Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,077)

Search Parameters:
Keywords = innovative packaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5451 KB  
Article
Machine Learning as a Tool for Sustainable Material Evaluation: Predicting Tensile Strength in Recycled LDPE Films
by Olga Szlachetka, Justyna Dzięcioł, Joanna Witkowska-Dobrev, Mykola Nagirniak, Marek Dohojda and Wojciech Sas
Sustainability 2026, 18(2), 1064; https://doi.org/10.3390/su18021064 - 20 Jan 2026
Abstract
This study contributes to the advancement of circular economy practices in polymer manufacturing by applying machine learning algorithms (MLA) to predict the tensile strength of recycled low-density polyethylene (LDPE) building films. As the construction and packaging industries increasingly seek eco-efficient and low-carbon materials, [...] Read more.
This study contributes to the advancement of circular economy practices in polymer manufacturing by applying machine learning algorithms (MLA) to predict the tensile strength of recycled low-density polyethylene (LDPE) building films. As the construction and packaging industries increasingly seek eco-efficient and low-carbon materials, recycled LDPE offers a valuable route toward sustainable resource management. However, ensuring consistent mechanical performance remains a challenge when reusing polymer waste streams. To address this, tensile tests were conducted on LDPE films produced from recycled granules, measuring tensile strength, strain, mass per unit area, thickness, and surface roughness. Three established machine learning algorithms—feed-forward Neural Network (NN), Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGBoost)—were implemented, trained, and optimized using the experimental dataset using R statistical software (version 4.4.3). The models achieved high predictive accuracy, with XGBoost providing the most robust performance and the highest level of explainability. Feature importance analysis revealed that mass per unit area and surface roughness have a significant influence on film durability and performance. These insights enable more efficient production planning, reduced raw material usage, and improved quality control, key pillars of sustainable technological innovation. The integration of data-driven methods into polymer recycling workflows demonstrates the potential of artificial intelligence to accelerate circular economy objectives by enhancing process optimization, material performance, and resource efficiency in the plastics sector. Full article
(This article belongs to the Special Issue Circular Economy and Sustainable Technological Innovation)
Show Figures

Figure 1

28 pages, 1660 KB  
Review
Research Progress in Chemical Control of Pine Wilt Disease
by Die Gu, Taosheng Liu, Zhenhong Chen, Yanzhi Yuan, Lu Yu, Shan Han, Yonghong Li, Xiangchen Cheng, Yu Liang, Laifa Wang and Xizhuo Wang
Forests 2026, 17(1), 137; https://doi.org/10.3390/f17010137 - 20 Jan 2026
Abstract
Pine wilt disease (PWD), caused by Bursaphelenchus xylophilus, is driven by a tri-component system involving the pinewood nematode, Monochamus spp. beetle vectors, and susceptible pine hosts. Chemical control remains a scenario-dependent option for emergency suppression and high-value protection, but its deployment is [...] Read more.
Pine wilt disease (PWD), caused by Bursaphelenchus xylophilus, is driven by a tri-component system involving the pinewood nematode, Monochamus spp. beetle vectors, and susceptible pine hosts. Chemical control remains a scenario-dependent option for emergency suppression and high-value protection, but its deployment is constrained by strong regional regulatory and practical differences. In Europe (e.g., Portugal and Spain), field chemical control is generally not practiced; post-harvest phytosanitary treatments for wood and wood packaging rely mainly on heat treatment, and among ISPMs only sulfuryl fluoride is listed for wood treatment with limited use. This review focuses on recent progress in PWD chemical control, summarizing advances in nematicide discovery and modes of action, greener formulations and delivery technologies, and evidence-based, scenario-oriented applications (standing-tree protection, vector suppression, and infested-wood/inoculum management). Recent studies highlight accelerated development of target-oriented nematicides acting on key pathways such as neural transmission and mitochondrial energy metabolism, with structure–activity relationship (SAR) efforts enabling lead optimization. Formulation innovations (water-based and low-solvent products, microemulsions and suspensions) improve stability and operational safety, while controlled-release delivery systems (e.g., micro/nanocapsules) enhance penetration and persistence. Application technologies such as trunk injection, aerial/UAV operations, and fumigation/treatment approaches further strengthen scenario compatibility and operational efficiency. Future research should prioritize robust target–mechanism evidence, resistance risk management and rotation strategies, greener formulations with smart delivery, and scenario-based exposure and compliance evaluation to support precise, green, and sustainable integrated control together with biological and other sustainable approaches. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

11 pages, 2977 KB  
Article
Langasite (LGS) Surface Acoustic Wave (SAW) Pressure Sensor with Kovar Alloy Point-Force Packaging for High-Temperature Environments
by Yabing Ke, Ruoyu Zhang, Chen Fu, Jingting Luo, Zhengxi He and Zhiguang Deng
Sensors 2026, 26(2), 567; https://doi.org/10.3390/s26020567 - 14 Jan 2026
Viewed by 168
Abstract
Langasite (LGS)-based surface acoustic wave (SAW) sensors are promising for high-temperature pressure detection. However, their performance is limited by the low pressure sensitivity of conventional sealed-cavity packaging and temperature-induced measurement drift. To address these issues, this study introduces a novel LGS SAW pressure [...] Read more.
Langasite (LGS)-based surface acoustic wave (SAW) sensors are promising for high-temperature pressure detection. However, their performance is limited by the low pressure sensitivity of conventional sealed-cavity packaging and temperature-induced measurement drift. To address these issues, this study introduces a novel LGS SAW pressure sensor featuring two key innovations: a Kovar alloy point-force packaging structure to amplify pressure-induced LGS substrate deformation, enhancing sensitivity compared to traditional designs, and SAW resonators fabricated on an LGS (0°, 138.5°, 26.7°) cut, selected based on electromechanical simulations for its superior intrinsic pressure sensitivity and monotonic frequency–temperature response, effectively mitigating temperature interference on pressure measurements. Experimental characterizations show the resonator achieves a high Q-value of ~3000 at ~357 MHz. Tested under conditions of 250 °C and 0–0.4 MPa, the sensor exhibits a pressure sensitivity of 0.1866 MHz/MPa with a relative error of only 4.8% versus the finite element method (FEM)-simulated 0.196 MHz/MPa, demonstrating the proposed design’s effectiveness for accurate, stable pressure monitoring in harsh high-temperature environments such as turbine engines and high-temperature manufacturing lines. Full article
(This article belongs to the Special Issue Exploring the Sensing Potential of Acoustic Wave Devices)
Show Figures

Figure 1

15 pages, 205 KB  
Conference Report
Preparing Health Professionals for Environmental Health and Climate Change: A Challenge for Europe
by Guglielmo M. Trovato, Camille A. Huser, Lynn Wilson and Giovanni S. Leonardi
Healthcare 2026, 14(2), 208; https://doi.org/10.3390/healthcare14020208 - 14 Jan 2026
Viewed by 124
Abstract
Even though environmental health and climate change are rapidly intensifying the severity of determinants of disease and inequity, training for health professionals in these areas remains fragmented across Europe. To address this gap, the European Medical Association (EMA), in collaboration with the European [...] Read more.
Even though environmental health and climate change are rapidly intensifying the severity of determinants of disease and inequity, training for health professionals in these areas remains fragmented across Europe. To address this gap, the European Medical Association (EMA), in collaboration with the European Network on Climate and Health Education (ENCHE), the International Network on Public Health and Environment Tracking (INPHET) and University College London, convened a one-day hybrid roundtable in London on 17 September 2025, focused on “Preparing Health Professionals for Environmental Health and Climate Change: A Challenge for Europe”. The programme combined keynote presentations on global and European policy, health economics and curriculum design with three disease-focused roundtables (respiratory, cardiovascular and neurological conditions), each examining the following topics: (A) climate and environment as preventable causes of disease; (B) healthcare as a source of environmental harm; and (C) capacity building through education and training. Contributors highlighted how environmental epidemiology, community-based prevention programmes and sustainable clinical practice can be integrated into teaching, illustrating models from respiratory, cardiovascular, surgical and neurological care. EU-level speakers outlined the policy framework (European Green Deal, Zero Pollution Action Plan and forthcoming global health programme) and tools through which professional and scientific societies can both inform and benefit from European action on environment and health. Discussions converged on persistent obstacles, including patchy national commitments to decarbonising healthcare, isolated innovations that are not scaled and curricula that do not yet embed sustainability in examinable clinical competencies. The conference concluded with proposals to develop an operational education package on environmental and climate health; map and harmonise core competencies across undergraduate, postgraduate and Continuing -professional-development pathways; and establish a permanent EMA-led working group to co-produce a broader position paper with professional and scientific societies. This conference report summarises the main messages and is intended as a bridge between practice-based experience and a formal EMA position on environmental-health training in Europe. Full article
(This article belongs to the Section Healthcare and Sustainability)
19 pages, 2693 KB  
Article
Physicochemical Properties and Fatty Acid Profiling of Texturized Pea Protein Patties Partially Replaced with Chia Seed Powder During Refrigerated Storage
by Kartik Sharma, Aminee Saree, Ramida Jeenplangchat, Haymar Theinzan, Samart Sai-Ut, Passakorn Kingwascharapong, Supatra Karnjanapratum and Saroat Rawdkuen
Foods 2026, 15(2), 270; https://doi.org/10.3390/foods15020270 - 12 Jan 2026
Viewed by 240
Abstract
The increasing demand for sustainable, nutrient-dense plant-based foods has intensified interest in functional ingredients that enhance nutritional quality. This study developed plant-based patties by partially replacing texturized pea protein with chia seed powder (CSP; Salvia hispanica L.) and evaluated their quality during 20 [...] Read more.
The increasing demand for sustainable, nutrient-dense plant-based foods has intensified interest in functional ingredients that enhance nutritional quality. This study developed plant-based patties by partially replacing texturized pea protein with chia seed powder (CSP; Salvia hispanica L.) and evaluated their quality during 20 days of refrigerated storage (4 °C) under nitrogen-flushed packaging. Six formulations (F1–F6) containing 0–25% CSP were evaluated for physicochemical properties, lipid oxidation, and nutritional composition. Based on an optimal balance of texture, cooking yield, antioxidant capacity, and nutritional enhancement, the formulation containing 20% CSP was selected for further analyses. Proximate analysis revealed significant increases in protein (18–21%), fat (9–12%), and ash (2–3%) contents, accompanied by a slight reduction in moisture. All formulations maintained a stable pH throughout storage. Lipid oxidation increased gradually from 0.10–0.17 to 0.89–1.10 mg MDA/kg over 20 days but remained within acceptable limits. Fatty acid profiling indicated enhanced polyunsaturated fatty acids, particularly omega-3 and omega-6. Amino acid analysis showed elevated levels of key amino acids, including glutamic acid, aspartic acid, arginine, leucine, and lysine. Overall, patties containing 20% CSP exhibited improved nutritional quality and satisfactory oxidative stability, highlighting CSP as a promising functional ingredient for plant-based meat alternatives. Full article
Show Figures

Figure 1

39 pages, 4702 KB  
Review
Biopolymer-Based Active and Intelligent Food Packaging: Recent Advances in Materials, Technologies, and Applications
by Shakila Parveen Asrafali, Thirukumaran Periyasamy and Jaewoong Lee
Polymers 2026, 18(2), 196; https://doi.org/10.3390/polym18020196 - 10 Jan 2026
Viewed by 535
Abstract
The food packaging industry is undergoing a paradigm shift from conventional petroleum-based materials toward sustainable biopolymer-based alternatives that offer enhanced functionality beyond mere containment and protection. This comprehensive review examines recent advances in the development of active and intelligent food packaging systems utilizing [...] Read more.
The food packaging industry is undergoing a paradigm shift from conventional petroleum-based materials toward sustainable biopolymer-based alternatives that offer enhanced functionality beyond mere containment and protection. This comprehensive review examines recent advances in the development of active and intelligent food packaging systems utilizing natural biopolymers including polysaccharides, proteins, and their composites. The integration of antimicrobial agents, natural colorimetric indicators, nanofillers, and advanced fabrication techniques has enabled the creation of multifunctional packaging materials capable of extending shelf life, monitoring food quality in real-time, and reducing environmental impact. This review organizes the current research on starch, chitosan-, cellulose-, pectin-, bacterial cellulose-, pullulan-, gelatin-, zein-, and dextran-based packaging systems, with particular emphasis on their physicochemical properties, functional performance, and practical applications for preserving various food products, including meat, fish, fruits, and other perishables. The challenges associated with mechanical strength, water resistance, scalability, and commercial viability are critically evaluated alongside emerging solutions involving chemical modifications, nanocomposite formulations, and innovative processing technologies. Future perspectives highlight the need for standardization, life cycle assessments, regulatory frameworks, and consumer acceptance studies to facilitate the transition from laboratory innovations to industrial-scale implementation of sustainable biopolymer packaging solutions. Full article
Show Figures

Figure 1

20 pages, 5261 KB  
Article
Preparation of Chitosan Composite Film Loaded with Chlorogenic Acid–Chitosan Oligosaccharide Nanoparticles and Its Application in Preservation of Pleurotus geesteranus
by Ning Xu, Liru Luo, Fang Wu, Dan Luo, Liguo Feng and Huan Lu
Foods 2026, 15(2), 221; https://doi.org/10.3390/foods15020221 - 8 Jan 2026
Viewed by 203
Abstract
To reduce the environmental impact of plastic packaging in the edible fungi supply chain, this study developed an edible natural chitosan composite film loaded with chlorogenic acid–chitosan oligosaccharide nanoparticles (CGA/COS NPs). The effects of CGA/COS NPs as additives on the structure and overall [...] Read more.
To reduce the environmental impact of plastic packaging in the edible fungi supply chain, this study developed an edible natural chitosan composite film loaded with chlorogenic acid–chitosan oligosaccharide nanoparticles (CGA/COS NPs). The effects of CGA/COS NPs as additives on the structure and overall performances of chitosan-based films were systematically studied, and the application effect of nanoparticles/chitosan (NPs/CS) composite films in the preservation of Pleurotus geesteranus was explored. The results showed that the NPs had good compatibility with the film matrix, filled the voids of the chitosan matrix, enhanced the comprehensive performance of the film, and significantly improved the antioxidant activity of the film (DPPH free radical scavenging activity increased from 16.95% to 76.47%). Among all the films, the 5%NPs/CS composite film performed the best, not only having stronger barrier properties against moisture, oxygen, and ultraviolet rays, but also having the best thermal stability and mechanical properties, which can effectively extend the shelf life of Pleurotus geesteranus. This study developed a high-performance edible composite film, which provides a new path of great value for solving the preservation problem of perishable agricultural products such as Pleurotus geesteranus and promoting the innovative development of the green food packaging industry. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

19 pages, 6951 KB  
Article
Smart Packaging System with Betalains and Rosemary Essential Oil to Extend Food Shelf Life and Monitor Quality During Storage
by Noemi Takebayashi-Caballero, Carlos Regalado-González, Aldo Amaro Reyes, Silvia Lorena Amaya-Llano, José Ángel Granados-Arvizu, Genoveva Hernández Padrón, Víctor Castaño-Meneses and Monserrat Escamilla-García
Polysaccharides 2026, 7(1), 5; https://doi.org/10.3390/polysaccharides7010005 - 8 Jan 2026
Viewed by 230
Abstract
Smart packaging is an alternative that may not only replace plastic containers, but also enable food quality monitoring. In this study, an innovative packaging system was developed using a starch-chitosan polymer matrix, infused with rosemary essential oil (REO) as an antimicrobial agent, and [...] Read more.
Smart packaging is an alternative that may not only replace plastic containers, but also enable food quality monitoring. In this study, an innovative packaging system was developed using a starch-chitosan polymer matrix, infused with rosemary essential oil (REO) as an antimicrobial agent, and betalain extract as a food quality indicator. Betalain extract, derived from beet waste, can change color with pH, making it a useful natural indicator for monitoring food freshness. This packaging system is beneficial for foods that produce metabolites related to degradation, which alter pH and allow for the visual detection of changes in product quality. The objective of this work was to develop a smart packaging system with betalains and rosemary essential oil (REO) to extend food shelf life and monitor quality during storage. REO demonstrated antimicrobial activity, but its effect did not differ significantly among the microorganisms tested. On the other hand, the betalain extract (35.75% BE v/v) completely inhibited the growth of Listeria innocua and Salmonella spp. at concentrations of 50% (v/v; 0.82 ± 0.04 mg betalain/g), showing its potential as an antimicrobial agent. The interactions between chitosan and betalains were primarily associated with electrostatic interactions between the positively charged amino groups of chitosan and the negatively charged carboxyl groups of betalains. In contrast to starch, these interactions could result from interactions between the C=O groups of betalain carboxyls and water, which, in turn, interact with the hydroxyl groups of starch through hydrogen bonding. Despite the results obtained in this study, certain limitations need to be addressed in future research, such as the variability in antimicrobial activity among different bacterial strains, which could reveal differences in the efficacy of betalains and essential oils against other pathogens. Full article
Show Figures

Graphical abstract

18 pages, 777 KB  
Article
Ecofriendly Biosurfactant-Containing Solid Shampoo Formulation for Pets
by Ana Paula B. Cavalcanti, Gleice P. de Araújo, Fabíola Carolina G. de Almeida, Káren Gercyane O. Bezerra, Maria da Glória C. da Silva, Alessandra Sarubbo, Rita de Cássia F. Soares da Silva and Leonie A. Sarubbo
Cosmetics 2026, 13(1), 11; https://doi.org/10.3390/cosmetics13010011 - 8 Jan 2026
Viewed by 306
Abstract
The growing demand for sustainable cosmetic products and the rapid expansion of the pet care market have driven the search for environmentally friendly, safe, and effective alternatives to conventional formulations. In this study, an ecofriendly solid shampoo for pets was developed using exclusively [...] Read more.
The growing demand for sustainable cosmetic products and the rapid expansion of the pet care market have driven the search for environmentally friendly, safe, and effective alternatives to conventional formulations. In this study, an ecofriendly solid shampoo for pets was developed using exclusively natural ingredients and a microbial biosurfactant produced by Starmerella bombicola ATCC 22214 as a surface-active component. The biosurfactant was combined with renewable anionic and nonionic surfactants, conditioning agents, natural oils and butters, and minimal water content to obtain a compact, solid formulation. The shampoo was produced through a controlled multi-phase process and subsequently characterized by physicochemical, microbiological, toxicological, and performance analyses. The formulation exhibited stable pH values suitable for pet skin, low moisture content, absence of free alkalinity, high solid content, and satisfactory foaming capacity. Cleaning efficiency tests demonstrated effective removal of artificial sebum from pet fur while preserving softness and shine. Microbiological assays confirmed the absence of bacterial and fungal contamination, and toxicological evaluations revealed no cytotoxicity and low eye irritation potential. In addition, the shampoo showed 100% biodegradability and maintained physicochemical and organoleptic stability over six months of storage. Overall, the results demonstrate that the developed solid shampoo represents an innovative, safe, and biodegradable alternative that reduces water consumption and plastic packaging, contributing to sustainable development in the pet cosmetics sector. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

21 pages, 2849 KB  
Review
Biodegradable Innovations: Harnessing Agriculture for Eco-Friendly Plastics
by Komal Pandey, Baljeet Singh Saharan, Yogender Singh, Pardeep Kumar Sadh, Joginder Singh Duhan and Dilfuza Jabborova
J. Xenobiot. 2026, 16(1), 8; https://doi.org/10.3390/jox16010008 - 6 Jan 2026
Viewed by 401
Abstract
Agricultural biomass has potential as a renewable and versatile carbon feedstock for developing eco-friendly and biodegradable polymers capable of replacing conventional petrochemical plastics. To address the growing environmental concerns associated with plastic waste and carbon emissions, lignocellulosic residues, edible crop by-products, and algal [...] Read more.
Agricultural biomass has potential as a renewable and versatile carbon feedstock for developing eco-friendly and biodegradable polymers capable of replacing conventional petrochemical plastics. To address the growing environmental concerns associated with plastic waste and carbon emissions, lignocellulosic residues, edible crop by-products, and algal biomass were utilized as sustainable raw materials. These biomasses provided carbohydrate-, lipid-, and lignin-rich fractions that were deconstructed through optimised physical, chemical, and enzymatic pretreatments to yield fermentable intermediates, such as reducing sugars, organic acids, and fatty acids. The intermediates were subsequently converted through tailored microbial fermentation processes into biopolymer precursors, primarily polyhydroxyalkanoates (PHAs) and lactate-based monomers. The resulting monomers underwent polymerization via polycondensation and ring-opening reactions to produce high-performance biodegradable plastics with tunable structural and mechanical properties. Additionally, the direct extraction and modification of naturally occurring polymers, such as starch, cellulose, and lignin, were explored to develop blended and functionalized bioplastic formulations. Comparative evaluation revealed that these biomass-derived polymers possess favourable physical strength, thermal stability, and biodegradability under composting conditions. Life-cycle evaluation further indicated a significant reduction in greenhouse gas emissions and improved carbon recycling compared to fossil-derived counterparts. The study demonstrates that integrating agricultural residues into bioplastic production not only enhances waste valorization and rural bioeconomy but also supports sustainable material innovation for packaging, farming, and consumer goods industries. These findings position agriculture-based biodegradable polymers as a critical component of circular bioeconomy strategies, contributing to reduced plastic pollution and improved environmental sustainability. Full article
Show Figures

Graphical abstract

29 pages, 1716 KB  
Review
Innovative Preservation Technologies and Supply Chain Optimization for Reducing Meat Loss and Waste: Current Advances, Challenges, and Future Perspectives
by Hysen Bytyqi, Ana Novo Barros, Victoria Krauter, Slim Smaoui and Theodoros Varzakas
Sustainability 2026, 18(1), 530; https://doi.org/10.3390/su18010530 - 5 Jan 2026
Viewed by 523
Abstract
Food loss and waste (FLW) is a chronic problem across food systems worldwide, with meat being one of the most resource-intensive and perishable categories. The perishable character of meat, combined with complex cold chain requirements and consumer behavior, makes the sector particularly sensitive [...] Read more.
Food loss and waste (FLW) is a chronic problem across food systems worldwide, with meat being one of the most resource-intensive and perishable categories. The perishable character of meat, combined with complex cold chain requirements and consumer behavior, makes the sector particularly sensitive to inefficiencies and loss across all stages from production to consumption. This review synthesizes the latest advancements in new preservation technologies and supply chain efficiency strategies to minimize meat wastage and also outlines current challenges and future directions. New preservation technologies, such as high-pressure processing, cold plasma, pulsed electric fields, and modified atmosphere packaging, have substantial potential to extend shelf life while preserving nutritional and sensory quality. Active and intelligent packaging, bio-preservatives, and nanomaterials act as complementary solutions to enhance safety and quality control. At the same time, blockchain, IoT sensors, AI, and predictive analytics-driven digitalization of the supply chain are opening new opportunities in traceability, demand forecasting, and cold chain management. Nevertheless, regulatory uncertainty, high capital investment requirements, heterogeneity among meat types, and consumer hesitancy towards novel technologies remain significant barriers. Furthermore, the scalability of advanced solutions is limited in emerging nations due to digital inequalities. Convergent approaches that combine technical innovation with policy harmonization, stakeholder capacity building, and consumer education are essential to address these challenges. System-level strategies based on circular economy principles can further reduce meat loss and waste, while enabling by-product valorization and improving climate resilience. By integrating preservation innovations and digital tools within the framework of UN Sustainable Development Goal 12.3, the meat sector can make meaningful progress towards sustainable food systems, improved food safety, and enhanced environmental outcomes. Full article
Show Figures

Graphical abstract

16 pages, 277 KB  
Article
When Sustainability Meets Innovation: A Cross-Country Study on Dairy Consumer Choices in Poland, Germany, and Czechia
by Ewa Halicka, Małgorzata Kosicka-Gębska, Jerzy Gębski and Krystyna Rejman
Foods 2026, 15(1), 111; https://doi.org/10.3390/foods15010111 - 30 Dec 2025
Viewed by 252
Abstract
Consumer food choices play a significant role in supporting sustainable, resilient, and equitable food systems by shaping the environmental, economic, and social impact of diets. To determine whether environmental concerns and innovativeness drive Europeans to buy more sustainable foods, quantitative data were collected [...] Read more.
Consumer food choices play a significant role in supporting sustainable, resilient, and equitable food systems by shaping the environmental, economic, and social impact of diets. To determine whether environmental concerns and innovativeness drive Europeans to buy more sustainable foods, quantitative data were collected from 3131 adults in three countries. A Logistic Regression Model was developed to assess the quantitative impact of variables on consumers’ likelihood to choose sustainably produced foods. Respondents who paid attention to whether food items are produced and/or packaged in an environmentally friendly way were 94% and 48% more likely to purchase sustainably produced products, respectively. Readiness to purchase a dairy product that the buyer had never heard of resulted in a 15% increase in the likelihood of selecting sustainably produced foods. Additionally, respondents living in Germany were 30% more likely to choose sustainable products compared to Polish consumers, while Czech consumers were 10% less likely to do so. Implementing campaigns focusing on promoting sustainable diets could consequently determine and accelerate the adoption of environmentally friendly production practices in the food system. Our findings provide evidence for policymakers, the business community, and educators who aspire to improve the health of people and the planet as a whole. Full article
(This article belongs to the Special Issue Current Challenges in the Dairy Industry)
6 pages, 711 KB  
Editorial
Unlocking Nature’s Building Blocks: Emerging Advances in Chitin and Collagen Research
by Azizur Rahman
Polysaccharides 2026, 7(1), 2; https://doi.org/10.3390/polysaccharides7010002 - 26 Dec 2025
Viewed by 349
Abstract
Chitin and collagen—two of nature’s most abundant structural biopolymers—continue to inspire breakthrough innovations in materials science, biomedicine, food engineering, food packaging, and environmental sustainability [...] Full article
Show Figures

Figure 1

21 pages, 511 KB  
Review
Multidimensional Analysis of Disaster Nutrition: A Holistic Model Proposal Across Nutrition, Technology, Logistics, and Policy Axes
by Günay Basdogan, Osman Sagdic, Hakan Basdogan and Salih Karasu
Foods 2026, 15(1), 75; https://doi.org/10.3390/foods15010075 - 26 Dec 2025
Viewed by 457
Abstract
Over the past two decades, escalating climate crises, geopolitical conflicts, and pandemics have intensified the frequency and severity of disasters, exposing severe vulnerabilities in global food systems. In this pressing context, disaster nutrition emerges as a vital domain of intervention. However, existing academic [...] Read more.
Over the past two decades, escalating climate crises, geopolitical conflicts, and pandemics have intensified the frequency and severity of disasters, exposing severe vulnerabilities in global food systems. In this pressing context, disaster nutrition emerges as a vital domain of intervention. However, existing academic literature and field practices often address this topic through fragmented, single-axis perspectives. Nutritional physiology, food technology, humanitarian logistics, and policy–ethics frameworks tend to progress in parallel yet disconnected tracks, which results in a lack of holistic models that adequately reflect field realities. The urgency of this issue is underscored by the latest global data. In 2023 alone, disasters resulted in over 86,000 deaths, a significant increase from the preceding two-decade annual average. Furthermore, the 2025 Global Report on Food Crises reveals that 295.3 million people faced high levels of acute food insecurity in 2024, marking the sixth consecutive year this number has risen. This escalating crisis highlights the inadequacy of fragmented approaches and necessitates the development of an integrated framework for disaster nutrition. To address this fragmentation, this study redefines disaster nutrition as a multi-layered, integrated food system challenge. Based on a comprehensive literature analysis, it proposes an “Integrated Disaster Food System Model” that brings these different dimensions together within a common framework. The model is built on four main components: (i) nutritional requirements and vulnerable groups (such as infants, older adults, pregnant individuals, and populations with chronic diseases requiring special diets); (ii) product design, technology, and packaging (balancing shelf life, nutritional value, cultural acceptability, and sensory attributes, including innovative components such as microalgae and fermented foods); (iii) logistics, storage, and distribution systems (centralized storage versus localized micro-warehouses, as well as the use of drones and digital traceability technologies); and (iv) policy, regulation, ethics, and sustainability (the applicability of the Sphere Standards, fair distribution, food waste, and environmental impact). By emphasizing the bidirectional and dynamic interactions among these components, the model demonstrates how decisions in one domain affect others (for example, how more durable packaging can increase both logistics costs and carbon footprint). The study highlights the risks and cultural mismatches associated with a “one-size-fits-all high-energy food” approach for vulnerable groups and argues for the necessity of localized, context-specific, and sustainable solutions. In conclusion, the article posits that the future of disaster food systems can only be shaped through a holistic approach in which interdisciplinary collaboration, technological innovation, and ethical–environmental principles are integrated into the core of policy-making. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

21 pages, 4638 KB  
Article
Babassu Mesocarp-Based Coating with Amazonian Plant Extracts Obtained Using Natural Deep Eutectic Solvents (NADES) for Cherry Tomato Preservation
by Carollyne Maragoni-Santos, Camila Marcolongo Gomes Cortat, Lilia Zago, Stanislau Bogusz Junior, Tatiana Castro Abreu Pinto, Jefferson Santos de Gois, Bianca Chieregato Maniglia and Ana Elizabeth Cavalcante Fai
Foods 2026, 15(1), 74; https://doi.org/10.3390/foods15010074 - 25 Dec 2025
Viewed by 523
Abstract
Active biopolymer-based packaging incorporating phytochemicals offers promising sustainable alternatives for reducing postharvest losses and extending food shelf life. This study aimed to advance natural food packaging by (i) developing and characterizing natural deep eutectic solvents (NADES) using choline chloride combined with citric acid [...] Read more.
Active biopolymer-based packaging incorporating phytochemicals offers promising sustainable alternatives for reducing postharvest losses and extending food shelf life. This study aimed to advance natural food packaging by (i) developing and characterizing natural deep eutectic solvents (NADES) using choline chloride combined with citric acid (CC-CA), glucose (CC-G), and urea (CC-U); (ii) obtaining bioactive extracts from Uxi bark and Jambolan leaves using these NADES; (iii) formulating babassu mesocarp-based coatings enriched with CC-CA extracts; and (iv) evaluating their application on cherry tomatoes. CC-U exhibited the lowest density (1.152 ± 0.037 g cm−3), while CC-G demonstrated the highest viscosity (18.375 ± 0.430 mPa s), and CC-CA presented the lowest polarity parameter (ENR) value (44.6 ± 0.1 kcal mol−1). Extracts obtained with CC-CA (YU-CA and JL-CA) showed high extraction efficiency, strong antioxidant activity (DPPH inhibition > 95%), and antimicrobial activity, particularly against Pseudomonas aeruginosa. Although the coatings exhibited lower bioactivity than the extracts, they effectively reduced weight loss, maintained firmness, and preserved the microbiological quality of tomatoes for up to 9 days. Sensory analysis of bruschetta prepared with coated tomatoes indicated high acceptance (>80%). Babassu mesocarp-based coatings enriched with Amazonian plant extracts emerge as an innovative active packaging strategy aligned with the 2030 Agenda. Full article
Show Figures

Figure 1

Back to TopTop