Plasma Treatments and Light Extraction from Fluorinated CVD-Grown (400) Single Crystal Diamond Nanopillars
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photonic Properties of as-Grown Diamond and after Successful Nanofabrication
2.2. 0 V SF6 Plasma-Aided Fluorination of Single Crystal Diamond
2.3. Effect of Fluorination on Charge Loss in Negatively-Charged Nitrogen Vacancy
2.4. Selective Fluorination and Thermodynamical Instability
3. Materials and Methods
3.1. CVD Diamond Growth
3.2. Nanofabrication
3.3. Photoluminescence Spectroscopy on Naturally Grown-In Nitrogen Vacancies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bernardi, E.; Nelz, R.; Sonusen, S.; Neu, E. Nanoscale Sensing Using Point Defects in Single-Crystal Diamond: Recent Progress on Nitrogen Vacancy Center-Based Sensors. Crystals 2017, 7, 124. [Google Scholar] [CrossRef]
- Chou, J.P.; Bodrog, Z.; Gali, A. First-Principles Study of Charge Diffusion between Proximate Solid-State Qubits and Its Implications on Sensor Applications. Phys. Rev. Lett. 2018, 120, 136401. [Google Scholar] [CrossRef]
- Barnard, A.S. Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 2009, 134, 1751–1764. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.; Lehmann, F.; Zhang, J.; Borgsdorf, S.; Woehrl, N.; Remfort, R.; Buck, V.; Koehler, U.; Suter, D. CVD growth of ultrapure diamond, generation of NV centers by ion implantation, and their spectroscopic characterization for quantum technological applications. Phys. Rev. Mater. 2019, 3, 065205. [Google Scholar] [CrossRef]
- Osterkamp, C.; Mangold, M.; Lang, J.; Balasubramanian, P.; Teraji, T.; Naydenov, B.; Jelezko, F. Engineering preferentially-aligned nitrogen-vacancy centre ensembles in CVD grown diamond. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hilser, F.; Burkard, G. All-optical control of the spin state in the NV- center in diamond. Phys. Rev. B 2012, 86, 125204. [Google Scholar] [CrossRef]
- Fuchs, G.D.; Dobrovitski, V.V.; Hanson, R.; Batra, A.; Weis, C.D.; Schenkel, T.; Awschalom, D.D. Excited-State Spectroscopy Using Single Spin Manipulation in Diamond. Phys. Rev. Lett. 2008, 101, 117601. [Google Scholar] [CrossRef]
- Kratochvilova, I.; Sebera, J.; Ashcheulov, P.; Golan, M.; Ledvina, M.; Micova, J.; Mravec, F.; Kovalenko, A.; Zverev, D.; Yavkin, B.; et al. Magnetical and Optical Properties of Nanodiamonds Can Be Tuned by Particles Surface Chemistry: Theoretical and Experimental Study. J. Phys. Chem. C 2014, 118, 25245–25252. [Google Scholar] [CrossRef]
- Gali, A. Ab initio theory of the nitrogen-vacancy center in diamond. Nanophotonics 2019, 8, 1907–1943. [Google Scholar] [CrossRef]
- Radtke, M.; Bernardi, E.; Slablab, A.; Nelz, R.; Neu, E. Nanoscale sensing based on nitrogen vacancy centers in single crystal diamond and nanodiamonds: Achievements and challenges. Nano Futures 2019, 3, 042004. [Google Scholar] [CrossRef]
- Mildren, R.P. Intrinsic Optical Properties of Diamond. In Optical Engineering of Diamond; Mildren, R.P., Rabeau, J.R., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 1–34. [Google Scholar]
- Radtke, M.; Nelz, R.; Slablab, A.; Neu, E. Reliable Nanofabrication of Single-Crystal Diamond Photonic Nanostructures for Nanoscale Sensing. Micromachines 2019, 10, 718. [Google Scholar] [CrossRef] [PubMed]
- Grotz, B.; Hauf, M.V.; Dankerl, M.; Naydenov, B.; Pezzagna, S.; Meijer, J.; Jelezko, F.; Wrachtrup, J.; Stutzmann, M.; Reinhard, F.; et al. Charge state manipulation of qubits in diamond. Nat. Commun. 2012, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, J.; Wang, X.; Zhang, M.; Wang, H. Barrier Heights of Au on Diamond with Different Terminations Determined by X-ray Photoelectron Spectroscopy. Coatings 2017, 7, 88. [Google Scholar]
- Hu, W.; Li, Z.; Yang, J. Surface and size effects on the charge state of NV center in nanodiamonds. Comput. Theor. Chem. 2013, 1021, 49–53. [Google Scholar] [CrossRef]
- Cui, S.; Hu, E.L. Increased negatively charged nitrogen-vacancy centers in fluorinated diamond. Appl. Phys. Lett. 2013, 103, 051603. [Google Scholar] [CrossRef]
- Bourgeois, E.; Jarmola, A.; Siyushev, P.; Gulka, M.; Hruby, J.; Jelezko, F.; Budker, D.; Nesladek, M. Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Su, Z.; Ren, Z.; Bao, Y.; Lao, X.; Zhang, J.; Zhang, J.; Zhu, D.; Lu, Y.; Hao, Y.; Xu, S. Luminescence landscapes of nitrogen-vacancy centers in diamond: Quasi-localized vibrational resonances and selective coupling. J. Mater. Chem. C 2019, 7, 8086–8091. [Google Scholar] [CrossRef]
- Udvarhelyi, P.; Shkolnikov, V.O.; Gali, A.; Burkard, G.; Pályi, A. Spin-strain interaction in nitrogen-vacancy centers in diamond. Phys. Rev. B 2018, 98, 075201. [Google Scholar] [CrossRef]
- Braukmann, D.; Glaser, E.R.; Kennedy, T.A.; Bayer, M.; Debus, J. Circularly polarized zero-phonon transitions of vacancies in diamond at high magnetic fields. Phys. Rev. B 2018, 97, 195448. [Google Scholar] [CrossRef]
- Leech, P.W.; Reeves, G.K.; Holland, A. Reactive ion etching of diamond in CF4, O2, O2 and Ar-based mixtures. J. Mater. Sci. 2001, 36, 3453–3459. [Google Scholar] [CrossRef]
- Cazaux, J. Mechanisms of charging in electron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1999, 105, 155–185. [Google Scholar] [CrossRef]
- Nagl, A.; Hemelaar, S.R.; Schirhagl, R. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes a review. Anal. Bioanal. Chem. 2015, 407, 7521–7536. [Google Scholar] [CrossRef] [PubMed]
- Drumm, D.W.; Per, M.C.; Russo, S.P.; Hollenberg, L.C.L. Thermodynamic stability of neutral Xe defects in diamond. Phys. Rev. B 2010, 82, 054102. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lu, Y.J.; Lin, C.N.; Tian, Y.Z.; Gao, C.J.; Dong, L.; Shan, C.X. Self-powered diamond Ga2O3 photodetectors for solar blind imaging. J. Mater. Chem. C 2018, 6, 5727–5732. [Google Scholar] [CrossRef]
- Zhuo, R.; Wu, D.; Wang, Y.; Wu, E.; Jia, C.; Shi, Z.; Xu, T.; Tian, Y.; Li, X. A self-powered solar blind photodetector based on a MoS2 Ga2O3 heterojunction. J. Mater. Chem. C 2018, 6, 10982–10986. [Google Scholar] [CrossRef]
- Strobel, P.; Riedel, M.; Ristein, J.; Ley, L.; Boltalina, O. Surface transfer doping of diamond by fullerene. Diam. Relat. Mater. 2005, 14, 451–458. [Google Scholar] [CrossRef]
- Ouyang, T.; Loh, K.P.; Qi, D.; Wee, A.T.S.; Nesladek, M. Chemical Bonding of Fullerene and Fluorinated Fullerene on Bare and Hydrogenated Diamond. ChemPhysChem 2008, 9, 1286–1293. [Google Scholar] [CrossRef]
- Nagy, R.; Niethammer, M.; Widmann, M.; Chen, Y.C.; Udvarhelyi, P.; Bonato, C.; Hassan, J.U.; Karhu, R.; Ivanov, I.G.; Son, N.T.; et al. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nat. Commun. 2019, 10, 1954. [Google Scholar] [CrossRef]
- Lang, J.; Haessler, S.; Fuhrmann, J.; Waltrich, R.; Laddha, S.; Scharpf, J.; Kubanek, A.; Naydenov, B.; Jelezko, F. Long optical coherence times of shallow-implanted, negatively charged silicon vacancy centers in diamond. Appl. Phys. Lett. 2020, 116, 064001. [Google Scholar] [CrossRef]
- Green, B.L.; Mottishaw, S.; Breeze, B.G.; Edmonds, A.M.; D’Haenens-Johansson, U.F.S.; Doherty, M.W.; Williams, S.D.; Twitchen, D.J.; Newton, M.E. Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes. Phys. Rev. Lett. 2017, 119, 096402. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radtke, M.; Slablab, A.; Van Vlierberghe, S.; Lin, C.-N.; Lu, Y.-J.; Shan, C.-X. Plasma Treatments and Light Extraction from Fluorinated CVD-Grown (400) Single Crystal Diamond Nanopillars. C 2020, 6, 37. https://doi.org/10.3390/c6020037
Radtke M, Slablab A, Van Vlierberghe S, Lin C-N, Lu Y-J, Shan C-X. Plasma Treatments and Light Extraction from Fluorinated CVD-Grown (400) Single Crystal Diamond Nanopillars. C. 2020; 6(2):37. https://doi.org/10.3390/c6020037
Chicago/Turabian StyleRadtke, Mariusz, Abdallah Slablab, Sandra Van Vlierberghe, Chao-Nan Lin, Ying-Jie Lu, and Chong-Xin Shan. 2020. "Plasma Treatments and Light Extraction from Fluorinated CVD-Grown (400) Single Crystal Diamond Nanopillars" C 6, no. 2: 37. https://doi.org/10.3390/c6020037
APA StyleRadtke, M., Slablab, A., Van Vlierberghe, S., Lin, C. -N., Lu, Y. -J., & Shan, C. -X. (2020). Plasma Treatments and Light Extraction from Fluorinated CVD-Grown (400) Single Crystal Diamond Nanopillars. C, 6(2), 37. https://doi.org/10.3390/c6020037