Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,966)

Search Parameters:
Keywords = infrastructure gap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2009 KB  
Article
Assessment of Infrastructure and Service Supply on Sustainable Urban Transport Systems in Delhi-NCR: Implications of Last-Mile Connectivity for Government Policies
by Snigdha Choudhary, D. P. Singh and Manoj Kumar
Future Transp. 2025, 5(4), 134; https://doi.org/10.3390/futuretransp5040134 - 2 Oct 2025
Abstract
Urban mobility plays a vital role in shaping sustainable cities, yet the effectiveness of public transportation is often undermined by poor last-mile connectivity (LMC). In the National Capital Region (NCR) of Delhi, despite the Delhi Metro Rail serving as a key transit system, [...] Read more.
Urban mobility plays a vital role in shaping sustainable cities, yet the effectiveness of public transportation is often undermined by poor last-mile connectivity (LMC). In the National Capital Region (NCR) of Delhi, despite the Delhi Metro Rail serving as a key transit system, limited integration with surrounding areas hinders accessibility, which particularly affects women, elderly adults, and socioeconomically disadvantaged groups. This study evaluates LMC performance at two key metro stations, Nehru Place and Botanical Garden, using a mixed-methods approach that includes user surveys, spatial survey, thematic analysis, and infrastructure scoring across five critical pillars: accessibility, safety and comfort, intermodality, service availability, and inclusivity. The findings communicate notable contrasts. Botanical Garden exhibits strong intermodal linkages, pedestrian-friendly design, and supportive signage, while Nehru Place indicates a need for infrastructural improvements, safety advancement and upgrades, and strengthened universal design features. These disparities limit effective metro usage and discourage a shift from private to public transport. The study highlights the importance of user-centered, multimodal solutions and the need for cohesive urban governance to address LMC gaps. By identifying barriers and opportunities for improvement, this research paper contributes to the formulation of more inclusive and sustainable urban transport strategies in Indian metropolitan regions. Full article
Show Figures

Figure 1

14 pages, 1081 KB  
Article
Hybrid Deep Learning Approach for Secure Electric Vehicle Communications in Smart Urban Mobility
by Abdullah Alsaleh
Vehicles 2025, 7(4), 112; https://doi.org/10.3390/vehicles7040112 - 2 Oct 2025
Abstract
The increasing adoption of electric vehicles (EVs) within intelligent transportation systems (ITSs) has elevated the importance of cybersecurity, especially with the rise in Vehicle-to-Everything (V2X) communications. Traditional intrusion detection systems (IDSs) struggle to address the evolving and complex nature of cyberattacks in such [...] Read more.
The increasing adoption of electric vehicles (EVs) within intelligent transportation systems (ITSs) has elevated the importance of cybersecurity, especially with the rise in Vehicle-to-Everything (V2X) communications. Traditional intrusion detection systems (IDSs) struggle to address the evolving and complex nature of cyberattacks in such dynamic environments. To address these challenges, this study introduces a novel deep learning-based IDS designed specifically for EV communication networks. We present a hybrid model that integrates convolutional neural networks (CNNs), long short-term memory (LSTM) layers, and adaptive learning strategies. The model was trained and validated using the VeReMi dataset, which simulates a wide range of attack scenarios in V2X networks. Additionally, an ablation study was conducted to isolate the contribution of each of its modules. The model demonstrated strong performance with 98.73% accuracy, 97.88% precision, 98.91% sensitivity, and 98.55% specificity, as well as an F1-score of 98.39%, an MCC of 0.964, a false-positive rate of 1.45%, and a false-negative rate of 1.09%, with a detection latency of 28 ms and an AUC-ROC of 0.994. Specifically, this work fills a clear gap in the existing V2X intrusion detection literature—namely, the lack of scalable, adaptive, and low-latency IDS solutions for hardware-constrained EV platforms—by proposing a hybrid CNN–LSTM architecture coupled with an elastic weight consolidation (EWC)-based adaptive learning module that enables online updates without full retraining. The proposed model provides a real-time, adaptive, and high-precision IDS for EV networks, supporting safer and more resilient ITS infrastructures. Full article
Show Figures

Figure 1

22 pages, 293 KB  
Article
G-Token Implications and Risks for the Financial System Under State-Issued Digital Instruments in Thailand
by Narong Kiettikunwong and Wanida Sangsarapun
J. Risk Financial Manag. 2025, 18(10), 555; https://doi.org/10.3390/jrfm18100555 - 2 Oct 2025
Abstract
As governments increasingly explore digital financial instruments to diversify funding channels and expand citizen participation, Thailand’s G-Token represents an early attempt to integrate blockchain technology into sovereign debt issuance. This study examines its potential implications through a multi-dimensional risk and governance framework, situating [...] Read more.
As governments increasingly explore digital financial instruments to diversify funding channels and expand citizen participation, Thailand’s G-Token represents an early attempt to integrate blockchain technology into sovereign debt issuance. This study examines its potential implications through a multi-dimensional risk and governance framework, situating the analysis within both domestic regulatory structures and international benchmarks. The evaluation considers macroeconomic effects—such as potential shifts in monetary policy transmission, bank disintermediation risks, and systemic liquidity impacts—alongside micro-level concerns involving investor protection, market integrity, and financial literacy. Using comparative analysis with the European Union, Singapore, and United States regulatory approaches, the paper identifies critical gaps in legal classification, oversight maturity, and structural safeguards. Findings indicate that while Thailand’s design—particularly its separation from payment systems—supports monetary coherence, its ad hoc legal integration, reliance on administrative investor protections, and early-stage market infrastructure pose vulnerabilities if adoption scales. The study concludes that achieving long-term viability will require explicit statutory authorization, enhanced disclosure and governance standards, strengthened interagency oversight, and inclusive market access strategies. These insights provide a structured basis for emerging economies seeking to adopt government-backed tokenized instruments without undermining financial stability or public trust. Full article
(This article belongs to the Special Issue Recent Developments in Finance and Economic Growth)
20 pages, 16092 KB  
Article
Spatial Accessibility in the Urban Environment of a Medium-Sized City: A Case Study of Public Amenities in Odense, Denmark
by Irma Kveladze
Urban Sci. 2025, 9(10), 407; https://doi.org/10.3390/urbansci9100407 - 2 Oct 2025
Abstract
Spatial accessibility is a key principle in urban studies, shaping how people reach amenities and services across cities. While most research concentrates on large metropolitan areas and central urban services, small and medium-sized cities and their main amenities remain less studied. To bridge [...] Read more.
Spatial accessibility is a key principle in urban studies, shaping how people reach amenities and services across cities. While most research concentrates on large metropolitan areas and central urban services, small and medium-sized cities and their main amenities remain less studied. To bridge this gap, this study explores spatial accessibility to public amenities in relation to population density in Odense, a medium-sized city known for its compact layout and robust infrastructure supporting walking, cycling, and public transport. Despite Odense’s proactive planning and multimodal transport network, marked accessibility inequalities still exist, especially in peripheral neighbourhoods. This research uses a data-driven approach combining network-based travel time analysis with grid-cell-based spatial visualisation. Additionally, a multi-criteria accessibility scoring framework is introduced, including indicators such as amenity density, diversity of services, temporal thresholds for walking and cycling, and population distribution. The results show an uneven accessibility landscape, with significant gaps in outer districts, highlighting the limitations of uniform planning thresholds. By applying spatial analytical principles, the study uncovers embedded socio-spatial inequalities in everyday urban access. These insights offer practical guidance for planners and policymakers, underscoring the importance of context-sensitive multimodal infrastructure and decentralised service provision to support sustainable urban growth. Full article
Show Figures

Figure 1

21 pages, 2975 KB  
Article
ARGUS: An Autonomous Robotic Guard System for Uncovering Security Threats in Cyber-Physical Environments
by Edi Marian Timofte, Mihai Dimian, Alin Dan Potorac, Doru Balan, Daniel-Florin Hrițcan, Marcel Pușcașu and Ovidiu Chiraș
J. Cybersecur. Priv. 2025, 5(4), 78; https://doi.org/10.3390/jcp5040078 - 1 Oct 2025
Abstract
Cyber-physical infrastructures such as hospitals and smart campuses face hybrid threats that target both digital and physical domains. Traditional security solutions separate surveillance from network monitoring, leaving blind spots when attackers combine these vectors. This paper introduces ARGUS, an autonomous robotic platform designed [...] Read more.
Cyber-physical infrastructures such as hospitals and smart campuses face hybrid threats that target both digital and physical domains. Traditional security solutions separate surveillance from network monitoring, leaving blind spots when attackers combine these vectors. This paper introduces ARGUS, an autonomous robotic platform designed to close this gap by correlating cyber and physical anomalies in real time. ARGUS integrates computer vision for facial and weapon detection with intrusion detection systems (Snort, Suricata) for monitoring malicious network activity. Operating through an edge-first microservice architecture, it ensures low latency and resilience without reliance on cloud services. Our evaluation covered five scenarios—access control, unauthorized entry, weapon detection, port scanning, and denial-of-service attacks—with each repeated ten times under varied conditions such as low light, occlusion, and crowding. Results show face recognition accuracy of 92.7% (500 samples), weapon detection accuracy of 89.3% (450 samples), and intrusion detection latency below one second, with minimal false positives. Audio analysis of high-risk sounds further enhanced situational awareness. Beyond performance, ARGUS addresses GDPR and ISO 27001 compliance and anticipates adversarial robustness. By unifying cyber and physical detection, ARGUS advances beyond state-of-the-art patrol robots, delivering comprehensive situational awareness and a practical path toward resilient, ethical robotic security. Full article
(This article belongs to the Special Issue Cybersecurity Risk Prediction, Assessment and Management)
Show Figures

Figure 1

36 pages, 2656 KB  
Article
Energy Footprint and Reliability of IoT Communication Protocols for Remote Sensor Networks
by Jerzy Krawiec, Martyna Wybraniak-Kujawa, Ilona Jacyna-Gołda, Piotr Kotylak, Aleksandra Panek, Robert Wojtachnik and Teresa Siedlecka-Wójcikowska
Sensors 2025, 25(19), 6042; https://doi.org/10.3390/s25196042 - 1 Oct 2025
Abstract
Excessive energy consumption of communication protocols in IoT/IIoT systems constitutes one of the key constraints for the operational longevity of remote sensor nodes, where radio transmission often incurs higher energy costs than data acquisition or local computation. Previous studies have remained fragmented, typically [...] Read more.
Excessive energy consumption of communication protocols in IoT/IIoT systems constitutes one of the key constraints for the operational longevity of remote sensor nodes, where radio transmission often incurs higher energy costs than data acquisition or local computation. Previous studies have remained fragmented, typically focusing on selected technologies or specific layers of the communication stack, which has hindered the development of comparable quantitative metrics across protocols. The aim of this study is to design and validate a unified evaluation framework enabling consistent assessment of both wired and wireless protocols in terms of energy efficiency, reliability, and maintenance costs. The proposed approach employs three complementary research methods: laboratory measurements on physical hardware, profiling of SBC devices, and simulations conducted in the COOJA/Powertrace environment. A Unified Comparative Method was developed, incorporating bilinear interpolation and weighted normalization, with its robustness confirmed by a Spearman rank correlation coefficient exceeding 0.9. The analysis demonstrates that MQTT-SN and CoAP (non-confirmable mode) exhibit the highest energy efficiency, whereas HTTP/3 and AMQP incur the greatest energy overhead. Results are consolidated in the ICoPEP matrix, which links protocol characteristics to four representative RS-IoT scenarios: unmanned aerial vehicles (UAVs), ocean buoys, meteorological stations, and urban sensor networks. The framework provides well-grounded engineering guidelines that may extend node lifetime by up to 35% through the adoption of lightweight protocol stacks and optimized sampling intervals. The principal contribution of this work is the development of a reproducible, technology-agnostic tool for comparative assessment of IoT/IIoT communication protocols. The proposed framework addresses a significant research gap in the literature and establishes a foundation for further research into the design of highly energy-efficient and reliable IoT/IIoT infrastructures, supporting scalable and long-term deployments in diverse application environments. Full article
(This article belongs to the Collection Sensors and Sensing Technology for Industry 4.0)
37 pages, 1993 KB  
Systematic Review
Demand Response Potential Forecasting: A Systematic Review of Methods, Challenges, and Future Directions
by Ali Muqtadir, Bin Li, Bing Qi, Leyi Ge, Nianjiang Du and Chen Lin
Energies 2025, 18(19), 5217; https://doi.org/10.3390/en18195217 - 1 Oct 2025
Abstract
Demand response (DR) is increasingly recognized as a critical flexibility resource for modernizing power systems, enabling the large-scale integration of renewable energy and enhancing grid stability. While the field of general electricity load forecasting is supported by numerous systematic reviews, the specific subfield [...] Read more.
Demand response (DR) is increasingly recognized as a critical flexibility resource for modernizing power systems, enabling the large-scale integration of renewable energy and enhancing grid stability. While the field of general electricity load forecasting is supported by numerous systematic reviews, the specific subfield of DR potential forecasting has received comparatively less synthesized attention. This gap leaves a fragmented understanding of modeling techniques, practical implementation challenges, and future research problems for a function that is essential for market participation. To address this, this paper presents a PRISMA-2020-compliant systematic review of 172 studies to comprehensively analyze the state-of-the-art in DR potential estimation. We categorize and evaluate the evolution of forecasting methodologies, from foundational statistical models to advanced AI architectures. Furthermore, the study identifies key technological enablers and systematically maps the persistent technical, regulatory, and behavioral barriers that impede widespread DR deployment. Our analysis demonstrates a clear trend towards hybrid and ensemble models, which outperform standalone approaches by integrating the strengths of diverse techniques to capture complex, nonlinear consumer dynamics. The findings underscore that while technologies like Advanced Metering Infrastructure (AMI) and the Internet of Things (IoT) are critical enablers, the gap between theoretical potential and realized flexibility is primarily dictated by non-technical factors, including inaccurate baseline methodologies, restrictive market designs, and low consumer engagement. This synthesis brings much-needed structure to a fragmented research area, evaluating the current state of forecasting methods and identifying the critical research directions required to improve the operational effectiveness of DR programs. Full article
Show Figures

Figure 1

14 pages, 1407 KB  
Article
The Impact of Smart Stops on the Accessibility and Safety of Public Transport Users
by Ronald Rivera-Coloma, Viviana Cajas-Cajas, José Llamuca-Llamuca and Carlos Oleas-Lara
Future Transp. 2025, 5(4), 131; https://doi.org/10.3390/futuretransp5040131 - 1 Oct 2025
Abstract
Bus stops in Riobamba had significant deficiencies in safety, accessibility, and comfort, which limited the effective use of public transport and affected the urban mobility of the population. Improving these conditions was crucial to promote sustainable, inclusive and safe mobility in the city. [...] Read more.
Bus stops in Riobamba had significant deficiencies in safety, accessibility, and comfort, which limited the effective use of public transport and affected the urban mobility of the population. Improving these conditions was crucial to promote sustainable, inclusive and safe mobility in the city. This study was quantitative and descriptive, based on 420 user surveys and the direct observation of 140 stops, complemented with georeferencing and comparative review of specialized literature. The findings showed that most of the stops lacked adequate lighting, shelter, signage and universal access, with 68% of users perceiving low safety. The most in-demand technologies included real-time information systems (72%) and video surveillance (65%). The proposed model of smart stops will improve accessibility, safety and comfort for users, encouraging greater use of public transport. By addressing the main infrastructure and technology gaps, the intervention contributed to inclusive and safe urban mobility, directly contributing to Sustainable Development Goal 11 and offering a replicable framework for other medium-sized cities seeking to optimize their public transport systems. Full article
(This article belongs to the Special Issue Sustainable Transportation and Quality of Life)
Show Figures

Figure 1

24 pages, 8578 KB  
Article
Electric Vehicle Charging Infrastructure with Hybrid Renewable Energy: A Feasibility Study in Jordan
by Ahmad Salah, Mohammad Shalby, Mohammad Al-Soeidat and Fadi Alhomaidat
World Electr. Veh. J. 2025, 16(10), 557; https://doi.org/10.3390/wevj16100557 - 30 Sep 2025
Abstract
Jordan Vision prioritizes the utilization of domestic resources, particularly renewable energy. The transportation sector, responsible for 49% of national energy consumption, remains central to this transition and accounts for around 28% of total greenhouse gas emissions. Electric vehicles (EVs) offer a promising solution [...] Read more.
Jordan Vision prioritizes the utilization of domestic resources, particularly renewable energy. The transportation sector, responsible for 49% of national energy consumption, remains central to this transition and accounts for around 28% of total greenhouse gas emissions. Electric vehicles (EVs) offer a promising solution to reduce waste and pollution, but they also pose challenges for grid stability and charging infrastructure development. This study addresses a critical gap in the planning of renewable-powered EV charging stations along Jordanian highways, where EV infrastructure is still limited and underdeveloped, by optimizing the design of a hybrid energy charging station using HOMER Grid (v1.9.2) Software. Region-specific constraints and multiple operational scenarios, including rooftop PV integration, are assessed to balance cost, performance, and reliability. This study also investigates suitable locations for charging stations along the Sahrawi Highway in Jordan. The proposed station, powered by a hybrid system of 53% wind and 29% solar energy, is projected to generate 1.466 million kWh annually at USD 0.0375/kWh, reducing CO2 emissions by approximately 446 tonnes annually. The findings highlight the potential of hybrid systems to increase renewable energy penetration, support national sustainability targets, and offer viable investment opportunities for policymakers and the private sector in Jordan. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

39 pages, 1103 KB  
Article
Digitalization and Culture–Tourism Integration in China: The Moderated Mediation Effects of Employment Quality, Infrastructure, and New-Quality Productivity
by Kahaer Abula and Yusupu Aihemaiti
Sustainability 2025, 17(19), 8792; https://doi.org/10.3390/su17198792 - 30 Sep 2025
Abstract
The digital economy is significantly transforming the global economic environment and has emerged as the primary driver behind China’s high-quality development. The comprehensive melding of the cultural and tourism sectors (CTI) serves as a strategic approach to boost regional competitiveness and enhance public [...] Read more.
The digital economy is significantly transforming the global economic environment and has emerged as the primary driver behind China’s high-quality development. The comprehensive melding of the cultural and tourism sectors (CTI) serves as a strategic approach to boost regional competitiveness and enhance public welfare. This study investigates the mechanisms and boundary conditions through which the growth of the digital economy across China’s 31 provinces from 2011 to 2023 impacts CTI, aiming to address existing research gaps related to micro-level transmission mechanisms and the analysis of contextual variables. Utilizing a two-way fixed-effects moderated mediation model complemented by instrumental variable (IV-2SLS) regression for testing endogeneity, the research uncovers intricate interactions among the digital economy, CTI, and significant influencing factors. The results strongly suggest that advancements in the digital economy substantially facilitate the integration of cultural and tourism sectors. This beneficial effect is partially mediated through two primary channels: the construction of new infrastructure and enhancements in employment quality, underscoring the critical role of both material and human capital in digital empowerment. Significantly, this research uniquely identifies that new quality productive forces (NQP) have a notable negative moderating impact on the link between the digital economy and cultural–tourism integration. This indicates that in provinces exhibiting high levels of NQP, the positive influence of the digital economy on cultural–tourism integration is considerably diminished. This unexpected finding can be interpreted through mechanisms such as resource dilution, varied integration pathways or maturity effects, along with differences in developmental stages and priorities. Furthermore, it resonates well with the resource-based view, innovation ecosystem theory, and dynamic capability theory. Instrumental variable regression further substantiates the notable positive influence of the digital economy on the integration of cultural tourism. This approach effectively tackles potential endogeneity concerns and reveals the upward bias that may exist in fixed-effects models. The findings contribute significantly to theoretical frameworks by enhancing the understanding of the intricate mechanisms facilitating the digital economy and, for the first time, innovatively designating NQP as a surprising key boundary condition. This enriches theories related to industrial advancement and resource allocation in the digital age. On a practical note, the research provides nuanced and differentiated policy guidance aimed at optimizing pathways for integration across various Chinese provinces at different stages of development. Additionally, it underscores significant implications for other developing nations engaged in digital tourism growth, thereby improving its global relevance. Full article
25 pages, 5257 KB  
Article
User Comfort Evaluation in a Nearly Zero-Energy Housing Complex in Poland: Indoor and Outdoor Analysis
by Małgorzata Fedorczak-Cisak, Elżbieta Radziszewska-Zielina, Mirosław Dechnik, Aleksandra Buda-Chowaniec, Beata Sadowska, Michał Ciuła and Tomasz Kapecki
Energies 2025, 18(19), 5209; https://doi.org/10.3390/en18195209 - 30 Sep 2025
Abstract
The building sector plays a key role in the transition toward climate neutrality, with national regulations across the EU requiring the construction of nearly zero-energy buildings (nZEBs). However, while energy performance has been extensively studied, less attention has been given to the problem [...] Read more.
The building sector plays a key role in the transition toward climate neutrality, with national regulations across the EU requiring the construction of nearly zero-energy buildings (nZEBs). However, while energy performance has been extensively studied, less attention has been given to the problem of ensuring user comfort—both indoors and in the surrounding outdoor areas—under nZEB design constraints. This gap raises two key research objectives: (1) to evaluate whether a well-designed nZEB with extensive glazing maintains acceptable indoor thermal comfort and (2) to assess whether residents experience greater outdoor thermal comfort and satisfaction in small, sun-exposed private gardens or in larger, shaded communal green spaces. To address these objectives, a newly built residential estate near Kraków (Poland) was analyzed. The investigation included simulation-based assessments during the design phase and in situ measurements during building operation, complemented by a user survey on spatial preferences. Indoor comfort was evaluated for rooms with large glazed façades, as well as rooms with standard-sized windows, while outdoor comfort was assessed in both private gardens and a shared green courtyard. Results show that shading the southwest-oriented glazed façade with an overhanging terrace provided slightly lower temperatures in ground-floor rooms compared to rooms with standard unshaded windows. Outdoors, users experienced lower thermal comfort in small, unshaded gardens than in the larger, vegetated communal area (pocket park), which demonstrated greater capacity for temperature moderation and thermal stress reduction. Survey responses further indicate that potential future residents prefer the inclusion of a shared green–blue infrastructure area, even at the expense of building some housing units in semi-detached form, instead of maximizing the number of detached units with unshaded individual gardens. These findings emphasize the importance of addressing both indoor and outdoor comfort in residential nZEB design, showing that technological efficiency must be complemented by user-centered design strategies. This integrated approach can improve the well-being of residents while supporting climate change adaptation in the built environment. Full article
19 pages, 1098 KB  
Article
Adapting to Climate Change in the United States: What and How Are We Learning from Each Other?
by Deborah A. Rudnick, Carey Schafer, Lara J. Hansen and Jennifer Brousseau
Sustainability 2025, 17(19), 8789; https://doi.org/10.3390/su17198789 - 30 Sep 2025
Abstract
Climate adaptation convenings have emerged in the last decade to share knowledge and accelerate learning in the field. Convenings provide a wealth of information for understanding what issues are being researched and addressed, for evaluating what practices and key components of convenings are [...] Read more.
Climate adaptation convenings have emerged in the last decade to share knowledge and accelerate learning in the field. Convenings provide a wealth of information for understanding what issues are being researched and addressed, for evaluating what practices and key components of convenings are considered particularly valuable to practitioners, and for understanding where there are gaps in our knowledge or trends in learning that should be supported. We analyzed survey and attendance data from online and in-person climate convenings in the U.S. to assess perceived outcomes and future intentions, as well as explored thematic changes in sessions at in-person conferences. We performed descriptive analyses on survey and attendance data and conducted thematic analysis of sessions at in-person conferences. Both online and in-person formats achieved high levels of learning and satisfaction reported by respondents, but with higher connectivity and relationship building at in-person events. Topics addressed in forums showed small but meaningful shifts, as some areas of interest increased (e.g., social justice, nature-based solutions) while others decreased (e.g., decision-making tools, infrastructure) or showed variable responses. These trends and feedback provide a foundation for continuing to grow effective practices to support climate adaptation practitioners with the knowledge and opportunities for connection needed to advance the adaptation field. Full article
24 pages, 1553 KB  
Article
Year-Round Modeling of Evaporation and Substrate Temperature of Two Distinct Green Roof Systems
by Dominik Gößner
Urban Sci. 2025, 9(10), 396; https://doi.org/10.3390/urbansci9100396 - 30 Sep 2025
Abstract
This paper presents a novel model for the year-round simulation of evapotranspiration (ET) and substrate temperature on two fundamentally different extensive green roof types: a conventional drainage-based “Economy Roof” and a retention-optimized “Retention Roof” featuring capillary water redistribution. The main scope is to [...] Read more.
This paper presents a novel model for the year-round simulation of evapotranspiration (ET) and substrate temperature on two fundamentally different extensive green roof types: a conventional drainage-based “Economy Roof” and a retention-optimized “Retention Roof” featuring capillary water redistribution. The main scope is to bridge the gap in urban climate adaptation by providing a modeling tool that captures both hydrological and thermal functions of green roofs throughout all seasons, notably including periods with dormancy and low vegetation activity. A key novelty is the explicit and empirically validated integration of core physical processes—water storage layer coupling, explicit rainfall interception, and vegetation cover dynamics—with the latter strongly controlled by plant area index (PAI). The PAI, here quantified as the plant surface area per unit ground area using digital image analysis, directly determines interception capacity and vegetative transpiration rates within the model. This process-based representation enables a more realistic simulation of seasonal fluctuations and physiological plant responses, a feature often neglected in previous green roof models. The model, which can be fully executed without high computational power, was validated against comprehensive field measurements from a temperate climate, showing high predictive accuracy (R2 = 0.87 and percentage bias = −1% for ET on the Retention Roof; R2 = 0.91 and percentage bias = −8% for substrate temperature on the Economy Roof). Notably, the layer-specific coupling of vegetation, substrate, and water storage advances ecological realism compared to prior approaches. The results illustrate the model’s practical applicability for urban planners and researchers, offering a user-friendly and transparent tool for integrated assessments of green infrastructure within the context of climate-resilient city design. Full article
Show Figures

Figure 1

17 pages, 1849 KB  
Article
Suitability of Residential Neighborhoods for Hosting Events: A Case Study of Riyadh, Saudi Arabia
by Sameeh Alarabi
Buildings 2025, 15(19), 3517; https://doi.org/10.3390/buildings15193517 - 29 Sep 2025
Abstract
Public events serve as a foundational mechanism for shaping the social and spatial dynamics of urban environments. Despite widespread recognition of their physical, psychological, and social impacts at the city scale, a significant gap persists in research addressing the social and spatial suitability [...] Read more.
Public events serve as a foundational mechanism for shaping the social and spatial dynamics of urban environments. Despite widespread recognition of their physical, psychological, and social impacts at the city scale, a significant gap persists in research addressing the social and spatial suitability of public spaces at the neighborhood level, particularly within the Arab urban context. This study investigates residential neighborhoods in Riyadh, Saudi Arabia, to assess how public events foster community engagement, cultural diversity, and social cohesion. Drawing on survey data from 510 residents, statistical analysis reveals that demographic variables such as age, gender, and professional sector influence participation, with youth and women demonstrating notably higher levels of engagement. Moreover, population density emerges as a critical factor in determining the appropriateness of event settings, with medium-sized gatherings in open spaces especially parks proving most effective. The findings emphasize the importance of designing inclusive and culturally responsive events, offering actionable insights for urban planning in rapidly growing cities. The study further highlights the need to reimagine neighborhood parks and open spaces as adaptable venues, equipped with essential infrastructure and governed by streamlined regulatory frameworks. Participants expressed a clear preference for accessible, medium-scale cultural events that prioritize safety, environmental sustainability, and enhanced public amenities, including transportation and sanitation services. Full article
Show Figures

Figure 1

20 pages, 1282 KB  
Systematic Review
Identifying Circularity in Nature-Based Solutions: A Systematic Review
by Héctor Guadalupe Ramírez-Escamilla, María Concepción Martínez-Rodríguez, Diego Domínguez-Solís, Ana Laura Cervantes-Nájera and Lorena Elizabeth Campos-Villegas
Sustainability 2025, 17(19), 8722; https://doi.org/10.3390/su17198722 - 28 Sep 2025
Abstract
Nature-Based Solutions (NBS) represent an alternative for achieving environmental and resilience goals in diverse global contexts with varying needs. As such, NBS can be understood as processes involving actions that promote circular economy (CE) strategies within their function. Therefore, this research aims to [...] Read more.
Nature-Based Solutions (NBS) represent an alternative for achieving environmental and resilience goals in diverse global contexts with varying needs. As such, NBS can be understood as processes involving actions that promote circular economy (CE) strategies within their function. Therefore, this research aims to conduct a systematic literature review to identify and analyze the main NBS applied and explore how they are associated with CE strategies. This study performs a systematic literature review of NBS and their relationship with the CE using the PRISMA methodology, analyzing a total of 32 articles retrieved from the SCOPUS database. The main NBS include constructed wetlands, green infrastructure, and soil restoration and enrichment solutions. Constructed wetlands are linked to strategies such as recycling and reuse due to their role in treating urban and domestic wastewater for reuse, thereby increasing water availability. Green infrastructure is associated with strategies like redesign and reduction, as it involves the use of lower-impact materials and designs for rainwater harvesting and thermal comfort improvement. Soil enrichment and remediation solutions are connected to reuse and recycling strategies, as most derive from organic waste composting or microorganisms. NBS and CE strategies highlight how these solutions not only provide direct environmental benefits but also, when analyzed from a sustainability perspective, can offer social and economic benefits. Furthermore, understanding their relationship will facilitate their integration into regulations for transitioning toward circularity in industries and cities. The contribution of this article lies in synthesizing and systematizing the evidence on how NBS operationalizes CE strategies, identifying the main mechanisms and gaps, and proposing a conceptual model that can guide future research and policy design. Full article
(This article belongs to the Special Issue Green Innovation, Circular Economy and Sustainability Transition)
Show Figures

Figure 1

Back to TopTop