Phenolic and Acidic Compounds in Radiation Fog at Strasbourg Metropolitan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fogwater Sampling
2.2. Fogwater Extraction and Analysis
3. Results and Discussions
3.1. Phenols
3.1.1. Individual Phenols Concentration and Detection in Fog Samples
3.1.2. NPhs Detected in Fog Samples
Distribution Across Sites
Sources of Atmospheric NPhs
3.1.3. Other Compounds Detected in Fog Samples
3.1.4. Total Phenolic Concentrations
3.1.5. Comparison of Phenols with a Previous Study
3.2. Acidic Compounds
3.2.1. MCA and DCA Concentrations
3.2.2. Atmospheric Sources in Fogwater
3.2.3. Comparison of Acids with a Previous Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Phenols | Abb. | Phenols | Abb. | Acids | Abb. |
Meta-cresol | m-cresol | 2,4-dinitrophenol | 2,4-DNPh | Heptanoic acid | C7 |
Ortho-cresol | o-cresol | 2,5-dinitrophenol | 2,5-DNPh | Octanoic acid | C8 |
Para-cresol | p-cresol | 2,6-dinitrophenol | 2,6-DNPh | Nonanoic acid | C9 |
2-chlorophenol | 3-CPh | 3,4-dinitrophenol | 3,4-DNPh | Decanoic acid | C10 |
3-chlorophenol | 3-CPh | 2-nitrophenol | 2-NPh | Undecanoic acid | C11 |
4-chlorophenol | 3-CPh | 3-nitrophenol | 3-NPh | Dodecanoic acid | C12 |
3,5-dichlorophenol | 3,5-DCPh | 4-nitrophenol | 4-NPh | Tridecanoic acid | C13 |
2,5-dichlorophenol | 2,5-DCPh | 2-bromophenol | 2-BPh | Tetradecanoic acid | C14 |
2,6-dichlorophenol | 2,6-DCPh | 3-bromophenol | 3-BPh | Pentadecanoic acid | C15 |
2,4-dichlorophenol | 2,4-DCPh | 4-bromophenol | 4-BPh | Hexadecanoic acid | C16 |
2,3-dichlorophenol | 2,3-DCPh | 2,6-dibromophenol | 2,6-DBPh | Heptadecanoic acid | C17 |
2,3,5-trichlorophenol | 2,3,5-TCHPh | 2-aminophenol | 2-APh | Octadecanoic acid | C18 |
2,4,5-trichlorophenol | 2,4,5-TCHPh | 4-aminophenol | 4-APh | Nonadecanoic acid | C19 |
3,4,5-trichlorophenol | 3,4,5-TCHPh | 2,4-dinitrophenol | 2,4-DNPh | Eicosanoic Acid | C20 |
2,3,6-trichlorophenol | 2,3,6-TCHPh | 2,5-dinitrophenol | 2,5-DNPh | Heneicosanoic acid | C21 |
2,3,4-trichlorophenol | 2,3,4-TCHPh | 2,6-dinitrophenol | 2,6-DNPh | Docosanoic acid | C22 |
Pentachlorophenol | PCPh | 3,4-dinitrophenol | 3,4-DNPh | Tricosanoic acid | C23 |
3-methyl-2-nitrophenol | 3-M-2-NPh | 2-nitrophenol | 2-NPh | Tetracosanoic acid | C24 |
3-methyl-4-nitrophenol | 3-M-4-NPh | 3-nitrophenol | 3-NPh | Hexacosanoic acid | C26 |
4-methyl-2-nitrophenol | 4-M-2-NPh | 4-nitrophenol | 4-NPh | Heptacosanoic acid | C27 |
5-methyl-2-nitrophenol | 5-M-2-NPh | 2-bromophenol | 2-BPh | Octoscosanoic acid | C28 |
6-methyl-2-nitrophenol | 6-M-2-NPh | 3-bromophenol | 3-BPh | Triacontanoic acid | C30 |
References
- Facchini, M.C.; Decesari, S.; Mircea, M.; Fuzzi, S.; Loglio, G. Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition. Atmos. Environ. 2000, 34, 4853–4857. [Google Scholar] [CrossRef]
- Allen, S.K.; Allen, C.W. Phenol concentrations in air and rain water samples collected near a wood preserving facility. Bull. Environ. Contam. Toxicol. 1997, 59, 702–707. [Google Scholar] [CrossRef]
- Shea, P.J.; Weber, J.B.; Overcash, M.R. Biological activities of 2, 4-dinitrophenol in plant-soil systems. In Residue Reviews: Residues of Pesticides and Other Contaminants in the Total Environment; Springer: New York, NY, USA, 1983; pp. 1–41. [Google Scholar] [CrossRef]
- Shafer, W.E.; Schönherr, J. Accumulation and transport of phenol, 2-nitrophenol, and 4-nitrophenol in plant cuticles. Ecotoxicol. Environ. Saf. 1985, 10, 239–252. [Google Scholar] [CrossRef]
- Rippen, G.; Zietz, E.; Frank, R.; Knacker, T.; Klöpffer, W. Do airborne nitrophenols contribute to forest decline? Environ. Technol. 1987, 8, 475–482. [Google Scholar] [CrossRef]
- Trautner, F.; Reischl, A.; Hutzinger, O. Nitrierte Phenole in Nebelwasser: Beitrag zur Waldschadensforschung. Umweltwissenschaften Schadst. Forsch. 1989, 1, 10–11. [Google Scholar] [CrossRef]
- Leuenberger, C.; Czuczwa, J.; Tremp, J.; Giger, W. Nitrated phenols in rain: Atmospheric occurrence of phytotoxic pollutants. Chemosphere 1988, 17, 511–515. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA), 2014, Priority Pollutant List. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/priority-pollutant-list-epa.pdf (accessed on 15 December 2014).
- Schüssler, W.; Nitschke, L. Nitrophenols in precipitation. Chemosphere 2001, 42, 277–283. [Google Scholar] [CrossRef]
- Kawamura, K.; Kaplan, I.R. Organic compounds in the rainwater of Los Angeles. Environ. Sci. Technol. 1983, 17, 497–501. [Google Scholar] [CrossRef]
- Leuenberger, C.; Ligocki, M.P.; Pankow, J.F. Trace organic compounds in rain. 4. Identities, concentrations, and scavenging mechanisms for phenols in urban air and rain. Environ. Sci. Technol. 1985, 19, 1053–1058. [Google Scholar] [CrossRef]
- Cecinato, A.; Di Palo, V.; Pomata, D.; Scianò, M.C.T.; Possanzini, M. Measurement of phase-distributed nitrophenols in Rome ambient air. Chemosphere 2005, 59, 679–683. [Google Scholar] [CrossRef]
- Morville, S.; Scheyer, A.; Mirabel, P.; Millet, M. Spatial and geographical variations of urban, suburban and rural atmospheric concentrations of phenols and nitrophenols. Environ. Sci. Pollut. Res. 2006, 13, 83–89. [Google Scholar] [CrossRef]
- Bishop, E.J.; Mitra, S. Measurement of nitrophenols in air samples by impinger sampling and supported liquid membrane micro-extraction. Anal. Chim. Acta 2007, 583, 10–14. [Google Scholar] [CrossRef]
- Delhomme, O.; Morville, S.; Millet, M. Seasonal and diurnal variations of atmospheric concentrations of phenols and nitrophenols measured in the Strasbourg area, France. Atmos. Pollut. Res. 2010, 1, 16–22. [Google Scholar] [CrossRef]
- Lüttke, J.; Levsen, K.; Acker, K.; Wieprecht, W.; Möller, D. Phenols and nitrated phenols in clouds at Mount Brocken. Int. J. Environ. Anal. Chem. 1999, 74, 69–89. [Google Scholar] [CrossRef]
- Alber, M.; Böhm, H.B.; Brodesser, J.; Schöler, H.F.; Feltes, J.; Levsen, K. Determination of nitrophenols in rain and snow. Anal. Chem. 1989, 334, 540–545. [Google Scholar] [CrossRef]
- Nojima, K.; Kawaguchi, A.; Ohya, T.; Kanno, S.; Hirobe, M. Studies on photochemical reaction of air pollutants. X. Identification of nitrophenols in suspended particulates. Chem. Pharm. Bull. 1983, 31, 1047–1051. [Google Scholar] [CrossRef]
- Richartz, H.; Reischl, A.; Trautner, F.; Hutzinger, O. Nitrated phenols in fog. Atmos. Environ. Part A Gen. Top. 1990, 24, 3067–3071. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Stierli, R.; Folsom, B.R.; Zeyer, J. Compound properties relevant for assessing the environmental partitioning of nitrophenols. Environ. Sci. Technol. 1988, 22, 83–92. [Google Scholar] [CrossRef]
- Vanni, A.; Pellegrino, V.; Gamberini, R.; Calabria, A. An evidence for nitrophenols contamination in Antarctic fresh-water and snow. Simultaneous determination of nitrophenols and nitroarenes at ng/L levels. Int. J. Environ. Anal. Chem. 2001, 79, 349–365. [Google Scholar] [CrossRef]
- Harrison, M.A.; Barra, S.; Borghesi, D.; Vione, D.; Arsene, C.; Olariu, R.I. Nitrated phenols in the atmosphere: A review. Atmos. Environ. 2005, 39, 231–248. [Google Scholar] [CrossRef]
- Lu, C.; Wang, X.; Dong, S.; Zhang, J.; Li, J.; Zhao, Y.; Liang, Y.; Xue, L.; Xie, H.; Zhang, Q.; et al. Emissions of fine particulate nitrated phenols from various on-road vehicles in China. Environ. Res. 2019, 179, 108709. [Google Scholar] [CrossRef]
- Lu, C.; Wang, X.; Li, R.; Gu, R.; Zhang, Y.; Li, W.; Gao, R.; Chen, B.; Xue, L.; Wang, W. Emissions of fine particulate nitrated phenols from residential coal combustion in China. Atmos. Environ. 2019, 203, 10–17. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, M.; Wang, Y.; Zheng, J.; Shang, D.; Yang, Y.; Liu, Y.; Li, X.; Tang, R.; Zhu, W.; et al. The formation of nitro-aromatic compounds under high NOx and anthropogenic VOC conditions in urban Beijing, China. Atmos. Chem. Phys. 2019, 19, 7649–7665. [Google Scholar] [CrossRef]
- Tremp, J.; Mattrel, P.; Fingler, S.; Giger, W.J.W.A. Phenols and nitrophenols as tropospheric pollutants: Emissions from automobile exhausts and phase transfer in the atmosphere. Water Air Soil Pollut. 1993, 68, 113–123. [Google Scholar] [CrossRef]
- Bolzacchini, E.; Perrone, M.G.; Gianelle, V.; Rindone, B.; Avella, F.; Faedo, D.; Ierardi, P.; Astorga, C.; Hjorth, J. Nitrophenols in Milan atmosphere and urban particulate. In Proceedings of the 8th Symposium of the Environmental Chemistry Division, Italian Chemical Society, Siena, Italy, 8–11 June 2004. [Google Scholar]
- Furuta, C.; Suzuki, A.K.; Watanabe, G.; Li, C.; Taneda, S.; Taya, K. Nitrophenols isolated from diesel exhaust particles promote the growth of MCF-7 breast adenocarcinoma cells. Toxicol. Appl. Pharmacol. 2008, 230, 320–326. [Google Scholar] [CrossRef]
- Tompkins, C.J.; Michaels, A.S.; Peretti, S.W. Removal of p-nitrophenol from aqueous solution by membrane-supported solvent extraction. J. Membr. Sci. 1992, 75, 277–292. [Google Scholar] [CrossRef]
- Rodriguez, I.; Llompart, M.P.; Cela, R. Solid-phase extraction of phenols. J. Chromatogr. A 2000, 885, 291–304. [Google Scholar] [CrossRef]
- Schlett, C.; Pfeifer, P. Bestimmung substituierter Phenole unterhalb des Geruchsschwellenwertes. Vom Wasser 1992, 79, 65–74. [Google Scholar]
- Bejan, I.G.; Olariu, R.-I.; Wiesen, P. Secondary Organic Aerosol Formation from Nitrophenols Photolysis under Atmospheric Conditions. Atmosphere 2020, 11, 1346. [Google Scholar] [CrossRef]
- Nojima, K.; Fukaya, K.; Fukui, S.; Kanno, S. Studies on photochemistry of aromatic hydrocarbons II: The formation of nitrophenols and nitrobenzene by the photochemical reaction of benzene in the presence of nitrogen monoxide. Chemosphere 1975, 4, 77–82. [Google Scholar] [CrossRef]
- Nojima, K.; Fukaya, K.; Fukui, S.; Kanno, S.; Nishiyama, S.; Wada, Y. Studies on photochemistry of aromatic hydrocarbons III: Formation of nitrophenols by the photochemical reaction of toluene in the presence of nitrogen monoxide and nitrophenols in rain. Chemosphere 1976, 5, 25–30. [Google Scholar] [CrossRef]
- Nojima, K.; Kanno, S. Studies on photochemistry of aromatic hydrocarbons. IV. Mechanism of formation of nitrophenols by the photochemical reaction of benzene and toluene with nitrogen oxides in air. Chemosphere 1977, 6, 371–376. [Google Scholar] [CrossRef]
- Atkinson, R.; Carter, W.P.; Darnall, K.R.; Winer, A.M.; Pitts, J.N., Jr. A smog chamber and modeling study of the gas phase NOx–air photooxidation of toluene and the cresols. Int. J. Chem. Kinet. 1980, 12, 779–836. [Google Scholar] [CrossRef]
- Grosjean, D. Atmospheric reactions of ortho cresol: Gas phase and aerosol products. Atmos. Environ. 1984, 18, 1641–1652. [Google Scholar] [CrossRef]
- Leone, J.A.; Seinfeld, J.H. Comparative analysis of chemical reaction mechanisms for photochemical smog. Atmos. Environ. 1985, 19, 437–464. [Google Scholar] [CrossRef]
- Ng, N.L.; Kwan, A.J.; Surratt, J.D.; Chan, A.W.H.; Chhabra, P.S.; Sorooshian, A.; Pye, H.O.T.; Crounse, J.D.; Wennberg, P.O.; Flagan, R.C.; et al. Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3). Atmos. Chem. Phys. 2008, 8, 4117–4140. [Google Scholar] [CrossRef]
- Atkinson, R.; Aschmann, S.M.; Arey, J. Reactions of hydroxyl and nitrogen trioxide radicals with phenol, cresols, and 2-nitrophenol at 296.+-. 2 K. Environ. Sci. Technol. 1992, 26, 1397–1403. [Google Scholar] [CrossRef]
- Bolzacchini, E.; Bruschi, M.; Hjorth, J.; Meinardi, S.; Orlandi, M.; Rindone, B.; Rosenbohm, E. Gas-phase reaction of phenol with NO3. Environ. Sci. Technol. 2001, 35, 1791–1797. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, Q.; Li, Y.; Huang, G.; Liu, Y.; Lu, S.; Zheng, Y.; Qiu, W.; Lu, K.; Qiu, X.; et al. Secondary production of gaseous nitrated phenols in polluted urban environments. Environ. Sci. Technol. 2021, 55, 4410–4419. [Google Scholar] [CrossRef]
- Bejan, I.; Abd El Aal, Y.; Barnes, I.; Benter, T.; Bohn, B.; Wiesen, P.; Kleffmann, J. The photolysis of ortho-nitrophenols: A new gas phase source of HONO. Phys. Chem. Chem. Phys. 2006, 8, 2028–2035. [Google Scholar] [CrossRef]
- Schwantes, R.H.; Schilling, K.A.; McVay, R.C.; Lignell, H.; Coggon, M.M.; Zhang, X.; Wennberg, P.O.; Seinfeld, J.H. Formation of highly oxygenated low-volatility products from cresol oxidation. Atmos. Chem. Phys. 2017, 17, 3453–3474. [Google Scholar] [CrossRef]
- Chebbi, A.; Carlier, P. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review. Atmos. Environ. 1996, 30, 4233–4249. [Google Scholar] [CrossRef]
- Alier, M.; Osto, M.D.; Lin, Y.H.; Surratt, J.D.; Tauler, R.; Grimalt, J.O.; van Drooge, B.L. On the origin of water-soluble organic tracer compounds in fine aerosols in two cities: The case of Los Angeles and Barcelona. Environ. Sci. Pollut. Res. 2014, 21, 11649–11660. [Google Scholar] [CrossRef]
- Li, X.D.; Yang, Z.; Fu, P.; Yu, J.; Lang, Y.C.; Liu, D.; Ono, K.; Kawamura, K. High abundances of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in fine aerosols (PM2.5) in Chengdu, China during wintertime haze pollution. Environ. Sci. Pollut. Res. 2015, 22, 12902–12918. [Google Scholar] [CrossRef]
- Keene, W.C.; Galloway, J.N. The biogeochemical cycling of formic and acetic acids through the troposphere: An overview of current understanding. Tellus B Chem. Phys. Meteorol. 1988, 40, 322–334. [Google Scholar] [CrossRef]
- Khare, P.; Kumar, N.; Kumari, K.M.; Srivastava, S.S. Atmospheric formic and acetic acids: An overview. Rev. Geophys. 1999, 37, 227–248. [Google Scholar] [CrossRef]
- Sun, J.; Ariya, P.A. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmos. Environ. 2006, 40, 795–820. [Google Scholar] [CrossRef]
- Bastidas, D.M.; La Iglesia, V.M. Organic acid vapours and their effect on corrosion of copper: A review. Corros. Eng. Sci. Technol. 2007, 42, 272–280. [Google Scholar] [CrossRef]
- Nolte, C.G.; Fraser, M.P.; Cass, G.R. Gas phase C2–C10 organic acids concentrations in the Los Angeles atmosphere. Environ. Sci. Technol. 1999, 33, 540–545. [Google Scholar] [CrossRef]
- Kawamura, K.; Ng, L.L.; Kaplan, I.R. Determination of organic acids (C1–C10) in the atmosphere, motor exhausts, and engine oils. Environ. Sci. Technol. 1985, 19, 1082–1086. [Google Scholar] [CrossRef]
- Satsumabayashi, H.; Kurita, H.; Yokouchi, Y.; Ueda, H. Mono-and di-carboxylic acids under long-range transport of air pollution in central Japan. Tellus B Chem. Phys. Meteorol. 1989, 41, 219–229. [Google Scholar] [CrossRef]
- Pye, H.O.; Nenes, A.; Alexander, B.; Ault, A.P.; Barth, M.C.; Clegg, S.L.; Collett, J.L., Jr.; Fahey, K.M.; Hennigan, C.J.; Herrmann, H.; et al. The acidity of atmospheric particles and clouds. Atmos. Chem. Phys. 2020, 20, 4809–4888. [Google Scholar] [CrossRef]
- Mochizuki, T.; Kawamura, K.; Nakamura, S.; Kanaya, Y.; Wang, Z. Enhanced levels of atmospheric low-molecular weight monocarboxylic acids in gas and particulates over Mt. Tai, North China, during field burning of agricultural wastes. Atmos. Environ. 2017, 171, 237–247. [Google Scholar] [CrossRef]
- Andreae, M.O.; Talbot, R.W.; Andreae, T.W.; Harriss, R.C. Formic and acetic acid over the central Amazon region, Brazil: 1. Dry season. J. Geophys. Res. Atmos. 1988, 93, 1616–1624. [Google Scholar] [CrossRef]
- Mochizuki, T.; Kawamura, K.; Aoki, K.; Sugimoto, N. Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan. Atmos. Chem. Phys. 2016, 16, 14621–14633. [Google Scholar] [CrossRef]
- Veres, P.R.; Roberts, J.M.; Cochran, A.K.; Gilman, J.B.; Kuster, W.C.; Holloway, J.S.; Graus, M.; Flynn, J.; Lefer, B.; Warneke, C.; et al. Evidence of rapid production of organic acids in an urban air mass. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Zemankova, K.; Brechler, J. Emissions of biogenic VOC from forest ecosystems in central Europe: Estimation and comparison with anthropogenic emission inventory. Environ. Pollut. 2010, 158, 462–469. [Google Scholar] [CrossRef]
- Cheung, K.L.; Ntziachristos, L.; Tzamkiozis, T.; Schauer, J.J.; Samaras, Z.; Moore, K.F.; Sioutas, C. Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Sci. Technol. 2010, 44, 500–513. [Google Scholar] [CrossRef]
- Gomez, S.L.; Carrico, C.M.; Allen, C.; Lam, J.; Dabli, S.; Sullivan, A.P.; Aiken, A.C.; Rahn, T.; Romonosky, D.; Chylek, P.; et al. Southwestern US biomass burning smoke hygroscopicity: The role of plant phenology, chemical composition, and combustion properties. J. Geophys. Res. Atmos. 2018, 123, 5416–5432. [Google Scholar] [CrossRef]
- Grosjean, D. Organic acids in southern California air: Ambient concentrations, mobile source emissions, in situ formation and removal processes. Environ. Sci. Technol. 1989, 23, 1506–1514. [Google Scholar] [CrossRef]
- Talbot, R.W.; Beecher, K.M.; Harriss, R.C.; Cofer III, W.R. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site. J. Geophys. Res. Atmos. 1988, 93, 1638–1652. [Google Scholar] [CrossRef]
- Talbot, R.W.; Andreae, M.O.; Berresheim, H.; Jacob, D.J.; Beecher, K.M. Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia: 2. Wet season. J. Geophys. Res. Atmos. 1990, 95, 16799–16811. [Google Scholar] [CrossRef]
- Keene, W.C.; Galloway, J.N. Considerations regarding sources for formic and acetic acids in the troposphere. J. Geophys. Res. Atmos. 1986, 91, 14466–14474. [Google Scholar] [CrossRef]
- Khare, P.; Satsangi, G.S.; Kumar, N.; Kumari, K.M.; Srivastava, S.S. Surface measurements of formaldehyde and formic and acetic acids at a subtropical semiarid site in India. J. Geophys. Res. Atmos. 1997, 102, 18997–19005. [Google Scholar] [CrossRef]
- Calvert, J.G.; Madronich, S. Theoretical study of the initial products of the atmospheric oxidation of hydrocarbons. J. Geophys. Res. Atmos. 1987, 92, 2211–2220. [Google Scholar] [CrossRef]
- Duce, R.A.; Mohnen, V.A.; Zimmerman, P.R.; Grosjean, D.; Cautreels, W.; Chatfield, R.; Jaenicke, R.; Ogren, J.A.; Pellizzari, E.D.; Wallace, G.T. Organic material in the global troposphere. Rev. Geophys. 1983, 21, 921–952. [Google Scholar] [CrossRef]
- Madronich, S.; Calvert, J.G. Permutation reactions of organic peroxy radicals in the troposphere. J. Geophys. Res. Atmos. 1990, 95, 5697–5715. [Google Scholar] [CrossRef]
- Kawamura, K.; Imai, Y.; Barrie, L.A. Photochemical production and loss of organic acids in high Arctic aerosols during long-range transport and polar sunrise ozone depletion events. Atmos. Environ. 2005, 39, 599–614. [Google Scholar] [CrossRef]
- Orzechowska, G.E.; Paulson, S.E. Photochemical sources of organic acids. 1. Reaction of ozone with isoprene, propene, and 2-butenes under dry and humid conditions using SPME. J. Phys. Chem. A 2005, 109, 5358–5365. [Google Scholar] [CrossRef]
- Mattila, J.M.; Brophy, P.; Kirkland, J.; Hall, S.; Ullmann, K.; Fischer, E.V.; Brown, S.; McDuffie, E.; Tevlin, A.; Farmer, D.K. Tropospheric sources and sinks of gas-phase acids in the Colorado Front Range. Atmos. Chem. Phys. 2018, 18, 12315–12327. [Google Scholar] [CrossRef]
- Avery, G.B., Jr.; Willey, J.D.; Wilson, C.A. Formic and acetic acids in coastal North Carolina rainwater. Environ. Sci. Technol. 1991, 25, 1875–1880. [Google Scholar] [CrossRef]
- Nolte, C.G.; Solomon, P.A.; Fall, T.; Salmon, L.G.; Cass, G.R. Seasonal and spatial characteristics of formic and acetic acids concentrations in the southern California atmosphere. Environ. Sci. Technol. 1997, 31, 2547–2553. [Google Scholar] [CrossRef]
- Paulot, F.; Wunch, D.; Crounse, J.D.; Toon, G.C.; Millet, D.B.; DeCarlo, P.F.; Vigouroux, C.; Deutscher, N.M.; González Abad, G.; Notholt, J.; et al. Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmos. Chem. Phys. 2011, 11, 1989–2013. [Google Scholar] [CrossRef]
- Xie, Y.; Lu, H.; Yi, A.; Zhang, Z.; Zheng, N.; Fang, X.; Xiao, H. Characterization and source analysis of water–soluble ions in PM2.5 at a background site in Central China. Atmos. Res. 2020, 239, 104881. [Google Scholar] [CrossRef]
- Legrand, M.; Preunkert, S.; Galy-Lacaux, C.; Liousse, C.; Wagenbach, D. Atmospheric year-round records of dicarboxylic acids and sulfate at three French sites located between 630 and 4360 m elevation. J. Geophys. Res. Atmos. 2005, 110, D13302. [Google Scholar] [CrossRef]
- Sellegri, K.; Laj, P.; Marinoni, A.; Dupuy, R.; Legrand, M.; Preunkert, S. Contribution of gaseous and particulate species to droplet solute composition at the Puy de Dôme, France. Atmos. Chem. Phys. 2003, 3, 1509–1522. [Google Scholar] [CrossRef]
- Servant, J.; Kouadio, G.; Cros, B.; Delmas, R. Carboxylic monoacids in the air of Mayombe forest (Congo): Role of the forest as a source or sink. J. Atmos. Chem. 1991, 12, 367–380. [Google Scholar] [CrossRef]
- Peña, R.M.; García, S.; Herrero, C.; Losada, M.; Vázquez, A.; Lucas, T. Organic acids and aldehydes in rainwater in a northwest region of Spain. Atmos. Environ. 2002, 36, 5277–5288. [Google Scholar] [CrossRef]
- Puxbaum, H.; Rosenberg, C.; Gregori, M.; Lanzerstorfer, C.; Ober, E.; Winiwarter, W. Atmospheric concentrations of formic and acetic acid and related compounds in eastern and northern Austria. Atmos. Environ. 1988, 22, 2841–2850. [Google Scholar] [CrossRef]
- Grosjean, D. Formic acid and acetic acid: Emissions, atmospheric formation and dry deposition at two southern California locations. Atmos. Environ. Part A Gen. Top. 1992, 26, 3279–3286. [Google Scholar] [CrossRef]
- Helas, G.; Bingemer, H.; Andreae, M.O. Organic acids over equatorial Africa: Results from DECAFE 88. J. Geophys. Res. Atmos. 1992, 97, 6187–6193. [Google Scholar] [CrossRef]
- Sakugawa, H.; Kaplan, I.R.; Shepard, L.S. Measurements of H2O2, aldehydes and organic acids in Los Angeles rainwater: Their sources and deposition rates. Atmos. Environ. Part B Urban Atmos. 1993, 27, 203–219. [Google Scholar] [CrossRef]
- Khwaja, H.A. Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site. Atmos. Environ. 1995, 29, 127–139. [Google Scholar] [CrossRef]
- Souza, S.R.; Vasconcellos, P.C.; Carvalho, L.R. Low molecular weight carboxylic acids in an urban atmosphere: Winter measurements in Sao Paulo City, Brazil. Atmos. Environ. 1999, 33, 2563–2574. [Google Scholar] [CrossRef]
- Bokwa, A.; Wypych, A.; Hajto, M.J. Impact of Natural and Anthropogenic Factors on Fog Frequency and Variability in Kraków, Poland in the Years 1966–2015. Aerosol Air Qual. Res. 2018, 18, 165–177. [Google Scholar] [CrossRef]
- Helas, G.; Andreae, M.O.; Hartmann, W.R. Behavior of atmospheric formic and acetic acid in the presence of hydrometeors. J. Atmos. Chem. 1992, 15, 101–115. [Google Scholar] [CrossRef]
- Millet, M. Etude de la Composition Chimique des Brouillards et Analyse des Pesticides dans les Phases Liquide, Gazeuse et Particulaire de L’atmosphère. Ph.D. Thesis, Université Louis Pasteur, Strasbourg, France, 1994; p. 204. [Google Scholar]
- Millet, M.; Sanusi, A.; Wortham, H. Chemical composition of fogwater in an urban area: Strasbourg (France). Environ. Pollut. 1996, 94, 345–354. [Google Scholar] [CrossRef]
- Millet, M.; Wortham, H.; Sanusi, A.; Mirabel, P. Low molecular weight organic acids in fogwater in an urban area: Strasbourg (France). Sci. Total Environ. 1997, 206, 57–65. [Google Scholar] [CrossRef]
- Millet, M.; Wortham, H.; Sanusi, A.; Mirabel, P. Atmospheric contamination by pesticides: Determination in the liquid, gaseous and particulate phases. Environ. Sci. Pollut. Res. 1997, 4, 172–180. [Google Scholar] [CrossRef]
- Herckes, P.; Wortham, H.; Mirabel, P.; Millet, M. Evolution of the fogwater composition in Strasbourg (France) from 1990 to 1999. Atmos. Res. 2002, 64, 53–62. [Google Scholar] [CrossRef]
- Khoury, D.; Millet, M.; Jabali, Y.; Weissenberger, T.; Delhomme, O. Spatio-temporal evolution of fogwater chemistry in Alsace. Air 2024, 2, 229–246. [Google Scholar] [CrossRef]
- Khoury, D.; Millet, M.; Jabali, Y.; Delhomme, O. Occurrence of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Fogwater at Urban, Suburban, and Rural Sites in Northeast France between 2015 and 2021. Atmosphere 2024, 15, 291. [Google Scholar] [CrossRef]
- Khoury, D.; Jabali, Y.; Delhomme, O.; Millet, M. Pesticide occurrence and distribution in fogwater collected at four sites at Strasbourg metropolitan between 2015 and 2021. Environ. Pollut. 2024, 359, 124564. [Google Scholar] [CrossRef]
- Mochizuki, T.; Kawamura, K.; Yamaguchi, T.; Noguchi, I. Distributions and sources of water-soluble organic acids in fog water from mountain site (Lake Mashu) of Hokkaido, Japan. Geochem. J. 2020, 54, 315–326. [Google Scholar] [CrossRef]
- Demoz, B.B.; Collett, J.L., Jr.; Daube, B.C., Jr. On the Caltech active strand cloudwater collectors. Atmos. Res. 1996, 41, 47–62. [Google Scholar] [CrossRef]
- Daube, B.C., Jr.; Flagan, R.C.; Hoffmann, M.R. California Institute of Technology CalTech. Active Cloudwater Collector. U.S. Patent 4,697,462, 6 October 1987. [Google Scholar]
- Khoury, D.; Millet, M.; Jabali, Y.; Delhomme, O. Analytical procedure for the concomitant analysis of 242 polar and non-polar organic compounds of different functional groups in fog water. Microchem. J. 2023, 185, 108235. [Google Scholar] [CrossRef]
- Roumeliotis, P.; Liebald, W.; Unger, K.K. Determination of phenols from automobile exhaust by means of high-performance liquid chromatography (HPLC). Int. J. Environ. Anal. Chem. 1983, 9, 27–43. [Google Scholar] [CrossRef]
- Rubio, M.A.; Guerrero, M.J.; Villena, G.; Lissi, E. Hydroperoxides in dew water in downtown Santiago, Chile. A comparison with gas-phase values. Atmos. Environ. 2006, 40, 6165–6172. [Google Scholar] [CrossRef]
- Schummer, C.; Groff, C.; Al Chami, J.; Jaber, F.; Millet, M. Analysis of phenols and nitrophenols in rainwater collected simultaneously on an urban and rural site in east of France. Sci. Total Environ. 2009, 407, 5637–5643. [Google Scholar] [CrossRef]
- Tanner, P.A.; Law, P.T. Organic acids in the atmosphere and bulk deposition of Hong Kong. Water Air Soil Pollut. 2003, 142, 279–297. [Google Scholar] [CrossRef]
- Munger, J.W.; Jacob, D.J.; Waldman, J.M.; Hoffmann, M.R. Fogwater chemistry in an urban atmosphere. J. Geophys. Res. Ocean. 1983, 88, 5109–5121. [Google Scholar] [CrossRef]
- Rey, A.; Bahamonde, A.; Casas, J.A.; Rodríguez, J.J. Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts. Water Sci. Technol. 2010, 61, 2769–2778. [Google Scholar] [CrossRef]
- Kawamura, K.; Kaplan, I.R. Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environ. Sci. Technol. 1987, 21, 105–110. [Google Scholar] [CrossRef]
- Yao, X.; Fang, M.; Chan, C.K.; Ho, K.F.; Lee, S.C. Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmos. Environ. 2004, 38, 963–970. [Google Scholar] [CrossRef]
This Study (October–December) | [98] (May) | [98] (July) | |
---|---|---|---|
Heptanoic acid | 0.07 (n.d.–2.3) | 1.0 (0.4–2.3) | 1.6 (n.d.–3.8) |
Octanoic acid | 1.0 (0.6–6.9) | 0.4 (n.d.–0.8) | 0.3 (n.d.–0.7) |
Nonanoic acid | 0.3 (0.09–3.6) | n.d. | 1.2 (n.d.–8.6) |
Decanoic acid | 0.9 (0.5–7.2) | 1.3 (0.02–2.4) | 0.3 (n.d.–1.6) |
Oxalic acid | 1.5 (n.d.–7.4) | 467.0 (218.0–754.0) | 89.0 (27.0–335.0) |
Malonic acid | 0.2 (n.d.–1.5) | 59.0 (28.0–83.0) | 7.2 (n.d.–39.0) |
Maleic acid | 1.1 (n.d.–12.1) | 9.9 (1.3–22.0) | 2.1 (n.d.–8.0) |
Succinic acid | 2.4 (0.3–29.5) | 156.0 (n.d.–374) | 14.0 (1.0–48.0) |
Methyl succinic acid | 0.3 (n.d.–1.5) | 3.6 (n.d.–14.0) | 3.7 (0.3–12.2) |
Fumaric acid | 0.7 (n.d.–3.6) | 27.0 (n.d.–64.0) | 2.0 (0.8–3.6) |
Glutaric acid | 0.9 (0.1–8.8) | n.d. | 5.0 (0.2–11.1) |
Adipic acid | 0.7 (0.07–6.1) | 20.0 (5.9–42.0) | 3.3 (1.2–7.5) |
Pimelic acid | 1.2 (0.1–7.7) | n.d. | 1.1 (n.d.–2.0) |
Phthalic acid | 0.5 (n.d.–4.9) | 8.7 (n.d.–16.0) | 7.0 (0.2–11.0) |
Suberic acid | 1.7 (0.2–16.2) | n.d. | 1.7 (n.d.–4.7) |
Azelaic acid | 1.3 (0.2–10.8) | 0.8 (n.d.–3.1) | 2.6 (0.9–6.2) |
Sebacic acid | 1.6 (0.3–11.2) | 1.3 (n.d.–5.3) | 2.6 (0.9–6.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoury, D.; Millet, M.; Jabali, Y.; Delhomme, O. Phenolic and Acidic Compounds in Radiation Fog at Strasbourg Metropolitan. Atmosphere 2024, 15, 1240. https://doi.org/10.3390/atmos15101240
Khoury D, Millet M, Jabali Y, Delhomme O. Phenolic and Acidic Compounds in Radiation Fog at Strasbourg Metropolitan. Atmosphere. 2024; 15(10):1240. https://doi.org/10.3390/atmos15101240
Chicago/Turabian StyleKhoury, Dani, Maurice Millet, Yasmine Jabali, and Olivier Delhomme. 2024. "Phenolic and Acidic Compounds in Radiation Fog at Strasbourg Metropolitan" Atmosphere 15, no. 10: 1240. https://doi.org/10.3390/atmos15101240
APA StyleKhoury, D., Millet, M., Jabali, Y., & Delhomme, O. (2024). Phenolic and Acidic Compounds in Radiation Fog at Strasbourg Metropolitan. Atmosphere, 15(10), 1240. https://doi.org/10.3390/atmos15101240