Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = inorganic mass fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6481 KiB  
Article
Aerosol Composition in a Semi-Urban Environment in Central Mexico: Influence of Local and Regional Processes on Overall Composition and First Quantification of Nitroaromatics
by Sara E. Olivares-Salazar, Roya Bahreini, Ying-Hsuan Lin, Telma Castro, Harry Alvarez-Ospina and Dara Salcedo
Atmosphere 2025, 16(7), 827; https://doi.org/10.3390/atmos16070827 - 7 Jul 2025
Viewed by 318
Abstract
The Metropolitan Area of Queretaro (MAQ) is a significant industrial hub in central Mexico whose air quality, including high concentrations of particulate matter (PM), poses a risk to the population. However, there have not been many studies on the sources and processes that [...] Read more.
The Metropolitan Area of Queretaro (MAQ) is a significant industrial hub in central Mexico whose air quality, including high concentrations of particulate matter (PM), poses a risk to the population. However, there have not been many studies on the sources and processes that influence the concentration of atmospheric pollutants. We used aerosol chemical composition and meteorological data from 1 January to 15 May 2022, along with back-trajectory modeling, to investigate emission sources not previously described in the region and the impact of local and regional meteorology on the chemical composition of aerosols. Furthermore, this study presents the first quantitative analysis of nitroaromatic compounds (NACs) in particulate matter in the MAQ using ultra-performance liquid chromatography coupled with high-resolution mass spectrometry. The NAC concentrations ranged from 0.086 to 3.618 ng m−3, with the highest concentrations occurring during a period of atmospheric stability. The secondary inorganic and organic fractions of the PM were the most abundant (50%) of the PM concentration throughout the campaign. Local and regional meteorology played a significant role in the variability of PM chemical composition, as it influenced oxidation and transport processes. The results reveal that emissions from biomass burning are a recurrent PM source, and regional emissions significantly impact the organic fraction of the PM. These results underscore the importance of considering both local and regional sources in assessing air pollution in the region. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

17 pages, 1869 KiB  
Article
Dietary Trace Elements and Arsenic Species in Rice: A Study of Samples from Croatian Supermarkets
by Ivana Rumora Samarin, Antonija Sulimanec, Tatjana Orct, Anica Benutić, Bernardo Marciuš, Karla Tomljanović and Jasna Jurasović
Foods 2025, 14(13), 2261; https://doi.org/10.3390/foods14132261 - 26 Jun 2025
Viewed by 325
Abstract
Rice (Oryza sativa L.) is a vital staple food and an important source of energy and macro- and micronutrients for billions of people. However, rice can accumulate undesirable levels of toxic trace elements, especially inorganic arsenic, which may pose a health risk. [...] Read more.
Rice (Oryza sativa L.) is a vital staple food and an important source of energy and macro- and micronutrients for billions of people. However, rice can accumulate undesirable levels of toxic trace elements, especially inorganic arsenic, which may pose a health risk. This study aimed to determine the concentrations of 29 essential and toxic elements and the fractions of four As species in 58 rice samples purchased in Croatian supermarkets. In addition, the influence of rice variety, cultivation methods, and origin on the composition of trace elements was analysed. The elements were quantified using inductively coupled plasma mass spectrometry (ICP-MS), and As species were quantified using high-performance liquid chromatography (HPLC) coupled with ICP-MS. Organic brown rice had higher concentrations of essential trace elements (Se, Zn, Cu, Fe, Mn, Co, Cr) than white rice, with organic brown rice containing more essential elements than conventionally grown rice. The average total arsenic concentration (tAs) across all samples was 142 ± 57 µg/kg, with brown, conventionally grown rice containing a higher amount. Arsenite was the predominant arsenic species. Regional differences in As and Se concentrations were observed. These results emphasize the complex relationship between trace elements in rice and their potential impacts on health. Full article
Show Figures

Figure 1

17 pages, 2012 KiB  
Article
Improving Energy Efficiency of Wastewater Residue Biomass Utilisation by Co-Combustion with Coal
by Andrey Zhuikov, Tatyana Pyanykh, Mikhail Kolosov, Irina Grishina, Yana Zhuikova, Petr Kuznetsov and Stanislav Chicherin
Energies 2025, 18(11), 2906; https://doi.org/10.3390/en18112906 - 1 Jun 2025
Viewed by 449
Abstract
The accelerated urbanisation that is occurring in many regions of the world is resulting in a corresponding increase in the volume of sewage sludge. This sludge is then stored in specialised landfills, the area of which is increasing annually. One of the methods [...] Read more.
The accelerated urbanisation that is occurring in many regions of the world is resulting in a corresponding increase in the volume of sewage sludge. This sludge is then stored in specialised landfills, the area of which is increasing annually. One of the methods of utilising this sludge is through its combustion in power plants, where it serves to generate heat. However, due to the low calorific value of sewage sludge, it is recommended to combust it in conjunction with high-calorific fuel. To improve energy efficiency of sewage residue biomass utilisation by co-combustion with coal, it is necessary to determine the main combustion parameters and mass fraction in the mixture. The objective of this study is to estimate the primary parameters of combustion of sewage sludge and coal by employing the synchronous thermal analysis method, in addition to determining the concentrations of gaseous substances formed during the combustion process. A comprehensive technical and elemental analysis of the fuels was conducted, and their thermal properties were thoroughly determined. The inorganic residue from sewage sludge combustion was analysed by scanning electron microscopy for the content of trace elements and basic oxides. Thermogravimetric analysis (TGA) of fuels was conducted in an oxidising medium, utilising a 6 mg suspension with a heating rate of 20 °C/min. The profiles of TG, DTG, and DSC curves were then utilised to determine the ignition and burnout temperatures, maximum mass loss rate, combustion index, and synergistic effects. The mixture of coal with 25% sewage sludge was found to have the most energy-efficient performance compared to other mixtures, with a 3% reduction in ignition temperature compared to coal. Concentrations of carbon dioxide, carbon monoxide, nitrogen oxides, and sulphur oxides were also determined. Full article
Show Figures

Figure 1

20 pages, 54914 KiB  
Article
Treatment and Valorization of Waste Wind Turbines: Component Identification and Analysis
by Xiaohan Zhao, Daria Pakuła, Miłosz Frydrych, Roksana Konieczna, Bogna Sztorch, Rafał Kozera, Hongzhi Liu, Hui Zhou and Robert E. Przekop
Materials 2025, 18(2), 468; https://doi.org/10.3390/ma18020468 - 20 Jan 2025
Cited by 1 | Viewed by 1720
Abstract
Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing [...] Read more.
Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition. They are primarily made of composites containing glass and carbon fibers embedded in polymer matrices such as epoxies and polyester resins. This study presents an innovative approach to analyzing and valorizing these composite wastes. The research methodology incorporates integrated processing and analysis techniques, including mechanical waste treatment using a novel compression milling process, instead of traditional knife mills, which reduces wear on the milling tools. Based on the differences in the structure and colors of the materials, 15 different kinds of samples named WT1-WT15 were distinguished from crushed wind turbines, enabling a detailed analysis of their physicochemical properties and the identification of the constituent components. Fourier transform infrared spectroscopy (FTIR) identified key functional groups, confirming the presence of thermoplastic polymers (PET, PE, and PP), epoxy and polyester resins, wood, and fillers such as glass fibers. Thermogravimetric analysis (TGA) provided insights into thermal stability, degradation behavior, and the heterogeneity of the samples, indicating a mix of organic and inorganic constituents. Differential scanning calorimetry (DSC) further characterized phase transitions in polymers, revealing variations in thermal properties among samples. The fractionation process was carried out using both wet and dry methods, allowing for a more effective separation of components. Based on the wet separation process, three fractions—GF1, GF2, and GF3—along with other components were obtained. For instance, in the case of the GF1 < 40 µm fraction, thermogravimetric analysis (TGA) revealed that the residual mass is as high as 89.7%, indicating a predominance of glass fibers. This result highlights the effectiveness of the proposed methods in facilitating the efficient recovery of high-value materials. Full article
Show Figures

Figure 1

18 pages, 2885 KiB  
Article
Composition and Effects of Aerosol Particles Deposited on Urban Plant Leaves in Terrestrial and Aquatic Habitats
by Siqi Chen, Fangmin Fei, Yaobin Song, Ming Dong, Aiping Wu and Hua Yu
Plants 2024, 13(21), 3056; https://doi.org/10.3390/plants13213056 - 31 Oct 2024
Viewed by 1064
Abstract
Plants play a vital role in mitigating aerosol particles and improving air quality. This study investigated the composition characteristics and potential effects of particles retained on the leaf surfaces of two amphibious plants (i.e., Alternanthera philoxeroides and Hydrocotyle vulgaris) in both terrestrial [...] Read more.
Plants play a vital role in mitigating aerosol particles and improving air quality. This study investigated the composition characteristics and potential effects of particles retained on the leaf surfaces of two amphibious plants (i.e., Alternanthera philoxeroides and Hydrocotyle vulgaris) in both terrestrial and aquatic habitats. The results show that plant habitats influenced the composition of aerosol particles retained on leaf surfaces. Specifically, plants in terrestrial habitats retained a higher mass concentration of coarse and large particles rich in inorganic Ca2+, accounting for over 70% of total ions, whereas plants in aquatic habitats retained a greater abundance of fine and secondary particles with high fractions of water-soluble NO3 and SO42−, taking up over 65% of total anions. Secondary particles deposited on the surfaces of plants in aquatic habitats tend to deliquesce and transform from the particle phase to the liquid phase. Terrestrial habitats facilitate the deposition of large particles. Additionally, particle accumulation on leaf surfaces adversely affected the stomatal conductance of plant leaves, leading to reductions in both the transpiration and photosynthetic rates. This study provides insights into the impact and role of plants from different habitats in mitigating urban particulate pollution. Full article
(This article belongs to the Special Issue Physiology and Ecology of Aquatic Plants)
Show Figures

Figure 1

20 pages, 4907 KiB  
Article
Phenolic and Acidic Compounds in Radiation Fog at Strasbourg Metropolitan
by Dani Khoury, Maurice Millet, Yasmine Jabali and Olivier Delhomme
Atmosphere 2024, 15(10), 1240; https://doi.org/10.3390/atmos15101240 - 17 Oct 2024
Cited by 1 | Viewed by 957
Abstract
Sixty-four phenols grouped as nitrated, bromo, amino, methyl, chloro-phenols, and cresols, and thirty-eight organic acids grouped as mono-carboxylic and dicarboxylic are analyzed in forty-two fog samples collected in the Alsace region between 2015 and 2021 to check their atmospheric behavior. Fogwater samples are [...] Read more.
Sixty-four phenols grouped as nitrated, bromo, amino, methyl, chloro-phenols, and cresols, and thirty-eight organic acids grouped as mono-carboxylic and dicarboxylic are analyzed in forty-two fog samples collected in the Alsace region between 2015 and 2021 to check their atmospheric behavior. Fogwater samples are collected using the Caltech Active Strand Cloudwater Collector (CASCC2), extracted using liquid–liquid extraction (LLE) on a solid cartridge (XTR Chromabond), and then analyzed using gas chromatography coupled with mass spectrometry (GC-MS). The results show the high capability of phenols and acids to be scavenged by fogwater due to their high solubility. Nitro-phenols and mono-carboxylic acids have the highest contributions to the total phenolic and acidic concentrations, respectively. 2,5-dinitrophenol, 3-methyl-4-nitrophenol, 4-nitrophenol, and 3,4-dinitrophenol have the highest concentration, originating mainly from vehicular emissions and some photochemical reactions. The top three mono-carboxylic acids are hexadecenoic acid (C16), eicosanoic acid (C18), and dodecanoic acid (C12), whereas succinic acid, suberic acid, sebacic acid, and oxalic acid are the most concentrated dicarboxylic acids, originated either from atmospheric oxidation (mainly secondary organic aerosols (SOAs)) or vehicular transport. Pearson’s correlations show positive correlations between organic acids and previously analyzed metals (p < 0.05), between mono- and dicarboxylic acids (p < 0.001), and between the analyzed acidic compounds (p < 0.001), whereas no correlations are observed with previously analyzed inorganic ions. Total phenolic and acidic fractions are found to be much higher than those observed for pesticides, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) measured at the same region due to their higher scavenging by fogwater. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 3096 KiB  
Article
The Effect of Biochar Particle Size on the Leaching of Organic Molecules and Macro- and Microelements
by Sarka Sovova, Ludmila Mravcova, Jaromir Porizka, Leona Kubikova and Michal Kalina
Agronomy 2024, 14(10), 2346; https://doi.org/10.3390/agronomy14102346 - 11 Oct 2024
Viewed by 1497
Abstract
Biochar is a carbon-rich material that has recently received attention due to its increasing agronomical potential. The agricultural utilization of biochar relates to its potential to act in the soil as a soil conditioner; nevertheless, complex information on the direct dependence of biochar’s [...] Read more.
Biochar is a carbon-rich material that has recently received attention due to its increasing agronomical potential. The agricultural utilization of biochar relates to its potential to act in the soil as a soil conditioner; nevertheless, complex information on the direct dependence of biochar’s physical properties (texture, particle size) and corresponding leaching and availability of organic molecules (e.g., the polycyclic and heterocyclic organic compounds) and inorganic mineral salts (based on micro- and macroelements) is still inconsistent. Multi-elemental analysis by using inductively coupled plasma atomic emission spectroscopy (ICP-OES) was used to assess the information on the contents and availability of macro- and microelements in studied commercial biochar samples. The results showed a statistically significant indirect relation between an increase in the size fraction of biochar and the content of aqueous-extractable K and Na and the direct relation with the aqueous-extractable Ca, Mg, and P. Compared to the macroelements, the detected contents of aqueous-extractable microelements were almost three orders lower, and the dependence on fraction size was not consistent or statistically significant. In addition, gas chromatography (GC) coupled with mass spectroscopy (MS) was further used to reveal the concentrations of available polycyclic aromatic and heterocyclic compounds in biochar samples. The detected concentrations of these types of organic compounds were far below the certified limits, and a statistically significant indirect correlation with particle size was also observed for all the studied biochar samples. The proposed methodological concept could provide the necessary insights into the description of biochar mineral content and its connection to biochar texture, the physicochemical properties, and the potential of biochar to release nutrients into the soil. These findings could help in the further assessment of biochar as a soil conditioner in modern agriculture. Full article
Show Figures

Figure 1

21 pages, 6978 KiB  
Article
Associations between Indoor and Outdoor Size-Resolved Particulate Matter in Urban Beijing: Chemical Compositions, Sources, and Health Risks
by Shili Tian, Liming Wang, Qingyang Liu, Liang Luo, Chunyan Qian, Baocheng Wang and Yanju Liu
Atmosphere 2024, 15(6), 721; https://doi.org/10.3390/atmos15060721 - 16 Jun 2024
Cited by 2 | Viewed by 1713
Abstract
Ventilation may lead to a deterioration in indoor air quality in urban environments located close to roads. Understanding the differences in the chemical compositions of size-resolved particulate matter (PM) in indoor air and outdoor air could aid in assessing the health impacts of [...] Read more.
Ventilation may lead to a deterioration in indoor air quality in urban environments located close to roads. Understanding the differences in the chemical compositions of size-resolved particulate matter (PM) in indoor air and outdoor air could aid in assessing the health impacts of air in these settings and establishing relevant regulation policies. In this study, indoor and outdoor size-resolved PM was collected from an office in Beijing in summer (between 5 and 25 July 2020) and winter (between 5 and 31 January 2021). Its chemical components, including sulfate, nitrate, ammonium, chlorine, organic matter (OM), elemental carbon (EC), crustal materials (CM), and heavy metals (HM), were analyzed. The mean levels of indoor and outdoor PM2.1 and PM9 were found to be much higher than those in the guidelines for PM2.5 and PM10 outlined by the National Ambient Air Quality Standard. Moreover, the levels of PM2.1 and PM2.1–9 mass were higher outdoors than they were indoors. The size distributions of mass concentrations were shown to be bimodal, peaking at 0.43–0.65 μm and 4.7–5.8 μm, respectively. The most abundant chemicals were OM, nitrate, and sulfate for PM2.1 and OM, CM, and nitrate for PM2.1–9. We found higher percentages of sulfate, nitrate, ammonium, EC, and HM in smaller-size fractions of PM. Additionally, positive matrix factorization showed that biomass burning, secondary inorganic aerosol, coal combustion, dust, traffic, and industrial pollution were the main sources of PM during the study period. The greatest non-carcinogenic and carcinogenic hazards were found at 0.43–0.65 μm in summer and 2.1–3.3 μm in winter. Our results indicate that size-resolved PM of ambient origin may infiltrate buildings near roads to varying degrees, resulting in negative health effects. Full article
(This article belongs to the Special Issue New Insights into Exposure and Health Impacts of Air Pollution)
Show Figures

Figure 1

21 pages, 2727 KiB  
Article
Comprehensive Analysis of Biomass, Nutrient, and Heavy Metal Contributions of Pelagic Sargassum Species (Phaeophyceae) Inundations in South Florida
by Danielle C. Hatt, Natalie K. Bally, Lowell Andrew R. Iporac, Samantha Olszak, Justin E. Campbell and Ligia Collado-Vides
Phycology 2024, 4(2), 235-255; https://doi.org/10.3390/phycology4020013 - 20 Apr 2024
Cited by 2 | Viewed by 2370
Abstract
Pelagic Sargassum landings (hereby referred to as sargasso) increased dramatically in 2011 throughout the equatorial tropical Atlantic due to the formation of the Great Atlantic Sargassum Belt (GASB). Despite increasing reports, understanding of local abundances and vegetative characteristics, especially in South Florida, remains [...] Read more.
Pelagic Sargassum landings (hereby referred to as sargasso) increased dramatically in 2011 throughout the equatorial tropical Atlantic due to the formation of the Great Atlantic Sargassum Belt (GASB). Despite increasing reports, understanding of local abundances and vegetative characteristics, especially in South Florida, remains limited. From 2018 to 2021, sargasso was collected at two South Florida beaches, with additional sampling at a third beach to assess nutrient and heavy metal concentrations. Biomass landings varied greatly, with S. fluitans III predominant during the “peak season” (May to July) and S. natans I predominant in the “off season”, while S. natans VIII was consistently least abundant. This suggests that South Florida may receive sargasso from the Sargasso Sea during the low season and from the GASB during the peak sargasso season. Across all three morphotypes, mean nitrogen (N) and phosphorus (P) contents were 0.97% and 0.04% (dry weight), respectively. Out of the 16 heavy metals detected, our values were similar to those reported across the Caribbean. Arsenic was the most prevalent heavy metal, with sargasso containing epibionts having higher arsenic concentrations. These results provide comprehensive information to better understand the characteristics and potential origin of sargasso landings in South Florida. Full article
(This article belongs to the Collection Sargassum Golden Tides, a Global Problem)
Show Figures

Figure 1

12 pages, 859 KiB  
Article
Certification of New Selenium-Enriched Yeast and Supplement Reference Materials for Selenomethionine Using Two Independent Measurement Strategies
by Xiao Li, Ling Shi, Panshu Song, Wei Cai, Ximing Luo and Bo Zhao
Molecules 2024, 29(1), 235; https://doi.org/10.3390/molecules29010235 - 1 Jan 2024
Cited by 4 | Viewed by 2202
Abstract
Selenium-enriched yeast possesses the unique ability of transforming chemical selenium, such as sodium selenite, into a biologically active form, which mitigates its toxic effects on the human body. The transformation product of this process, selenomethionine, can be safely and effectively absorbed and utilized [...] Read more.
Selenium-enriched yeast possesses the unique ability of transforming chemical selenium, such as sodium selenite, into a biologically active form, which mitigates its toxic effects on the human body. The transformation product of this process, selenomethionine, can be safely and effectively absorbed and utilized by the human body; hence, it has been spiked into a selenium-enriched supplement. This study employs two distinct measurement strategies to determine the selenomethionine content in two candidate reference materials, a selenium-enriched yeast powder and supplement, using both organic and inorganic mass spectrometry. The concentrations of selenomethionine in the selenium-enriched yeast were determined using HPLC-ICP-MS and HPLC- ESI-MS/MS, with mass fractions measured at 718 mg SeMet kg−1 and 715 mg SeMet kg−1, respectively. Notably, both methods yielded consistent results for the selenium supplement, with a selenomethionine mass fraction of 59 mg SeMet kg−1. Ultimately, the certified values of these candidate reference materials were determined as 716 mg kg−1 and 59 mg SeMet kg−1 with expanded uncertainties of 36 mg SeMet kg−1 (k = 2) and 5 mg SeMet kg−1 (k = 2), respectively. The development of these candidate reference materials serves as a valuable reference for diverse methods aiming to determine the value of organic selenium speciation in complex food substrates. Full article
(This article belongs to the Special Issue Mass Spectrometry for Biomedical and Food Analysis)
Show Figures

Figure 1

17 pages, 5313 KiB  
Review
Pros and Cons of Separation, Fractionation and Cleanup for Enhancement of the Quantitative Analysis of Bitumen-Derived Organics in Process-Affected Waters—A Review
by Ralph Hindle, John Headley and Douglas G. Muench
Separations 2023, 10(12), 583; https://doi.org/10.3390/separations10120583 - 24 Nov 2023
Cited by 3 | Viewed by 2139
Abstract
Oil sands process-affected water (OSPW) contains a diverse mixture of inorganic and organic compounds. Naphthenic acids (NAs) are a subset of the organic naphthenic acid fraction compounds (NAFCs) and are a major contributor of toxicity to aquatic species. Thousands of unique chemical formulae [...] Read more.
Oil sands process-affected water (OSPW) contains a diverse mixture of inorganic and organic compounds. Naphthenic acids (NAs) are a subset of the organic naphthenic acid fraction compounds (NAFCs) and are a major contributor of toxicity to aquatic species. Thousands of unique chemical formulae are measured in OSPW by accurate mass spectrometry and high-resolution mass spectrometry (MS) analysis of NAFCs. As no commercial reference standard is available to cover the range of compounds present in NAFCs, quantitation may best be referred to as “semi-quantitative” and is based on the responses of one or more model compounds. Negative mode electrospray ionization (ESI-) is often used for NAFC measurement but is prone to ion suppression in complex matrices. This review discusses aspects of off-line sample preparation techniques and liquid chromatography (LC) separations to help reduce ion suppression effects and improve the comparability of both inter-laboratory and intra-laboratory results. Alternative approaches to the analytical parameters discussed include extraction solvents, salt content of samples, extraction pH, off-line sample cleanup, on-line LC chromatography, calibration standards, MS ionization modes, NAFC compound classes, MS mass resolution, and the use of internal standards. Full article
(This article belongs to the Topic Advances in Spectroscopic and Chromatographic Techniques)
Show Figures

Figure 1

23 pages, 9849 KiB  
Article
Mechanism and Influence of Dispersants on the Action of Polymer Flocculants Used in Slurry Separation
by Guoping Ren, Jian Zhang, Tugen Feng, Yu Liang and Yihao Yin
Polymers 2023, 15(20), 4073; https://doi.org/10.3390/polym15204073 - 12 Oct 2023
Cited by 9 | Viewed by 2295
Abstract
The application of polymer flocculants plays a pivotal role in the slurry separation process of shields, and the dispersant used for treating cutter mud cakes can significantly impact the effectiveness of polymer flocculants, potentially leading to reduced efficiency in slurry separation. Experiments were [...] Read more.
The application of polymer flocculants plays a pivotal role in the slurry separation process of shields, and the dispersant used for treating cutter mud cakes can significantly impact the effectiveness of polymer flocculants, potentially leading to reduced efficiency in slurry separation. Experiments were conducted to select appropriate flocculants and investigate the influence of dispersants on flocculant effectiveness, aiming to assess the effect of flocculants and explore the relationships and mechanisms governing their influence. Changes in the patterns of slurry flocculation were revealed in terms of flocculation-driven precipitation and vacuum-filtration effects. The purpose of this article is to provide a reference for the field application of polymer flocculants in the shield field. The conclusions are as follows. Inorganic flocculants containing 0.5% polyaluminum chloride (PAC) exhibit the most effective flocculation, demonstrating strong charge neutralization action. Organic flocculants containing 0.1% cationic polyacrylamides (CPAM) exhibit the most effective flocculation, demonstrating strong bridging and net capture effects. The dispersant sodium hexametaphosphate (SHMP) can significantly weaken the charge-neutralizing action of flocculants and slightly enhance bridging and net capture effects. SHMP can impede the flocculation of slurry with PAC. For CPAM, SHMP can enhance the flocculation of slurry at a low mass fraction (0.1% and 0.3%), while SHMP can significantly hinder flocculation at a high mass fraction (0.5% and 1%). A low mass fraction of SHMP reduced slurry viscosity to 246.3 mPa.s and enhanced vacuum filtration, while a high mass fraction of SHMP increased slurry viscosity to 667.2 mPa.s and hindered vacuum filtration. In conclusion, while dispersants reduce the effectiveness of inorganic flocculants at any mass fraction, a small number of dispersants enhances the performance of organic flocculants; thus, the organic flocculant CPAM is recommended for slurry separation. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 2369 KiB  
Article
Effect of Attapulgite Application on Aggregate Formation and Carbon and Nitrogen Content in Sandy Soil
by Ziru Niu, Yongzhong Su, Juan Li, Fangjiao An and Tingna Liu
Sustainability 2023, 15(16), 12511; https://doi.org/10.3390/su151612511 - 17 Aug 2023
Cited by 5 | Viewed by 3042
Abstract
Clay minerals are the main cementing substances for sandy soils to form aggregates. The clay mineral attapulgite clay is abundant in Northwest China, and its special colloidal properties and crystal structure make it excellent in improving soil physicochemical properties. Using attapulgite as soil [...] Read more.
Clay minerals are the main cementing substances for sandy soils to form aggregates. The clay mineral attapulgite clay is abundant in Northwest China, and its special colloidal properties and crystal structure make it excellent in improving soil physicochemical properties. Using attapulgite as soil conditioner, the effects of different application rates of attapulgite on the formation and stability of sandy soil aggregates were studied through field experiments for two consecutive years. The results showed that the application of 6000 kg·hm−2 attapulgite soil in sandy soil farmland for two consecutive years reduced the soil bulk density by 0–20 cm, from 1.55 g·cm−3 to 1.47 g·cm−3, a decrease of 3.6%; the soil pH was increased by 3.7% from 8.59 to 8.84. The soil organic carbon, inorganic carbon and total nitrogen in the whole soil increased by 4.52%, 5.23% and 6.22%, respectively. The mass fraction of macro-aggregates of 2–0.25 mm and micro-aggregates of 0.25–0.053 mm as well as the contents of organic carbon, inorganic carbon and total nitrogen increased by 3.5%, 5.2%, 8.7%, 5.6% and 6.7%, respectively, thus improving the stability of aggregates. However, low application rates (1500 kg·hm−2 and 3000 kg·hm−2) of attapulgite had no significant effect on soil physical and chemical properties. Attapulgite, as a kind of highly adsorptive clay mineral, can be directly applied to sandy soil to increase soil cementitious substances, promote the formation of soil aggregates and increase the carbon and nitrogen fixation capacity of sandy soil. The improvement effect on the formation and stability of aggregates will gradually accumulate with the years of application. Therefore, in the future, the effects of adding attapulgite on the growth of various crops under various types of soil and climatic conditions should be carried out to obtain more systematic conclusions. Full article
Show Figures

Figure 1

16 pages, 4797 KiB  
Article
Atmospheric Oxidation Capacity and Its Impact on the Secondary Inorganic Components of PM2.5 in Recent Years in Beijing: Enlightenment for PM2.5 Pollution Control in the Future
by Wanghui Chu, Ling Li, Hong Li, Yuzhe Zhang, Yizhen Chen, Guorui Zhi, Xin Yang, Yuanyuan Ji and Fahe Chai
Atmosphere 2023, 14(8), 1252; https://doi.org/10.3390/atmos14081252 - 7 Aug 2023
Cited by 8 | Viewed by 2075
Abstract
In recent years, the concentrations of PM2.5 in urban ambient air in China have been declining; however, the strong atmospheric oxidation capacity (AOC) represents challenges to the further reduction of PM2.5 concentration and the continuous improvement of ambient air quality in [...] Read more.
In recent years, the concentrations of PM2.5 in urban ambient air in China have been declining; however, the strong atmospheric oxidation capacity (AOC) represents challenges to the further reduction of PM2.5 concentration and the continuous improvement of ambient air quality in China in the future, since the overall AOC is still at a high level. For this paper, based on ground observation data recorded in Beijing from 2016 to 2019, the variation in AOC was characterized according to the concentration of odd oxygen (OX = O3 + NO2). The concentrations of the primary and secondary components of PM2.5 were analyzed using empirical formulas, the correlation between AOC and the concentrations of secondary PM2.5 and the secondary inorganic components (SO42−, NO3, NH4+, and SNA) in Beijing were explored, the impact of atmospheric photochemical reaction activity on the generation of atmospheric secondary particles was evaluated, and the impact of atmospheric oxidation variations on PM2.5 concentrations and SNA in Beijing was investigated. The results revealed that OX concentrations reached their peak in 2016 and reached their lowest point in 2019. The OX concentrations followed a descending seasonal trend of summer, spring, autumn, and winter, along with a spatial descending trend from urban observation stations to suburban stations and background stations. The degree of photochemical activity and the magnitude of the AOC have a large influence on the production of atmospheric secondary particles. When the photochemical reaction was more active and the AOC was stronger, the mass concentrations of the secondary generated PM2.5 fraction were higher and accounted for a higher proportion of the total PM2.5 mass concentrations. In the PM2.5 fraction, SNA accounted for 50.7% to 94.4% of the total mass concentrations of water-soluble inorganic ions in the field observations. Higher concentrations of the atmospheric oxidant OX in ambient air corresponded to a higher sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR), suggesting that the increase in AOC could promote the increase of PM2.5 concentration. Based on a relationship analysis of SOR, NOR, and OX, it was inferred that the relationship between OX and SOR and the relationship between OX and NOR were both nonlinear. Therefore, when establishing PM2.5 control strategies in Beijing in the future, the impact of the AOC on PM2.5 generation should be fully considered, and favorable measures should be taken to properly regulate the AOC, which would be more effective when carrying out further control measures regarding PM2.5 pollution. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

21 pages, 24831 KiB  
Article
Influence of Inorganic Additives on the Surface Characteristics, Hardness, Friction and Wear Behavior of Polyethylene Matrix Composites
by Natalia Wierzbicka, Rafał Talar, Karol Grochalski, Adam Piasecki, Wiesław Graboń, Miłosz Węgorzewski and Adam Reiter
Materials 2023, 16(14), 4960; https://doi.org/10.3390/ma16144960 - 12 Jul 2023
Cited by 5 | Viewed by 1522
Abstract
The aim of this research was to analyze the effect of inorganic additives on the tribological properties of the high-density polyethylene (HDPE) matrix composite surface. Titanium (Ti) and hexagonal boron nitride (hBN) were added in different mass fractions. The samples were produced by [...] Read more.
The aim of this research was to analyze the effect of inorganic additives on the tribological properties of the high-density polyethylene (HDPE) matrix composite surface. Titanium (Ti) and hexagonal boron nitride (hBN) were added in different mass fractions. The samples were produced by pressing a pre-prepared mixture of granules. The composite samples with the following mass fractions of additives were fabricated: 5% hBN, 10% hBN, 28% Ti–2% hBN, 23% Ti–7% hBN, and 20% Ti–10% hBN. An even distribution of individual additives’ concentrations was confirmed. Observations of morphology, surface topography, hardness, and tribological measurements were conducted using reciprocating motion tests with the “pin-on-flat” and rotational tests with the “pin-on-disc” configuration. Subsequently, microscopic observations and measurements of the wear track profile were carried out. Additionally, geometry parameters of the contacting elastic body were calculated for various counter-samples. It was found that the Shore D hardness of samples containing Ti and hBN increased with the Ti content, while the coefficient of friction (COF) value decreased. The addition of hBN alone did not significantly affect the hardness, regardless of the ratio, while the COF increased with the increasing hBN content. The COF value doubled with the addition of 10% hBN (COF = 0.22), whereas the addition of 90% Ti–10% hBN resulted in a decrease in the COF value, to COF = 0.83. The highest hardness value was obtained for the sample containing 28% Ti–2% hBN (66.5), while the lowest was for the sample containing 10% hBN (63.2). The wear track analysis, including its height and width caused by deformation, was detected using a focal differentiation microscope and scanning electron microscopy. Additionally, EDS maps were generated to determine the wear characteristics of the composite. Full article
Show Figures

Figure 1

Back to TopTop