Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = inductive coupling plasma chemical vapor deposition (ICP CVD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 4348 KiB  
Communication
Enhanced Barrier and Optical Properties of Inorganic Nano-Multilayers on PEN Substrate Through Hybrid Deposition
by Xiaojie Sun, Lanlan Chen and Wei Feng
Materials 2024, 17(23), 6007; https://doi.org/10.3390/ma17236007 - 8 Dec 2024
Viewed by 4238
Abstract
In this study, an inorganic multilayer barrier film was fabricated on the polyethylene naphthalate (PEN) substrate, which was composed of a SiO2 layer prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD) and a Al2O3/ZnO nanolaminate produced by [...] Read more.
In this study, an inorganic multilayer barrier film was fabricated on the polyethylene naphthalate (PEN) substrate, which was composed of a SiO2 layer prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD) and a Al2O3/ZnO nanolaminate produced by plasma-enhanced atomic layer deposition (PEALD). The multilayer composite film with a structure of 50 nm SiO2 + (4.5 nm Al2O3/6 nm ZnO) × 4 has excellent optical transmittance (88.1%) and extremely low water vapor permeability (3.3 × 10−5 g/m2/day, 38 °C, 90% RH), indicating the cooperation of the two advanced film growth methods. The results suggest that the defects of the SiO2 layer prepared by ICP-CVD were effectively repaired by the PEALD layer, which has excellent defect coverage. And Al2O3/ZnO nanolaminates have advantages over single-layer Al2O3 due to their complex diffusion pathways. The multilayer barrier film offers potential for encapsulating organic electronic devices that require a longer lifespan. Full article
Show Figures

Figure 1

11 pages, 17938 KiB  
Article
Stability of Wafer-Scale Thin Films of Vertically Aligned Hexagonal BN Nanosheets Exposed to High-Energy Ions and Reactive Atomic Oxygen
by Shiyong Huang, Zhi Kai Ng, Hongling Li, Apoorva Chaturvedi, Jian Wei Mark Lim, Roland Yingjie Tay, Edwin Hang Tong Teo, Shuyan Xu, Kostya (Ken) Ostrikov and Siu Hon Tsang
Nanomaterials 2022, 12(21), 3876; https://doi.org/10.3390/nano12213876 - 2 Nov 2022
Cited by 1 | Viewed by 2335
Abstract
Stability of advanced functional materials subjected to extreme conditions involving ion bombardment, radiation, or reactive chemicals is crucial for diverse applications. Here we demonstrate the excellent stability of wafer-scale thin films of vertically aligned hexagonal BN nanosheets (hBNNS) exposed to high-energy ions and [...] Read more.
Stability of advanced functional materials subjected to extreme conditions involving ion bombardment, radiation, or reactive chemicals is crucial for diverse applications. Here we demonstrate the excellent stability of wafer-scale thin films of vertically aligned hexagonal BN nanosheets (hBNNS) exposed to high-energy ions and reactive atomic oxygen representative of extreme conditions in space exploration and other applications. The hBNNS are fabricated catalyst-free on wafer-scale silicon, stainless steel, copper and glass panels at a lower temperature of 400 °C by inductively coupled plasma (ICP) assisted chemical vapor deposition (CVD) and subsequently characterized. The resistance of BNNS to high-energy ions was tested by immersing the samples into the plasma plume at the anode of a 150 W Hall Effect Thruster with BNNS films facing Xenon ions, revealing that the etching rate of BNNS is 20 times less than for a single-crystalline silicon wafer. Additionally, using O2/Ar/H2 plasmas to simulate the low Earth orbit (LEO) environment, it is demonstrated that the simulated plasma had very weak influence on the hBNNS surface structure and thickness. These results validate the strong potential of BNNS films for applications as protective, thermally conductive and insulating layers for spacecrafts, electric plasma satellite thrusters and semiconductor optoelectronic devices. Full article
Show Figures

Figure 1

14 pages, 16038 KiB  
Article
Low-Temperature Deposition of High-Quality SiO2 Films with a Sloped Sidewall Profile for Vertical Step Coverage
by Congcong Liang, Yuan Zhong, Qing Zhong, Jinjin Li, Wenhui Cao, Xueshen Wang, Shijian Wang, Xiaolong Xu, Jian Wang and Yue Cao
Coatings 2022, 12(10), 1411; https://doi.org/10.3390/coatings12101411 - 27 Sep 2022
Cited by 6 | Viewed by 6352
Abstract
SiO2 is one of the most widely used dielectric materials in optical and electronic devices. The Josephson voltage standard (JVS) chip fabrication process has rigorous requirements for the deposition temperature and step-coverage profiles of the SiO2 insulation layer. In this study, [...] Read more.
SiO2 is one of the most widely used dielectric materials in optical and electronic devices. The Josephson voltage standard (JVS) chip fabrication process has rigorous requirements for the deposition temperature and step-coverage profiles of the SiO2 insulation layer. In this study, we deposited high-quality SiO2 insulation films at 60 °C using inductively coupled plasma-chemical vapor deposition (ICP-CVD) to fulfill these requirements and fabricate JVS chips simultaneously. SiO2 films have a high density, low compressive stress, and a sloped sidewall profile over the vertical junction steps. The sidewall profiles over the vertical junction steps can be adjusted by changing the radio frequency (RF) power, ICP power, and chamber pressure. The effects of sputtering etch and sloped step coverage were enhanced when the RF power was increased. The anisotropy ratio of the deposition rate between the sidewall and the bottom of the film was lower, and the sloped step coverage effect was enhanced when the ICP power was increased, or the deposition pressure was decreased. The effects of the RF power on the stress, density, roughness, and breakdown voltage of the SiO2 films were also investigated. Despite increased compressive stress with increasing RF power, the film stress was still low and within acceptable limits in the device. The films deposited under optimized conditions exhibited improved densities in the Fourier transform infrared spectra, buffered oxide etch rate, and breakdown voltage measurements compared with the films deposited without RF power. The roughness of the film also decreased. The step-coverage profile of the insulation layer prepared under optimized conditions was enhanced in the junction and bottom electrode regions; additionally, the performance of the device was optimized. This study holds immense significance for increasing the number of junctions in future devices. Full article
Show Figures

Figure 1

26 pages, 5270 KiB  
Article
Synthesis, Properties and Aging of ICP-CVD SiCxNy:H Films Formed from Tetramethyldisilazane
by Maksim N. Chagin, Veronica S. Sulyaeva, Vladimir R. Shayapov, Aleksey N. Kolodin, Maksim N. Khomyakov, Irina V. Yushina and Marina L. Kosinova
Coatings 2022, 12(1), 80; https://doi.org/10.3390/coatings12010080 - 11 Jan 2022
Cited by 8 | Viewed by 3492
Abstract
Amorphous hydrogenated silicon carbonitride films were synthesized on Si(100), Ge(111), and fused silica substrates using the inductively coupled plasma chemical vapor deposition technique. 1,1,3,3-tetramethyldisilazane (TMDSN) was used as a single-source precursor. The effect of the precursor’s pressure in the initial gas mixture, the [...] Read more.
Amorphous hydrogenated silicon carbonitride films were synthesized on Si(100), Ge(111), and fused silica substrates using the inductively coupled plasma chemical vapor deposition technique. 1,1,3,3-tetramethyldisilazane (TMDSN) was used as a single-source precursor. The effect of the precursor’s pressure in the initial gas mixture, the substrate temperature, the plasma power, and the flow rate of nitrogen gas as an additional reagent on the film growth rate, element composition, chemical bonding, wettability of film surface, and the optical and mechanical properties of a-SiCxNy:H films was investigated. In situ diagnostic studies of the gas phase have been performed by optical emission spectroscopy during the film deposition process. The long-term stability of films was studied over a period of 375 days. Fourier-transform infrared (FTIR) and X-ray energy dispersive spectroscopy (EDX), and wettability measurements elucidated the oxidation of the SiCxNy:H films deposited using TMDSN + N2 mixture. Films obtained from a mixture with argon had high stability and maintained the stability of element composition after long-term storage in ambient air. Full article
Show Figures

Figure 1

41 pages, 8177 KiB  
Review
Plasma Enhanced Chemical Vapor Deposition of Organic Polymers
by Gerhard Franz
Processes 2021, 9(6), 980; https://doi.org/10.3390/pr9060980 - 1 Jun 2021
Cited by 16 | Viewed by 8902
Abstract
Chemical Vapor Deposition (CVD) with its plasma-enhanced variation (PECVD) is a mighty instrument in the toolbox of surface refinement to cover it with a layer with very even thickness. Remarkable the lateral and vertical conformity which is second to none. Originating from the [...] Read more.
Chemical Vapor Deposition (CVD) with its plasma-enhanced variation (PECVD) is a mighty instrument in the toolbox of surface refinement to cover it with a layer with very even thickness. Remarkable the lateral and vertical conformity which is second to none. Originating from the evaporation of elements, this was soon applied to deposit compound layers by simultaneous evaporation of two or three elemental sources and today, CVD is rather applied for vaporous reactants, whereas the evaporation of solid sources has almost completely shifted to epitaxial processes with even lower deposition rates but growth which is adapted to the crystalline substrate. CVD means first breaking of chemical bonds which is followed by an atomic reorientation. As result, a new compound has been generated. Breaking of bonds requires energy, i.e., heat. Therefore, it was a giant step forward to use plasmas for this rate-limiting step. In most cases, the maximum temperature could be significantly reduced, and eventually, also organic compounds moved into the preparative focus. Even molecules with saturated bonds (CH4) were subjected to plasmas—and the result was diamond! In this article, some of these strategies are portrayed. One issue is the variety of reaction paths which can happen in a low-pressure plasma. It can act as a source for deposition and etching which turn out to be two sides of the same medal. Therefore, the view is directed to the reasons for this behavior. The advantages and disadvantages of three of the widest-spread types, namely microwave-driven plasmas and the two types of radio frequency-driven plasmas denoted Capacitively-Coupled Plasmas (CCPs) and Inductively-Coupled Plasmas (ICPs) are described. The view is also directed towards the surface analytics of the deposited layers—a very delicate issue because carbon is the most prominent atom to form multiple bonds and branched polymers which causes multifold reaction paths in almost all cases. Purification of a mixture of volatile compounds is not at all an easy task, but it is impossible for solids. Therefore, the characterization of the film properties is often more orientated towards typical surface properties, e.g., hydrophobicity, or dielectric strength instead of chemical parameters, e.g., certain spectra which characterize the purity (infrared or Raman). Besides diamond and Carbon Nano Tubes, CNTs, one of the polymers which exhibit an almost threadlike character is poly-pxylylene, commercially denoted parylene, which has turned out a film with outstanding properties when compared to other synthetics. Therefore, CVD deposition of parylene is making inroads in several technical fields. Even applications demanding tight requirements on coating quality, like gate dielectrics for semiconductor industry and semi-permeable layers for drug eluting implants in medical science, are coming within its purview. Plasma-enhancement of chemical vapor deposition has opened the window for coatings with remarkable surface qualities. In the case of diamond and CNTs, their purity can be proven by spectroscopic methods. In all the other cases, quantitative measurements of other parameters of bulk or surface parameters, resp., are more appropriate to describe and to evaluate the quality of the coatings. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

9 pages, 3953 KiB  
Article
Plasma Treatments and Light Extraction from Fluorinated CVD-Grown (400) Single Crystal Diamond Nanopillars
by Mariusz Radtke, Abdallah Slablab, Sandra Van Vlierberghe, Chao-Nan Lin, Ying-Jie Lu and Chong-Xin Shan
C 2020, 6(2), 37; https://doi.org/10.3390/c6020037 - 3 Jun 2020
Cited by 2 | Viewed by 5718 | Correction
Abstract
We investigate the possibilities to realize light extraction from single crystal diamond (SCD) nanopillars. This was achieved by dedicated 519 nm laser-induced spin-state initiation of negatively charged nitrogen vacancies (NV). We focus on the naturally-generated by chemical vapor deposition (CVD) [...] Read more.
We investigate the possibilities to realize light extraction from single crystal diamond (SCD) nanopillars. This was achieved by dedicated 519 nm laser-induced spin-state initiation of negatively charged nitrogen vacancies (NV). We focus on the naturally-generated by chemical vapor deposition (CVD) growth of NV. Applied diamond was neither implanted with 14N+, nor was the CVD synthesized SCD annealed. To investigate the possibility of light extraction by the utilization of NV’s bright photoluminescence at room temperature and ambient conditions with the waveguiding effect, we have performed a top-down nanofabrication of SCD by electron beam lithography (EBL) and dry inductively-coupled plasma/reactive ion etching (ICP-RIE) to generate light focusing nanopillars. In addition, we have fluorinated the diamond’s surface by dedicated 0 V SF6 ICP plasma. Light extraction and spin manipulations were performed with photoluminescence (PL) spectroscopy and optically detected magnetic resonance (ODMR) at room temperature. We have observed a remarkable effect based on the selective 0 V SF6 plasma etching and surprisingly, in contrast to literature findings, deactivation of NV centers. We discuss the possible deactivation mechanism in detail. Full article
Show Figures

Graphical abstract

23 pages, 5699 KiB  
Article
“To Be Microbiocidal and Not to Be Cytotoxic at the Same Time…”—Silver Nanoparticles and Their Main Role on the Surface of Titanium Alloy Implants
by Aleksandra Radtke, Marlena Grodzicka, Michalina Ehlert, Tomasz Jędrzejewski, Magdalena Wypij and Patrycja Golińska
J. Clin. Med. 2019, 8(3), 334; https://doi.org/10.3390/jcm8030334 - 10 Mar 2019
Cited by 32 | Viewed by 4535
Abstract
The chemical vapor deposition (CVD) method has been used to produce dispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and nanotubular modified titanium alloys (Ti6Al4V/TNT5), leading to the formation of Ti6Al4V/AgNPs and Ti6Al4V/TNT5/AgNPs systems with different contents of metallic silver [...] Read more.
The chemical vapor deposition (CVD) method has been used to produce dispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and nanotubular modified titanium alloys (Ti6Al4V/TNT5), leading to the formation of Ti6Al4V/AgNPs and Ti6Al4V/TNT5/AgNPs systems with different contents of metallic silver particles. Their surface morphology and silver particles arrangement were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and atomic force microscopy (AFM). The wettability and surface free energy of these materials were investigated on the basis of contact angle measurements. The degree of silver ion release from the surface of the studied systems immersed in phosphate buffered saline solution (PBS) was estimated using inductively coupled plasma ionization mass spectrometry (ICP-MS). The biocompatibility of the analyzed materials was estimated based on the fibroblasts and osteoblasts adhesion and proliferation, while their microbiocidal properties were determined against Gram-positive and Gram-negative bacteria, and yeasts. The results of our works proved the high antimicrobial activity and biocompatibility of all the studied systems. Among them, Ti6Al4V/TNT5/0.6AgNPs contained the lowest amount of AgNPs, but still revealed optimal biointegration properties and high biocidal properties. This is the biomaterial that possesses the desired biological properties, in which the potential toxicity is minimized by minimizing the number of silver nanoparticles. Full article
(This article belongs to the Special Issue Biomaterial-Related Infections)
Show Figures

Graphical abstract

24 pages, 6985 KiB  
Article
Properties of Nitrogen/Silicon Doped Vertically Oriented Graphene Produced by ICP CVD Roll-to-Roll Technology
by Petr Rozel, Darya Radziuk, Lubov Mikhnavets, Evgenij Khokhlov, Vladimir Shiripov, Iva Matolínová, Vladimír Matolín, Alexander Basaev, Nikolay Kargin and Vladimir Labunov
Coatings 2019, 9(1), 60; https://doi.org/10.3390/coatings9010060 - 19 Jan 2019
Cited by 12 | Viewed by 6101
Abstract
Simultaneous mass production of high quality vertically oriented graphene nanostructures and doping them by using an inductively coupled plasma chemical vapor deposition (ICP CVD) is a technological problem because little is understood about their growth mechanism over enlarged surfaces. We introduce a new [...] Read more.
Simultaneous mass production of high quality vertically oriented graphene nanostructures and doping them by using an inductively coupled plasma chemical vapor deposition (ICP CVD) is a technological problem because little is understood about their growth mechanism over enlarged surfaces. We introduce a new method that combines the ICP CVD with roll-to-roll technology to enable the in-situ preparation of vertically oriented graphene by using propane as a precursor gas and nitrogen or silicon as dopants. This new technology enables preparation of vertically oriented graphene with distinct morphology and composition on a moving copper foil substrate at a lower cost. The technological parameters such as deposition time (1–30 min), gas partial pressure, composition of the gas mixture (propane, argon, nitrogen or silane), heating treatment (1–60 min) and temperature (350–500 °C) were varied to reveal the nanostructure growth, the evolution of its morphology and heteroatom’s intercalation by nitrogen or silicon. Unique nanostructures were examined by FE-SEM microscopy, Raman spectroscopy and energy dispersive X-Ray scattering techniques. The undoped and nitrogen- or silicon-doped nanostructures can be prepared with the full area coverage of the copper substrate on industrially manufactured surface defects. Longer deposition time (30 min, 450 °C) causes carbon amorphization and an increased fraction of sp3-hybridized carbon, leading to enlargement of vertically oriented carbonaceous nanostructures and growth of pillars. Full article
(This article belongs to the Special Issue Graphene-Based Composite Films)
Show Figures

Figure 1

20 pages, 3866 KiB  
Article
Studies on Silver Ions Releasing Processes and Mechanical Properties of Surface-Modified Titanium Alloy Implants
by Aleksandra Radtke, Marlena Grodzicka, Michalina Ehlert, Tadeusz M. Muzioł, Marek Szkodo, Michał Bartmański and Piotr Piszczek
Int. J. Mol. Sci. 2018, 19(12), 3962; https://doi.org/10.3390/ijms19123962 - 9 Dec 2018
Cited by 27 | Viewed by 4897
Abstract
Dispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and titanium alloy modified by titania nanotube layer (Ti6Al4V/TNT) substrates were produced by the chemical vapor deposition method (CVD) using a novel precursor of the formula [Ag5(O2CC2 [...] Read more.
Dispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and titanium alloy modified by titania nanotube layer (Ti6Al4V/TNT) substrates were produced by the chemical vapor deposition method (CVD) using a novel precursor of the formula [Ag5(O2CC2F5)5(H2O)3]. The structure and volatile properties of this compound were determined using single crystal X-ray diffractometry, variable temperature IR spectrophotometry (VT IR), and electron inducted mass spectrometry (EI MS). The morphology and the structure of the produced Ti6Al4V/AgNPs and Ti6Al4V/TNT/AgNPs composites were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Moreover, measurements of hardness, Young’s modulus, adhesion, wettability, and surface free energy have been carried out. The ability to release silver ions from the surface of produced nanocomposite materials immersed in phosphate-buffered saline (PBS) solution has been estimated using inductively coupled plasma mass spectrometry (ICP-MS). The results of our studies proved the usefulness of the CVD method to enrich of the Ti6Al4V/TNT system with silver nanoparticles. Among the studied surface-modified titanium alloy implants, the better nano-mechanical properties were noticed for the Ti6Al4V/TNT/AgNPs composite in comparison to systems non-enriched by AgNPs. The location of silver nanoparticles inside of titania nanotubes caused their lowest release rate, which may indicate suitable properties on the above-mentioned type of the composite for the construction of implants with a long term antimicrobial activity. Full article
(This article belongs to the Special Issue Silver Nano/microparticles: Modification and Applications)
Show Figures

Graphical abstract

Back to TopTop