Overprinting of TPU onto PA6 Substrates: The Influences of the Interfacial Area, Surface Roughness and Processing Parameters on the Adhesion between Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Injection Moulding of Material Characterisation Test Specimens
2.2.2. Overprinting of TPU onto Substrates
2.3. Characterisation
2.3.1. Attenuated Total Reflectance–Fourier Transform infrared Spectroscopy (ATR-FTIR)
2.3.2. Thermogravimetric Analysis
2.3.3. Differential Scanning Calorimetry
2.3.4. Optical Microscopy
2.3.5. Surface Roughness Measurements
2.3.6. Contact Angle Measurements with Free Surface Energy Calculation
2.3.7. Tear-Off Strength Tests
3. Results and Discussion
3.1. Material Characterisation
3.1.1. Chemical Composition
3.1.2. Decomposition Behaviour
3.1.3. Thermal Properties
3.2. Substrate Characterisation
3.2.1. Surface Topology
3.2.2. Wettability
3.3. Characterisation of the Bonding Strength
3.3.1. The Influences of Interfacial Area and Substrate Roughness
3.3.2. The Influences of the Processing Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosato, D.V.; Rosato, D.V.; Rosato, M.G. Injection Molding Handbook; Springer: Boston, MA, USA, 2000; ISBN 978-1-4613-7077-2. [Google Scholar]
- Goodship, V.; Love, J.C. Multi-Material Injection Moulding; iSmithers Rapra Publishing: Shropshire, UK, 2002; Volume 13. [Google Scholar]
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed.; Springer: New York, NY, USA, 2015; ISBN 9781493921133. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Boros, R.; Kannan Rajamani, P.; Kovács, J.G. Combination of 3D Printing and Injection Molding: Overmolding and Overprinting. Express Polym. Lett. 2019, 13, 889–897. [Google Scholar] [CrossRef]
- Rajamani, P.K.; Ageyeva, T.; Kovács, J.G. Personalized Mass Production by Hybridization of Additive Manufacturing and Injection Molding. Polymers 2021, 13, 309. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Hansen, H.N.; Bondo, M. Experimental Investigation of the Factors Influencing the Polymer-Polymer Bond Strength during Two-Component Injection Moulding. Int. J. Adv. Manuf. Technol. 2010, 50, 101–111. [Google Scholar] [CrossRef]
- Awaja, F.; Gilbert, M.; Kelly, G.; Fox, B.; Pigram, P.J. Adhesion of Polymers. Prog. Polym. Sci. 2009, 34, 948–968. [Google Scholar] [CrossRef]
- Annamalai, M.; Gopinadhan, K.; Han, S.A.; Saha, S.; Park, H.J.; Cho, E.B.; Kumar, B.; Patra, A.; Kim, S.-W.; Venkatesan, T. Surface Energy and Wettability of van Der Waals Structures. Nanoscale 2016, 8, 5764–5770. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.-H. (Ed.) Fundamentals of Adhesion; Springer: Boston, MA, USA, 1991; ISBN 978-1-4899-2075-1. [Google Scholar]
- Lee, L.-H. (Ed.) The Chemistry and Physics of Solid Adhesion. In Fundamentals of Adhesion; Springer: Boston, MA, USA, 1991; pp. 1–86. [Google Scholar]
- Gardner, J.D. Theories and Mechanisms of Adhesion. In Handbook of Adhesion Technology; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–31. [Google Scholar]
- ISO 1133-1:2022; Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics, Part 1: Standard Method. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 11357-3:2018; Differential Scanning Calorimetry (DSC), Part 3: Determination of Temperature and Enthalpy of Melting and Crystallization. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 1183-1:2019; Methods for Determining the Density of Non-Cellular Plastics, Part 1: Immersion Method, Liquid Pycnometer Method and Titration Method. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 527-2:2012; Determination of Tensile Properties, Part 2: Test Conditions for Moulding and Extrusion Plastics. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 179-1:2023; Determination of Charpy Impact Properties, Part 1: Non-Instrumented Impact Test. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 294-4:2018; Injection Moulding of Test Specimens of Thermoplastic Materials, Part 4: Determination of Moulding Shrinkage. International Organization for Standardization: Geneva, Switzerland, 2018.
- VDI 3400:1975-06; Electrical Discharge Machining (DEM)—Definitions, Processes, Application. DIN: Berlin, Germany, 1975.
- Wunderlich, B. Macromolecular Physics, Volume 3: Crystal Melting; Academic Press: New York, NY, USA, 1980; ISBN 9780127656038. [Google Scholar]
- Żenkiewicz, M. Methods for the Calculation of Surface Free Energy of Solids. J. Achiev. Mater. Manuf. Eng. 2007, 24, 137–145. [Google Scholar]
- Pušnik Črešnar, K.; Aulova, A.; Bikiaris, D.N.; Lambropoulou, D.; Kuzmič, K.; Fras Zemljič, L. Incorporation of Metal-Based Nanoadditives into the PLA Matrix: Effect of Surface Properties on Antibacterial Activity and Mechanical Performance of PLA Nanoadditive Films. Molecules 2021, 26, 4161. [Google Scholar] [CrossRef] [PubMed]
- Alves, P.; Coelho, J.F.J.; Haack, J.; Rota, A.; Bruinink, A.; Gil, M.H. Surface Modification and Characterization of Thermoplastic Polyurethane. Eur. Polym. J. 2009, 45, 1412–1419. [Google Scholar] [CrossRef]
- Farzaneh, A.; Rostami, A.; Nazockdast, H. Thermoplastic Polyurethane/Multiwalled Carbon Nanotubes Nanocomposites: Effect of Nanoparticle Content, Shear, and Thermal Processing. Polym. Compos. 2021, 42, 4804–4813. [Google Scholar] [CrossRef]
- Tummino, M.L.; Chrimatopoulos, C.; Bertolla, M.; Tonetti, C.; Sakkas, V. Configuration of a Simple Method for Different Polyamides 6.9 Recognition by ATR-FTIR Analysis Coupled with Chemometrics. Polymers 2023, 15, 3166. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.; Matuschek, G.; Kettrup, A. Thermal Degradation of Thermoplastic Polyurethane Elastomers (TPU) Based on MDI. Polym. Degrad. Stab. 2002, 78, 323–331. [Google Scholar] [CrossRef]
- Slapnik, J.; Lucyshyn, T.; Pinter, G. Relationships between the Decomposition Behaviour of Renewable Fibres and Their Reinforcing Effect in Composites Processed at High Temperatures. Polymers 2021, 13, 4448. [Google Scholar] [CrossRef] [PubMed]
- Slapnik, J.; Liu, Y.; Kupfer, R.; Lucyshyn, T.; Nardin, B.; Pinter, G. Low-Temperature Fibre Direct Compounding of Cellulose Fibres into PA6. Materials 2022, 15, 6600. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, M. The Effects of the Injection Moulding Temperature on the Mechanical Properties and Morphology of Polypropylene Man-Made Cellulose Fibre Composites. Compos. Part A Appl. Sci. Manuf. 2016, 87, 146–152. [Google Scholar] [CrossRef]
- Frick, A.; Rochman, A. Characterization of TPU-Elastomers by Thermal Analysis (DSC). Polym. Test 2004, 23, 413–417. [Google Scholar] [CrossRef]
- Fortes, M.A. Wettability of Polymer Surfaces. In Physicochemical Aspects of Polymer Surfaces; Springer: Boston, MA, USA, 1983; pp. 107–139. [Google Scholar]
- Brion, D.A.J.; Shen, M.; Pattinson, S.W. Automated Recognition and Correction of Warp Deformation in Extrusion Additive Manufacturing. Addit. Manuf. 2022, 56, 102838. [Google Scholar] [CrossRef]
- Mashayekhi, F.; Bardon, J.; Westermann, S.; Addiego, F. Adhesion Optimization between Incompatible Polymers through Interfacial Engineering. Polymers 2021, 13, 4273. [Google Scholar] [CrossRef] [PubMed]
Processing Parameter | Values PA6 | Valus PA6—Substrates | Values TPU |
---|---|---|---|
Temperature profile (nozzle to hopper) (°C) | 230, 235, 230, 225, 220 | 230, 235, 230, 225, 220 | 200, 195, 190, 185, 180 |
Mould temperature (°C) | 80 | 80 | 40 |
Metering stroke (mm) | 18 | 50 | 19 |
Decompression (mm) | 5 | 2 | 2 |
Screw angular velocity (min−1) | 50 | 50 | 80 |
Backpressure (MPa) | 2.5 | 2.5 | 2.5 |
Injection velocity (mm/s) | 50 | 20 | 50 |
Switch-over point (mm) | 10 | 20 | 10 |
Packing pressure (MPa) | 30 | 30 | 50 |
Packing time (s) | 10 | 10 | 10 |
Rest cooling time (s) | 20 | 20 | 15 |
Processing Parameter | Values and Units |
---|---|
Nozzle diameter | 0.4 mm |
Layer height | 0.28 mm |
Infill density | 100% |
Infill pattern | Lines |
Line width | 0.4 mm |
Wall thickness | 0.8 mm |
Cooling fan | Disabled |
Print speed of subsequent layers | 20 mm/s |
Number of initial layers | 2 |
Printing temperature (Tprint) | 250 °C |
Substrate temperature (Tsub) | 60 °C |
Initial layer speed (Vprint) | 6 mm/s |
Sample | Standard Order | Run Order | Tprint | Tsubstrate | Vprint |
---|---|---|---|---|---|
240-40-6 | 1 | 1 | 240 | 40 | 6 |
260-40-6 | 2 | 10 | 260 | 40 | 6 |
240-80-6 | 3 | 6 | 240 | 80 | 6 |
260-80-6 | 4 | 5 | 260 | 80 | 6 |
240-60-2 | 5 | 7 | 240 | 60 | 2 |
260-60-2 | 6 | 11 | 260 | 60 | 2 |
240-60-10 | 7 | 12 | 240 | 60 | 10 |
260-70-10 | 8 | 8 | 260 | 70 | 10 |
250-40-2 | 9 | 9 | 250 | 40 | 2 |
250-80-2 | 10 | 4 | 250 | 80 | 2 |
250-40-10 | 11 | 3 | 250 | 40 | 10 |
250-80-10 | 12 | 13 | 250 | 80 | 10 |
250-60-6 | 13 | 2 | 250 | 60 | 6 |
Substrate | Targeted Roughness (µm) | Ra (µm) | Sa (µm) |
---|---|---|---|
R6 | 0.2 | 0.17 ± 0.03 | 0.19 |
R18 | 0.8 | 0.84 ± 0.04 | 0.94 |
R30 | 3.2 | 4.96 ± 0.24 | 4.52 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 9 | 0.525654 | 0.058406 | 31.43 | 0.008 |
Linear | 3 | 0.410889 | 0.136963 | 73.71 | 0.003 |
Tprint (°C) | 1 | 0.154196 | 0.154196 | 82.98 | 0.003 |
Tsub (°C) | 1 | 0.040477 | 0.040477 | 21.78 | 0.019 |
Vprint (mm/s) | 1 | 0.216216 | 0.216216 | 116.36 | 0.002 |
Square | 3 | 0.078828 | 0.026276 | 14.14 | 0.028 |
Tprint (°C) × Tprint (°C) | 1 | 0.000643 | 0.000643 | 0.35 | 0.598 |
Tsub (°C) × Tsub (°C) | 1 | 0.000716 | 0.000716 | 0.39 | 0.579 |
Vprint (mm/s) × Vprint (mm/s) | 1 | 0.065618 | 0.065618 | 35.31 | 0.010 |
2-Way Interaction | 3 | 0.035937 | 0.011979 | 6.45 | 0.080 |
Tprint (°C) × Tsub (°C) | 1 | 0.020289 | 0.020289 | 10.92 | 0.046 |
Tprint (°C) × Vprint (mm/s) | 1 | 0.001828 | 0.001828 | 0.98 | 0.394 |
Tsub (°C) × Vprint (mm/s) | 1 | 0.013819 | 0.013819 | 7.44 | 0.072 |
Error | 3 | 0.005574 | 0.001858 | ||
Total | 12 | 0.531228 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slapnik, J.; Lorber, R.; Pulko, I.; Huskić, M.; Črešnar, K.P. Overprinting of TPU onto PA6 Substrates: The Influences of the Interfacial Area, Surface Roughness and Processing Parameters on the Adhesion between Components. Polymers 2024, 16, 650. https://doi.org/10.3390/polym16050650
Slapnik J, Lorber R, Pulko I, Huskić M, Črešnar KP. Overprinting of TPU onto PA6 Substrates: The Influences of the Interfacial Area, Surface Roughness and Processing Parameters on the Adhesion between Components. Polymers. 2024; 16(5):650. https://doi.org/10.3390/polym16050650
Chicago/Turabian StyleSlapnik, Janez, Rebeka Lorber, Irena Pulko, Miroslav Huskić, and Klementina Pušnik Črešnar. 2024. "Overprinting of TPU onto PA6 Substrates: The Influences of the Interfacial Area, Surface Roughness and Processing Parameters on the Adhesion between Components" Polymers 16, no. 5: 650. https://doi.org/10.3390/polym16050650
APA StyleSlapnik, J., Lorber, R., Pulko, I., Huskić, M., & Črešnar, K. P. (2024). Overprinting of TPU onto PA6 Substrates: The Influences of the Interfacial Area, Surface Roughness and Processing Parameters on the Adhesion between Components. Polymers, 16(5), 650. https://doi.org/10.3390/polym16050650