Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = injection-moulded optics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5215 KB  
Article
Supply Chain Cost Analysis for Interior Lighting Systems Based on Polymer Optical Fibres Compared to Optical Injection Moulding
by Jan Kallweit, Fabian Köntges and Thomas Gries
Textiles 2025, 5(3), 29; https://doi.org/10.3390/textiles5030029 - 24 Jul 2025
Cited by 1 | Viewed by 1630
Abstract
Car interior design should evoke emotions, offer comfort, convey safety and at the same time project the brand identity of the car manufacturer. Lighting is used to address these functions. Modules required for automotive interior lighting often feature injection-moulded (IM) light guides, whereas [...] Read more.
Car interior design should evoke emotions, offer comfort, convey safety and at the same time project the brand identity of the car manufacturer. Lighting is used to address these functions. Modules required for automotive interior lighting often feature injection-moulded (IM) light guides, whereas woven fabrics with polymer optical fibres (POFs) offer certain technological advantages and show first-series applications in cars. In the future, car interior illumination will become even more important in the wake of megatrends such as autonomous driving. Since the increase in deployment of these technologies facilitates a need for an economical comparison, this paper aims to deliver a cost-driven approach to fulfil the aforementioned objective. Therefore, the cost structures of the supply chains for an IM-based and a POF-based illumination module are analysed. The employed research methodologies include an activity-based costing approach for which the data is collected via document analysis and guideline-based expert interviews. To account for data uncertainty, Monte Carlo simulations are conducted. POF-based lighting modules have lower initial costs due to continuous fibre production and weaving processes, but are associated with higher unit costs. This is caused by the discontinuous assembly of the rolled woven fabric which allows postponement strategies. The development costs of the mould generate high initial costs for IM light guides, which makes them beneficial only for high quantities of produced light guides. For the selected scenario, the POF-based module’s self-costs are 11.05 EUR/unit whereas the IM module’s self-costs are 14,19 EUR/unit. While the cost structures are relatively independent from the selected scenario, the actual self-costs are highly dependent on boundary conditions such as production volume. Full article
Show Figures

Figure 1

20 pages, 1980 KB  
Article
Mechanical Recycling of PET Multi-Layer Post-Consumer Packaging: Effects of Impurity Content
by Giusy Santomasi, Francesco Todaro, Andrea Petrella, Michele Notarnicola and Eggo Ulphard Thoden van Velzen
Recycling 2024, 9(5), 93; https://doi.org/10.3390/recycling9050093 - 8 Oct 2024
Cited by 10 | Viewed by 8929
Abstract
The recycling of PET trays is highly challenging. The aim of this paper was to investigate the issues related to the mechanical recycling process and, the correlation between feedstock composition and the quality of the produced rPET. Four feedstocks with different degrees of [...] Read more.
The recycling of PET trays is highly challenging. The aim of this paper was to investigate the issues related to the mechanical recycling process and, the correlation between feedstock composition and the quality of the produced rPET. Four feedstocks with different degrees of impurity were mechanically recycled at a laboratory pilot scale. The optical and thermal properties of the rPET products were examined to determine the quality and to seek relations with the starting level of impurities. The final products of the PET trays’ mechanical recycling were found to be affected by the presence of impurities (organics) and multi-material (non-PET) elements in the feedstocks. The rPET products crystallised faster for contaminated feedstocks showed lower molecular mass and higher yellow index values due to thermal degradation. Yellowing is a crucial parameter in assessing the thermal degradation of rPET. Injection moulded samples corresponding to higher contamination levels, reported values of Yellow Index equal to 179 and 177 compared to 15 of mono-PET sample. The intrinsic viscosity decreased from 0.60 dL/g to just above 0.30 dL/g, and losses were more significant for soiled or multi-material feedstocks. A method of improving the final quality would involve the purification of the starting feedstock from impurities. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Plastic Waste Management)
Show Figures

Figure 1

16 pages, 5934 KB  
Article
Overprinting of TPU onto PA6 Substrates: The Influences of the Interfacial Area, Surface Roughness and Processing Parameters on the Adhesion between Components
by Janez Slapnik, Rebeka Lorber, Irena Pulko, Miroslav Huskić and Klementina Pušnik Črešnar
Polymers 2024, 16(5), 650; https://doi.org/10.3390/polym16050650 - 28 Feb 2024
Cited by 5 | Viewed by 3299
Abstract
The hybridisation of injection moulding (IM) and additive manufacturing (AM) offers the opportunity to combine the high productivity of IM and the high flexibility of AM into a single process. IM parts can be overprinted through fused filament fabrication (FFF) to allow for [...] Read more.
The hybridisation of injection moulding (IM) and additive manufacturing (AM) offers the opportunity to combine the high productivity of IM and the high flexibility of AM into a single process. IM parts can be overprinted through fused filament fabrication (FFF) to allow for the customisation of parts or to add new functionalities. However, the right material pair must be chosen, and processing parameters must be optimised to achieve suitable adhesion between the components. The present study dealt with the investigation of the influence of the interfacial area, substrate surface roughness and overprinting processing parameters on the adhesion between the polyamide 6 (PA6) substrate and thermoplastic polyurethane (TPU) rib overprinted via FFF. PA6 substrates were produced through the IM of plates into a mould with different textures to obtain substrates with three different surface roughnesses. The ribs with varied interfacial areas were overprinted onto produced substrates using a desktop FFF 3D printer. To study the effect of overprinting processing parameters, the ribs were overprinted under varying printing and substrate temperatures and printing speeds according to the Box–Behnken design of experiments (DoE). The chemical composition and thermal properties of used materials were determined via attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The surface properties of prepared substrates were studied via digital optical microscopy (OM), through surface roughness measurements using a confocal microscope, through contact angle (CA) measurements and through the determination of free surface energy (SFE). The adhesion between the components was determined by evaluating the tear-off strength using a universal testing machine (UTM). With an increasing interfacial area, the tear-off strength decreased, while substrate surface roughness had no statistically significant effect. Overprinting parameters influenced the tear-off strength in the order of printing speed > printing temperature > substrate temperature. High values of tear-off strength were found for the lowest printing speed, while there were no important differences found between the middle and upper values. With increasing printing and substrate temperatures, the tear-off strength increased linearly. The highest value of tear-off strength (0.84 MPa) was observed at a printing temperature, substrate temperature and printing speed of 250 °C, 80 °C and 2 mm/s, respectively. Full article
Show Figures

Figure 1

23 pages, 7793 KB  
Article
Application of the NSGA-II Algorithm and Kriging Model to Optimise the Process Parameters for the Improvement of the Quality of Fresnel Lenses
by Hanjui Chang, Yue Sun, Rui Wang and Shuzhou Lu
Polymers 2023, 15(16), 3403; https://doi.org/10.3390/polym15163403 - 14 Aug 2023
Cited by 7 | Viewed by 2408
Abstract
The Fresnel lens is an optical system consisting of a series of concentric diamond grooves. One surface of the lens is smooth, while the other is engraved with concentric circles of increasing size. Optical interference, diffraction, and sensitivity to the angle of incidence [...] Read more.
The Fresnel lens is an optical system consisting of a series of concentric diamond grooves. One surface of the lens is smooth, while the other is engraved with concentric circles of increasing size. Optical interference, diffraction, and sensitivity to the angle of incidence are used to design the microstructure on the lens surface. The imaging of the optical surface depends on its curvature. By reducing the thickness of the lens, light can still be focused at the same focal point as with a thicker lens. Previously, lenses, including Fresnel lenses, were made of glass due to material limitations. However, the traditional grinding and polishing methods for making Fresnel lenses were not only time-consuming, but also labour-intensive. As a result, costs were high. Later, a thermal pressing process using metal moulds was invented. However, the high surface tension of glass caused some detailed parts to be deformed during the pressing process, resulting in unsatisfactory Fresnel lens performance. In addition, the complex manufacturing process and unstable processing accuracy hindered mass production. This resulted in high prices and limited applications for Fresnel lenses. These factors prevented the widespread use of early Fresnel lenses. In contrast, polymer materials offer advantages, such as low density, light weight, high strength-to-weight ratios, and corrosion resistance. They are also cost effective and available in a wide range of grades. Polymer materials have gradually replaced optical glass and other materials in the manufacture of micro-optical lenses and other miniaturised devices. Therefore, this study focuses on investigating the manufacturing parameters of Fresnel lenses in the injection moulding process. We compare the quality of products obtained by two-stage injection moulding, injection compression moulding, and IMD (in-mould decoration) techniques. The results show that the optimal method is IMD, which reduces the nodal displacement on the Fresnel lens surface and improves the transmission performance. To achieve this, we first establish a Kriging model to correlate the process parameters with optimisation objectives, mapping the design parameters and optimisation objectives. Based on the Kriging model, we integrate the NSGA-II algorithm with the predictive model to obtain the Pareto optimal solutions. By analysing the Pareto frontier, we identify the best process parameters. Finally, it is determined that the average nodal displacement on the Fresnel surface is 0.393 mm, at a holding pressure of 320.35 MPa and a melt temperature of 251.40 °C. Combined with IMD technology, product testing shows a transmittance of 95.43% and an optimisation rate of 59.64%. Full article
(This article belongs to the Special Issue Advances in Polymers Processing and Injection Molding)
Show Figures

Figure 1

14 pages, 37790 KB  
Article
In-Mould OCT Sensors Combined with Piezo-Actuated Positioning Devices for Compensating for Displacement in Injection Overmoulding of Optoelectronic Parts
by Günther Hannesschläger, Martin Schwarze, Elisabeth Leiss-Holzinger and Christian Rankl
Sensors 2023, 23(6), 3242; https://doi.org/10.3390/s23063242 - 19 Mar 2023
Cited by 1 | Viewed by 2093
Abstract
When overmoulding optoelectronic devices with optical elements, precise alignment of the overmoulded part and the mould is of great importance. However, mould-integrated positioning sensors and actuators are not yet available as standard components. As a solution, we present a mould-integrated optical coherence tomography [...] Read more.
When overmoulding optoelectronic devices with optical elements, precise alignment of the overmoulded part and the mould is of great importance. However, mould-integrated positioning sensors and actuators are not yet available as standard components. As a solution, we present a mould-integrated optical coherence tomography (OCT) device that is combined with a piezo-driven mechatronic actuator, which is capable of performing the necessary displacement correction. Because of the complex geometric structure optoelectronic devices may have, a 3D imaging method was preferable, so OCT was chosen. It is shown that the overall concept leads to sufficient alignment accuracy and, apart from compensating for the in-plane position error, provides valuable additional information about the sample both before and after the injection process. The increased alignment accuracy leads to better energy efficiency, improved overall performance and less scrap parts, and thus even a zero-waste production process might be feasible. Full article
(This article belongs to the Special Issue Advanced Sensing for Smart Precision Manufacturing)
Show Figures

Figure 1

14 pages, 8816 KB  
Article
Simulated Environmental Conditioning of PHB Composites Reinforced with Barley Fibres to Determine the Viability of Their Use as Plastics for the Agriculture Sector
by Helena Oliver-Ortega, Fernando Julián, Francesc Xavier Espinach and José Alberto Méndez
Polymers 2023, 15(3), 579; https://doi.org/10.3390/polym15030579 - 22 Jan 2023
Cited by 6 | Viewed by 2206
Abstract
Nowadays, the search for new materials with a sustainable character to reduce the production of residues is under continuous research. In this sense, fully biodegradable composites based on polyhydroxybutyrate and different pretreated fibres coming from barley straw have been fabricated, and their resistance [...] Read more.
Nowadays, the search for new materials with a sustainable character to reduce the production of residues is under continuous research. In this sense, fully biodegradable composites based on polyhydroxybutyrate and different pretreated fibres coming from barley straw have been fabricated, and their resistance to environmental controlled conditions have been characterized. The materials were already compounded in a kinetic mixer and injection-moulded as specimens for tensile assay to be aged in a Xenotest chamber so as to simulate environmental conditioning. The samples, after accelerated aging, were characterized thus: mechanical characterization (tensile assay), water uptake (immersion and contact angle), and surface observation (optical and SEM microscopy). The incorporation of the fibres helps the composite to keep its structure for a longer time. On the other hand, the presence of the fibres increases the water uptake capacity to allow water permeation in the composite, which allows final degradation, characterised by a significant drop in properties after one month of exposure to simulated environmental conditions. Full article
Show Figures

Figure 1

15 pages, 11533 KB  
Article
Influence of Viscose Fibre Geometry on the Structure–Property Relationships of High-Density Polyethylene Composites
by Janez Slapnik, Gregor Kraft, Thomas Wilhelm, Marcel Hribernik, Iztok Švab, Thomas Lucyshyn and Gerald Pinter
Polymers 2022, 14(20), 4389; https://doi.org/10.3390/polym14204389 - 18 Oct 2022
Cited by 2 | Viewed by 2991
Abstract
This study investigated the influence of viscose fibre (VF) geometry on the microstructures and resulting properties of high-density polyethylene (HDPE) composites. Seven types of viscose fibres varying in cross-section shape, linear density, and length were pelletised, compounded into HDPE with a twin-screw extruder, [...] Read more.
This study investigated the influence of viscose fibre (VF) geometry on the microstructures and resulting properties of high-density polyethylene (HDPE) composites. Seven types of viscose fibres varying in cross-section shape, linear density, and length were pelletised, compounded into HDPE with a twin-screw extruder, and injection moulded. The microstructures of the composites were characterised by investigating their cross-sections and by extracting the fibres and measuring their lengths using optical microscopy (OM). The mechanical and thermal properties of the composites were characterised using differential scanning calorimetry (DSC), tensile tests, Charpy impact tests, and dynamic mechanical analysis (DMA). The composites prepared using cylindrical fibres with a linear density of 1.7 dtex exhibited the best fibre dispersion, highest orientation, and lowest fibre–fibre contact area. The decrease in the linear density of the cylindrical fibres resulted in increasingly worse dispersion and orientation, while composites containing non-cylindrical fibres exhibited a comparably larger fibre–fibre contact area. The initial fibre length of about 3 to 10 mm decreased to the mean values of 0.29 mm to 0.41 mm during processing, depending on the initial geometry. In general, cylindrical fibres exhibited a superior reinforcing effect in comparison to non-cylindrical fibres. The composites containing cylindrical fibres with a linear density of 1.7 dtex and a length of 5 mm exhibited the best reinforcing effect with an increase in tensile modulus and strength of 323% and 141%, respectively. Full article
(This article belongs to the Special Issue Polymer-Based Hybrid Composites)
Show Figures

Figure 1

14 pages, 3463 KB  
Article
Low-Temperature Fibre Direct Compounding of Cellulose Fibres into PA6
by Janez Slapnik, Yuanxi Liu, Robert Kupfer, Thomas Lucyshyn, Blaž Nardin and Gerald Pinter
Materials 2022, 15(19), 6600; https://doi.org/10.3390/ma15196600 - 23 Sep 2022
Cited by 1 | Viewed by 2537
Abstract
This study reports on the development of a novel polymer processing approach that combines low-temperature (LT) processing and fibre direct compounding (FDC) to reduce the thermal stress on thermosensitive components that occurs during compounding and subsequent injection moulding (IM). Composites based on polyamide [...] Read more.
This study reports on the development of a novel polymer processing approach that combines low-temperature (LT) processing and fibre direct compounding (FDC) to reduce the thermal stress on thermosensitive components that occurs during compounding and subsequent injection moulding (IM). Composites based on polyamide 6 (PA6) and cellulose fibres (CeF) were prepared using an LT-FDC process and in parallel with a conventional approach using a twin-screw extruder and IM. The morphological, optical, thermal, and mechanical properties of the prepared samples were investigated using optical microscopy (OM), differential scanning calorimetry (DSC), colorimetry, dynamic mechanical analysis (DMA) and tensile tests. Composites prepared using LT-FDC exhibited worse fibre dispersion but lower fibre degradation. In comparison to neat PA6, the LT-FDC composites had increased tensile modulus (Et) and storage modulus (E′) at 120 °C by up to 32% and 50%, respectively, while the tensile strength (σm) decreased by 20%. Full article
(This article belongs to the Special Issue Sustainability in Fiber Composites)
Show Figures

Figure 1

11 pages, 5613 KB  
Article
Experimental Investigation and Applicability of Multi-Stage Simulations in the Case of a Thick-Walled Injection-Moulded Composite
by Gábor Dogossy, Tamás Morauszki and Ferenc Ronkay
Appl. Sci. 2022, 12(17), 8415; https://doi.org/10.3390/app12178415 - 23 Aug 2022
Cited by 13 | Viewed by 2525
Abstract
The structure and mechanical properties of an injection-moulded short glass fibre (GF)-reinforced polymer composite were analysed through simulation methods. Fibre orientation, which evolves during the production of a thick-walled automotive part, was determined with an injection moulding simulation. Next, using the material model [...] Read more.
The structure and mechanical properties of an injection-moulded short glass fibre (GF)-reinforced polymer composite were analysed through simulation methods. Fibre orientation, which evolves during the production of a thick-walled automotive part, was determined with an injection moulding simulation. Next, using the material model for the injected product, the force that resulted from the given deformation was determined with finite element software. To validate the simulation results, the examined products were manufactured with 30% reinforced GF, and then measurements were carried out. The validation of the fibre orientation tensor was achieved with optical microscope images, while the validation of the finite element, which analysed the flexural tests, was carried out through a comparison of flexural rigidity. The aim of the project was to verify the reliability of multi-stage finite element software. According to the results, in the case of a thick-walled GF-reinforced product, it was demonstrated that the integration of a different finite element software could be used reliably. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

10 pages, 17116 KB  
Article
The Effect of Surface Substrate Treatments on the Bonding Strength of Aluminium Inserts with Glass-Reinforced Poly(phenylene) Sulphide
by Ashish Matta, Tomas Sedlacek, Marketa Kadleckova and Anezka Lengalova
Materials 2022, 15(5), 1929; https://doi.org/10.3390/ma15051929 - 4 Mar 2022
Cited by 10 | Viewed by 3513
Abstract
Materials composed of a polymer matrix reinforced with carbon/glass fibres providing lightweight and superior mechanical properties are widely used as structural components for automotive and aerospace applications. However, such parts need to be joined with various metal alloys to obtain better mechanical performance [...] Read more.
Materials composed of a polymer matrix reinforced with carbon/glass fibres providing lightweight and superior mechanical properties are widely used as structural components for automotive and aerospace applications. However, such parts need to be joined with various metal alloys to obtain better mechanical performance in many structural elements. Many studies have reported enhancements in polymer–metal bonding using adhesives, adhesive/rivet combined joints, and different surface treatments. This study investigated the influences of various surface treatments on the adhesion between glass-reinforced poly(phenylene) sulphide (PPS) and aluminium alloy during the injection over-moulding process. Adhesion strength was evaluated via the shear test. Correlations for the shear strength of the polymer–metal with different metal–substrate treatments were studied. Since the strongest bonding was attained in the treatment with the highest roughness, this value, as it determines the level of micromechanical interlocking of connected materials, seems to be a critical factor affecting the adhesion strength. Three-dimensional (3D) topographic images characterized with a 3D optical microscope indicated that there was a meaningful influence exerted by the interface topologies of the aluminium substrates used for the over-moulding process. The results further indicated that increases in a substrate’s surface energy in connection with atmospheric plasma treatments negatively influence the final level of the bonding mechanism. Full article
Show Figures

Figure 1

16 pages, 9628 KB  
Article
Relationships between the Decomposition Behaviour of Renewable Fibres and Their Reinforcing Effect in Composites Processed at High Temperatures
by Janez Slapnik, Thomas Lucyshyn and Gerald Pinter
Polymers 2021, 13(24), 4448; https://doi.org/10.3390/polym13244448 - 18 Dec 2021
Cited by 9 | Viewed by 3402
Abstract
Engineering polymers reinforced with renewable fibres (RF) are an attractive class of materials, due to their excellent mechanical performance and low environmental impact. However, the successful preparation of such composites has proven to be challenging due to the low thermal stability of RF. [...] Read more.
Engineering polymers reinforced with renewable fibres (RF) are an attractive class of materials, due to their excellent mechanical performance and low environmental impact. However, the successful preparation of such composites has proven to be challenging due to the low thermal stability of RF. The aim of the present study was to investigate how different RF behaves under increased processing temperatures and correlate the thermal properties of the fibres to the mechanical properties of composites. For this purpose, hemp, flax and Lyocell fibres were compounded into polypropylene (PP) using a co-rotating twin screw extruder and test specimens were injection moulded at temperatures ranging from 180 °C to 260 °C, with 20 K steps. The decomposition behaviour of fibres was characterised using non-isothermal and isothermal simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). The prepared composites were investigated using optical microscopy (OM), colorimetry, tensile test, Charpy impact test, dynamic mechanical analysis (DMA) and melt flow rate (MFR). Composites exhibited a decrease in mechanical performance at processing temperatures above 200 °C, with a steep decrease observed at 240 °C. Lyocell fibres exhibited the best reinforcement effect, especially at elevated processing temperatures, followed by flax and hemp fibres. It was found that the retention of the fibre reinforcement effect at elevated temperatures can be well predicted using isothermal TGA measurements. Full article
(This article belongs to the Special Issue Polymers from Renewable Sources and Their Mechanical Reinforcement)
Show Figures

Figure 1

35 pages, 11298 KB  
Article
Artificial Ageing, Chemical Resistance, and Biodegradation of Biocomposites from Poly(Butylene Succinate) and Wheat Bran
by Emil Sasimowski, Łukasz Majewski and Marta Grochowicz
Materials 2021, 14(24), 7580; https://doi.org/10.3390/ma14247580 - 9 Dec 2021
Cited by 27 | Viewed by 4225
Abstract
The results of comprehensive studies on accelerated (artificial) ageing and biodegradation of polymer biocomposites on PBS matrix filled with raw wheat bran (WB) are presented in this paper. These polymer biocomposites are intended for the manufacture of goods, in particular disposable packaging and [...] Read more.
The results of comprehensive studies on accelerated (artificial) ageing and biodegradation of polymer biocomposites on PBS matrix filled with raw wheat bran (WB) are presented in this paper. These polymer biocomposites are intended for the manufacture of goods, in particular disposable packaging and disposable utensils, which decompose naturally under the influence of biological agents. The effects of wheat bran content within the range of 10–50 wt.% and extruder screw speed of 50–200 min−1 during the production of biocomposite pellets on the resistance of the products to physical, chemical, and biological factors were evaluated. The research included the determination of the effect of artificial ageing on the changes of structural and thermal properties by infrared spectra (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). They showed structural changes—disruption of chains within the ester bond, which occurred in the composition with 50% bran content as early as after 250 h of accelerated ageing. An increase in the degree of crystallinity with ageing was also found to be as high as 48% in the composition with 10% bran content. The temperature taken at the beginning of weight loss of the compositions studied was also lowered, even by 30 °C at the highest bran content. The changes of mechanical properties of biocomposite samples were also investigated. These include: hardness, surface roughness, transverse shrinkage, weight loss, and optical properties: colour and gloss. The ageing hardness of the biocomposite increased by up to 12%, and the surface roughness (Ra) increased by as much as 2.4 µm at the highest bran content. It was also found that ageing causes significant colour changes of the biocomposition (ΔE = 7.8 already at 10% bran content), and that the ageing-induced weight loss of the biocomposition of 0.31–0.59% is lower than that of the samples produced from PBS alone (1.06%). On the other hand, the transverse shrinkage of moldings as a result of ageing turned out to be relatively small, at 0.05%–0.35%. The chemical resistance of biocomposites to NaOH and HCl as well as absorption of polar and non-polar liquids (oil and water) were also determined. Biodegradation studies were carried out under controlled conditions in compost and weight loss of the tested compositions was determined. The weight of samples made from PBS alone after 70 days of composting decreased only by 4.5%, while the biocomposition with 10% bran content decreased by 15.1%, and with 50% bran, by as much as 68.3%. The measurements carried out showed a significant influence of the content of the applied lignocellulosic fillers (LCF) in the form of raw wheat bran (WB) on the examined properties of the biocompositions and the course of their artificial ageing and biodegradation. Within the range under study, the screw speed of the extruder during the production of biocomposite pellets did not show any significant influence on most of the studied properties of the injection mouldings produced from it. Full article
(This article belongs to the Special Issue Modification and Processing of Biodegradable Polymers)
Show Figures

Figure 1

19 pages, 6194 KB  
Article
Injection Moulding of Multipolar Polymer-Bonded Magnets into Soft Magnetic Inserts for Rotors in Reluctance Motors
by Uta Rösel and Dietmar Drummer
Magnetism 2021, 1(1), 3-21; https://doi.org/10.3390/magnetism1010002 - 26 Oct 2021
Cited by 5 | Viewed by 5917
Abstract
Due to lower magnetic properties of polymer-bonded magnets compared to sintered magnets, a complete redesign of the multipolar soft magnetic flux barriers in rotors with alignment guidelines was carried out to eliminate the frequently used rare-earth magnets, causing a new influence of the [...] Read more.
Due to lower magnetic properties of polymer-bonded magnets compared to sintered magnets, a complete redesign of the multipolar soft magnetic flux barriers in rotors with alignment guidelines was carried out to eliminate the frequently used rare-earth magnets, causing a new influence of the outer magnetic field on the cavity by using soft magnetic inserts. Within this new process, the main influencing factors on the magnetic flux density such as filler content, tool temperature, holding pressure and injection velocity were analysed and correlated. The studies were based on the compound of Polyamide 12 and up to a 60 vol.-% of the hard magnetic filler, strontium ferrite. Based on the study, the injection moulding of multipolar-bonded magnets into soft magnetic inserts for rotors and, in turn, into complex geometries can be optimized in terms of the orientation of the filler, the microstructure and the magnetic flux density. The investigations show no significant influence of the process parameters known from the literature such as the mass temperature Tm, which affects the magnetic flux density, as well as the orientation and the microstructure similar to tool temperature Tt, but is less efficient. The main influencing factors identified during the investigations are the tool temperature Tt, the injection velocity vin and the holding pressure ph. As known influencing factors are only based on simple geometries such as ring structures or plates, new factors were determined for complex rotor geometries. Full article
Show Figures

Figure 1

24 pages, 7128 KB  
Article
Insight into the Surface Properties of Wood Fiber-Polymer Composites
by Klementina Pušnik Črešnar, Marko Bek, Thomas Luxbacher, Mihael Brunčko and Lidija Fras Zemljič
Polymers 2021, 13(10), 1535; https://doi.org/10.3390/polym13101535 - 11 May 2021
Cited by 13 | Viewed by 4244
Abstract
The surface properties of wood fiber (WF) filled polymer composites depend on the filler loading and are closely related to the distribution and orientation in the polymer matrix. In this study, wood fibers (WF) were incorporated into thermoplastic composites based on non-recycled polypropylene [...] Read more.
The surface properties of wood fiber (WF) filled polymer composites depend on the filler loading and are closely related to the distribution and orientation in the polymer matrix. In this study, wood fibers (WF) were incorporated into thermoplastic composites based on non-recycled polypropylene (PP) and recycled (R-PP) composites by melt compounding and injection moulding. ATR-FTIR (attenuated total reflection Fourier transform infrared spectroscopy) measurements clearly showed the propagation of WF functional groups at the surface layer of WF-PP/WF-R-PP composites preferentially with WF loading up to 30%. Optical microscopy and nanoindentation method confirmed the alignment of thinner skin layer of WF-PP/WF-R-PP composites with increasing WF addition. The thickness of the skin layer was mainly influenced by the WF loading. The effect of the addition of WF on modulus and hardness, at least at 30 and 40 wt.%, varies for PP and R-PP matrix. On the other hand, surface zeta potential measurements show increased hydrophilicity with increasing amounts of WF. Moreover, WF in PP/R-PP matrix is also responsible for the antioxidant properties of these composites as measured by DPPH (2,2′-diphenyl-1-picrylhydrazyl) assay. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Graphical abstract

20 pages, 48006 KB  
Article
Functional Analysis Validation of Micro and Conventional Injection Molding Machines Performances Based on Process Precision and Accuracy for Micro Manufacturing
by Matteo Calaon, Federico Baruffi, Gualtiero Fantoni, Ilenia Cirri, Marco Santochi, Hans Nørgaard Hansen and Guido Tosello
Micromachines 2020, 11(12), 1115; https://doi.org/10.3390/mi11121115 - 16 Dec 2020
Cited by 14 | Viewed by 4394
Abstract
Micro polymer parts can be usually manufactured either by conventional injection moulding (IM) or by micro-injection moulding (µIM). In this paper, functional analysis was used as a tool to investigate the performances of IM and µIM used to manufacture the selected industrial component. [...] Read more.
Micro polymer parts can be usually manufactured either by conventional injection moulding (IM) or by micro-injection moulding (µIM). In this paper, functional analysis was used as a tool to investigate the performances of IM and µIM used to manufacture the selected industrial component. The methodology decomposed the production cycle phases of the two processes and attributed functions to parts features of the two investigated machines. The output of the analysis was aimed to determine casual chains leading to the final outcome of the process. Experimental validation of the functional analysis was carried out moulding the same micro medical part in thermoplastic elastomer (TPE) material using the two processes by means of multi-cavity moulds. The produced batches were assessed using a precision scale and a high accuracy optical instrument. The measurement results were compared using capability indexes. The data-driven comparison identified and quantified the correlations between machine design and part quality, demonstrating that the µIM machine technology better meets the accuracy and precision requirements typical of micro manufacturing productions. Full article
Show Figures

Figure 1

Back to TopTop