Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = index of coastline utilization degree

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6739 KB  
Article
Spatial–Temporal Change and Dominant Factors of Coastline in Zhuhai City from 1987 to 2022
by Tao Ma, Haolin Li, Yandi She, Yuanyuan Zhao, Xueke Feng and Feng Zhang
Water 2025, 17(17), 2569; https://doi.org/10.3390/w17172569 - 31 Aug 2025
Viewed by 941
Abstract
Understanding the spatiotemporal variations and driving mechanisms of coastlines is crucial for their adequate protection, utilization, and sustainable development. In this study, the changes in various coastline types in Zhuhai from 1987 to 2022 were analyzed by using long-term Landsat and GaoFen satellite [...] Read more.
Understanding the spatiotemporal variations and driving mechanisms of coastlines is crucial for their adequate protection, utilization, and sustainable development. In this study, the changes in various coastline types in Zhuhai from 1987 to 2022 were analyzed by using long-term Landsat and GaoFen satellite imagery. The Index of Coastline Type Diversity (ICTD), Index of Coastline Utilization Degree (ICUD) and the Digital Shoreline Analysis System (DSAS) analysis indicators were employed to investigate coastline change. Both quantitative and qualitative analyses were integrated to comprehensively elucidate the impacts of various driving factors. The results indicate that the total length of Zhuhai coastline increased from 761.50 km in 1987 to 798.91 km in 2022, with natural coastlines decreasing by 89.82 km and artificial coastlines increasing by 153.40 km. The rapid expansion of artificial coastlines since 2007 led to a marked decline in the ICTD indicator, while the ICUD indicator increased from 146.42 in 1987 to 216.37 in 2022, reflecting the intensified and continuous influence of anthropogenic activities. Additionally, the end point rate (EPR) and Weighted Linear Regression Rate (WLR) changed by 8.09 m/yr and 6.62 m/yr, respectively. The Shoreline Change Envelope (SCE) and Net Shoreline Movement (NSM) exhibited average changes of 331.42 m and 224.32 m, respectively. Gray correlation and regression analyses further revealed that climate factors exhibited the strongest association with natural coastline changes, while economic development indicators showed the strongest correlation with artificial coastline dynamics. The relationship of Number of Berths in Main Ports (Nb) with coastline changes strongly suggests that human activities are the primary driver of these changes. These findings provide a robust scientific basis for coastal zone management in Zhuhai. Full article
Show Figures

Figure 1

16 pages, 10692 KB  
Article
Tidal Flat Extraction and Analysis in China Based on Multi-Source Remote Sensing Image Collection and MSIC-OA Algorithm
by Jixiang Sun, Cheng Tang, Ke Mu, Yanfang Li, Xiangyang Zheng and Tao Zou
Remote Sens. 2024, 16(19), 3607; https://doi.org/10.3390/rs16193607 - 27 Sep 2024
Cited by 4 | Viewed by 2263
Abstract
Tidal flats, a critical part of coastal wetlands, offer unique ecosystem services and functions. However, in China, these areas are under significant threat from industrialization, urbanization, aquaculture expansion, and coastline reconstruction. There is an urgent need for macroscopic, accurate and periodic tidal flat [...] Read more.
Tidal flats, a critical part of coastal wetlands, offer unique ecosystem services and functions. However, in China, these areas are under significant threat from industrialization, urbanization, aquaculture expansion, and coastline reconstruction. There is an urgent need for macroscopic, accurate and periodic tidal flat resource data to support the scientific management and development of coastal resources. At present, the lack of macroscopic, accurate and periodic high-resolution tidal flat maps in China greatly limits the spatio-temporal analysis of the dynamic changes of tidal flats in China, and is insufficient to support practical management efforts. In this study, we used the Google Earth Engine (GEE) platform to construct multi-source intensive time series remote sensing image collection from Sentinel-2 (MSI), Landsat 8 (OLI) and Landsat 9 (OLI-2) images, and then automated the execution of improved MSIC-OA (Maximum Spectral Index Composite and Otsu Algorithm) to process the collection, and then extracted and analyzed the tidal flat data of China in 2018 and 2023. The results are as follows: (1) the overall classification accuracy of the tidal flat in 2023 is 95.19%, with an F1 score of 0.92. In 2018, these values are 92.77% and 0.88, respectively. (2) The total tidal flat area in 2018 and 2023 is 8300.34 km2 and 8151.54 km2, respectively, showing a decrease of 148.80 km2. (3) In 2023, estuarine and bay tidal flats account for 54.88% of the total area, with most tidal flats distribute near river inlets and bays. (4) In 2023, the total length of the coastline adjacent to the tidal flat is 10,196.17 km, of which the artificial shoreline accounts for 67.06%. The development degree of the tidal flat is 2.04, indicating that the majority of tidal flats have been developed and utilized. The results can provide a valuable data reference for the protection and scientific planning of tidal flat resources in China. Full article
(This article belongs to the Special Issue Remote Sensing of Coastal, Wetland, and Intertidal Zones)
Show Figures

Figure 1

21 pages, 5571 KB  
Article
Coastline Monitoring and Prediction Based on Long-Term Remote Sensing Data—A Case Study of the Eastern Coast of Laizhou Bay, China
by Ke Mu, Cheng Tang, Luigi Tosi, Yanfang Li, Xiangyang Zheng, Sandra Donnici, Jixiang Sun, Jun Liu and Xuelu Gao
Remote Sens. 2024, 16(1), 185; https://doi.org/10.3390/rs16010185 - 1 Jan 2024
Cited by 13 | Viewed by 4284
Abstract
Monitoring shoreline movements is essential for understanding the impact of anthropogenic activities and climate change on the coastal zone dynamics. The use of remote sensing allows for large-scale spatial and temporal studies to better comprehend current trends. This study used Landsat 5 (TM), [...] Read more.
Monitoring shoreline movements is essential for understanding the impact of anthropogenic activities and climate change on the coastal zone dynamics. The use of remote sensing allows for large-scale spatial and temporal studies to better comprehend current trends. This study used Landsat 5 (TM), Landsat 8 (OLI), and Sentinel-2 (MSI) remote sensing images, together with the Otsu algorithm, marching squares algorithm, and tidal correction algorithm, to extract and correct the coastline positions of the east coast of Laizhou Bay in China from 1984 to 2022. The results indicate that 89.63% of the extracted shoreline segments have an error less than 30 m compared to the manually drawn coastline. The total length of the coastline increased from 166.90 km to 364.20 km, throughout the observation period, with a length change intensity (LCI) of 3.11% due to the development of coastal protection and engineering structures for human activities. The anthropization led to a decrease in the natural coastline from 83.33% to 13.89% and a continuous increase in the diversity and human use of the coastline. In particular, the index of coastline diversity (ICTD) and the index of coastline utilization degree (ICUD) increased from 0.39 to 0.79, and from 153.30 to 390.37, respectively. Over 70% of the sandy beaches experienced erosional processes. The shoreline erosion calculated using the end point rate (EPR) and the linear regression rate (LRR) is 79.54% and 85.58%, respectively. The fractal dimension of the coastline shows an increasing trend and is positively correlated with human activities. Coastline changes are primarily attributed to interventions such as land reclamation, aquaculture development, and port construction resulting in the creation of 10,000.20 hectares of new coastal areas. Finally, the use of Kalman filtering for the first time made it possible to predict that approximately 84.58% of the sandy coastline will be eroded to varying degrees by 2032. The research results can provide valuable reference for the scientific planning and rational utilization of resources on the eastern coast of Laizhou Bay. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

20 pages, 6630 KB  
Article
Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents
by Fan Yang, Li Zhang, Bowei Chen, Kaixin Li, Jingjuan Liao, Riffat Mahmood, Mohammad Emran Hasan, M. M. Abdullah Al Mamun, Syed Ahmed Raza and Dewayany Sutrisno
Remote Sens. 2023, 15(9), 2344; https://doi.org/10.3390/rs15092344 - 28 Apr 2023
Cited by 9 | Viewed by 6890
Abstract
The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the [...] Read more.
The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the coastlines along the 56 coastal countries in 1990, 2000, 2010, 2015, and 2020 were delineated and classified into six categories using Landsat time–series images. Five relevant indices, i.e., the length, length ratio, length change rate, index of coastline utilization degree (ICUD), and fractal dimension (FD), were calculated to analyze and explore the spatiotemporal pattern of the coastlines. The results indicate that: (1) The overall length of the coastlines has increased from 3.45 × 105 km to 3.48 × 105 km in the past 30 years, with a net increase of nearly 3904 km. Between 1990 and 2020, the length of the artificial coastline increased by about 13,835 km (4.9~8.8%), while the length of the natural coastline decreased by 9932 km (95.1~91.2%). The increase in artificial coastline is concentrated in Southeast Asia and South Asia. (2) The coastline fractal dimensions (FDs) of countries and continents show that the average FD values of countries in South Asia (1.3~1.4) and Southeast Asia (1.2~1.3) were higher than other countries in the study regions, meaning that the coastlines in South Asia and Southeast Asia are more complex and curved. (3) The value of the ICUD index increased consistently between 1990 and 2015 (177.7~186.6) but decreased sharply between 2015 and 2020 (186.6~162.4), implying that the impact of human activities on the coastline continued to increase until 2015 and began to decrease after 2015. Our study examined the changes in various types of coastlines, which could be significant for sustainable development and environmental protection in coastal areas. Full article
(This article belongs to the Special Issue Remote Sensing in Coastal Ecosystem Monitoring)
Show Figures

Graphical abstract

15 pages, 6015 KB  
Article
A Framework for Assessing the Dynamic Coastlines Induced by Urbanization Using Remote Sensing Data: A Case Study in Fujian, China
by Wenting Wu, Yiwei Gao, Chunpeng Chen, Yu Sun and Hua Su
Remote Sens. 2022, 14(12), 2911; https://doi.org/10.3390/rs14122911 - 17 Jun 2022
Cited by 10 | Viewed by 2755
Abstract
The coastline plays an important role in indicating the conditions of social-economic development in the coastal zone. In this study, an integrated assessment framework was proposed to address the provincial and county-level spatiotemporal dynamics of continental coastlines from the perspectives of length, position, [...] Read more.
The coastline plays an important role in indicating the conditions of social-economic development in the coastal zone. In this study, an integrated assessment framework was proposed to address the provincial and county-level spatiotemporal dynamics of continental coastlines from the perspectives of length, position, composition, and anthropogenic utilization quantitatively, and to explore the exact impacts of urbanization on coastline changes in the Fujian Province over the period from 1985 to 2020. Results showed that the total length of coastlines decreased first and then increased due to the different patterns of economic development. The proportion of artificial coastlines and the index of coastal utilization degree increased rapidly during the same period. Moreover, the seaward movement of coastlines due to the coastal reclamation projects resulted in a considerable increment in land areas. The pressure brought by the continuous concentration of population, built-up areas, and industrial districts under the rapid urbanization was the primary factor that increased the degree of anthropogenic disturbances in the coastal zone. Furthermore, the policies issued by the local or central government can be critical tipping points for coastline changes in different periods. Full article
Show Figures

Graphical abstract

22 pages, 9363 KB  
Article
Dynamic Landscape Fragmentation and the Driving Forces on Haitan Island, China
by Jingwen Ai, Liuqing Yang, Yanfen Liu, Kunyong Yu and Jian Liu
Land 2022, 11(1), 136; https://doi.org/10.3390/land11010136 - 15 Jan 2022
Cited by 18 | Viewed by 3629
Abstract
Island ecosystems have distinct and unique vulnerabilities that place them at risk from threats to their ecology and socioeconomics. Spatially exhibiting the fragmentation process of island landscapes and identifying their driving factors are the fundamental prerequisites for the maintenance of island ecosystems and [...] Read more.
Island ecosystems have distinct and unique vulnerabilities that place them at risk from threats to their ecology and socioeconomics. Spatially exhibiting the fragmentation process of island landscapes and identifying their driving factors are the fundamental prerequisites for the maintenance of island ecosystems and the rational utilization of islands. Haitan Island was chosen as a case study for understanding landscape fragmentation on urbanizing Islands. Based on remote sensing technology, three Landsat images from 2000 to 2020, landscape pattern index, transect gradient analysis, and moving window method were used in this study. The results showed that from 2000 to 2020, impervious land increased by 462.57%. In 2000, the predominant landscape was cropland (46.34%), which shifted to impervious land (35.20%) and forest (32.90%) in 2020. Combining the moving window method and Semivariogram, 1050 m was considered to be the best scale to reflect the landscape fragmentation of Haitan Island. Under this scale, it was found that the landscape fragmentation of Haitan Island generally increased with time and had obvious spatial heterogeneity. We set up sampling bands along the coastline and found that the degree of landscape fragmentation, advancing from the coast inland, was decreasing. Transects analysis showed the fragmentation intensity of the coastal zone: the north-western and southern wooded zones decreased, while the concentration of urban farmland in the north-central and southern areas increased. The implementation of a comprehensive experimental area plan on Haitan Island has disturbed the landscape considerably. In 2000, landscape fragmentation was mainly influenced by topography and agricultural production. The critical infrastructure construction, reclamation and development of landscape resources have greatly contributed to the urbanisation and tourism of Haitan Island, and landscape fragmentation in 2013 was at its highest. Due to China’s “Grain for Green Project” and the Comprehensive Territorial Spatial Planning policy (especially the protection of ecological control lines), the fragmentation of Haitan Island was slowing. This study investigated the optimal spatial scale for analyzing spatiotemporal changes in landscape fragmentation on Haitan Island from 2000 to 2020, and the essential influencing factors in urban islands from the perspective of natural environment and social development, which could provide a basis for land use management and ecological planning on the island. Full article
Show Figures

Figure 1

28 pages, 16758 KB  
Article
Spatial-Temporal Characteristics of Coastline Changes in Indonesia from 1990 to 2018
by Lichun Sui, Jun Wang, Xiaomei Yang and Zhihua Wang
Sustainability 2020, 12(8), 3242; https://doi.org/10.3390/su12083242 - 16 Apr 2020
Cited by 70 | Viewed by 9998
Abstract
As a valuable resource in coastal areas, coastlines are not only vulnerable to natural processes such as erosion, siltation, and disasters, but are also subjected to strong pressures from human processes such as urban growth, resource development, and pollution discharge. This is especially [...] Read more.
As a valuable resource in coastal areas, coastlines are not only vulnerable to natural processes such as erosion, siltation, and disasters, but are also subjected to strong pressures from human processes such as urban growth, resource development, and pollution discharge. This is especially true for reef nations with rich coastline resources and a large population, like Indonesia. The technical joint of remote sensing (RS) and geographic information system (GIS) has significant advantages for monitoring coastline changes on a large scale and for quantitatively analyzing their change mechanisms. Indonesia was taken as an example in this study because of its abundant coastline resources and large population. First, Landsat images from 1990 to 2018 were used to obtain coastline information. Then, the index of coastline utilization degree (ICUD) method, the changes in land and sea patterns method, and the ICUD at different scales method were used to reveal the spatiotemporal change pattern for the coastline. The results found that: (1) Indonesia’s total coastline length has increased by 777.40 km in the past 28 years, of which the natural coastline decreased by 5995.52 km and the artificial coastline increased by 6771.92 km. (2) From the analysis of the island scale, it was known that the island with the largest increase in ICUD was Kalimantan, at the expense of the mangrove coastline. (3) On the provincial scale, the province with the largest change of ICUD was Sumatera Selatan Province, which increased from 100 in 1900 to 266.43 in 2018. (4) The change trend of the land and sea pattern for the Indonesian coastline was mainly expanded to the sea. The part that eroded to the land was relatively small; among which, Riau Province had the most significant expansion of land area, about 177.73 km2, accounting for 23.08% of the increased national land area. The worst seawater erosion was in the Jawa Barat Province. Based on the analysis of population and economic data during the same period, it was found that the main driving mechanism behind Indonesia’s coastline change was population growth, which outweighed the impact of economic development. However, the main constraint on the Indonesian coastline was the topographic factor. The RS and GIS scheme used in this study can not only provide support for coastline resource development and policy formulation in Indonesia, but also provide a valuable reference for the evolution of coastline resources and environments in other regions around the world. Full article
Show Figures

Figure 1

Back to TopTop