55% | 196 | 1.80 | 109 |
PET reinforced with carbon fiber in a ratio of 30% | 220 | 1.45 | 152 |
PET reinforced with basalt fiber in a ratio of 30% | 113 | 1.63 | 69 |
rPET reinforced with glass fiber in a ratio of 50% | 140 | 1.75 | 80 |
rPET reinforced with glass fiber in a ratio of 40% | 135 | 1.66 | 82 |
rPET reinforced with glass fiber in a ratio of 30% | 122 | 1.58 | 77 |
Steel S235JR | 360–510 | 7.85 | 46–65 |
Steel S355 | 470–630 | 7.85 | 60–80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spyrowski, M.; Ostrowski, K.A.; Furtak, K. Transition Effects in Bridge Structures and Their Possible Reduction Using Recycled Materials. Appl. Sci. 2024, 14, 11305. https://doi.org/10.3390/app142311305
Spyrowski M, Ostrowski KA, Furtak K. Transition Effects in Bridge Structures and Their Possible Reduction Using Recycled Materials. Applied Sciences. 2024; 14(23):11305. https://doi.org/10.3390/app142311305
Chicago/Turabian StyleSpyrowski, Mariusz, Krzysztof Adam Ostrowski, and Kazimierz Furtak. 2024. "Transition Effects in Bridge Structures and Their Possible Reduction Using Recycled Materials" Applied Sciences 14, no. 23: 11305. https://doi.org/10.3390/app142311305
APA StyleSpyrowski, M., Ostrowski, K. A., & Furtak, K. (2024). Transition Effects in Bridge Structures and Their Possible Reduction Using Recycled Materials. Applied Sciences, 14(23), 11305. https://doi.org/10.3390/app142311305