Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = in-wheel motor technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7705 KiB  
Article
Implementation of SLAM-Based Online Mapping and Autonomous Trajectory Execution in Software and Hardware on the Research Platform Nimbulus-e
by Thomas Schmitz, Marcel Mayer, Theo Nonnenmacher and Matthias Schmitz
Sensors 2025, 25(15), 4830; https://doi.org/10.3390/s25154830 - 6 Aug 2025
Abstract
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four [...] Read more.
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four corners. The associated eight joint variables serve as control inputs, allowing precise trajectory following. These control inputs can be derived from the vehicle’s trajectory using nonholonomic constraints. A LiDAR sensor is used to map the environment and detect obstacles. The system processes LiDAR data in real time, continuously updating the environment map and enabling localization within the environment. The inclusion of vehicle odometry data significantly reduces computation time and improves accuracy compared to a purely visual approach. The A* and Hybrid A* algorithms are used for trajectory planning and optimization, ensuring smooth vehicle movement. The implementation is validated through both full vehicle simulations using an ADAMS Car—MATLABco-simulation and a scaled physical prototype, demonstrating the effectiveness of the system in navigating complex environments. This work contributes to the field of autonomous systems by demonstrating the potential of combining advanced sensor technologies with innovative control algorithms to achieve reliable and efficient navigation. Future developments will focus on improving the robustness of the system by implementing a robust closed-loop controller and exploring additional applications in dense urban traffic and agricultural operations. Full article
Show Figures

Figure 1

22 pages, 4860 KiB  
Article
First Results of a Study on the Vibrations Transmitted to the Driver by an Electric Vehicle for Disabled People During Transfer to a Farm
by Laura Fornaciari, Roberto Tomasone, Daniele Puri, Carla Cedrola, Renato Grilli, Roberto Fanigliulo, Daniele Pochi and Mauro Pagano
Agriculture 2025, 15(11), 1132; https://doi.org/10.3390/agriculture15111132 - 23 May 2025
Viewed by 388
Abstract
This study evaluates the safety aspects of a prototype electric vehicle designed to enable wheelchair users to independently perform simple farm tasks in rural settings, like sample collection and crop monitoring. The vehicle, built at CREA, features four in-wheel electric motors, a pneumatic [...] Read more.
This study evaluates the safety aspects of a prototype electric vehicle designed to enable wheelchair users to independently perform simple farm tasks in rural settings, like sample collection and crop monitoring. The vehicle, built at CREA, features four in-wheel electric motors, a pneumatic suspension system, and a secure wheelchair anchoring system. Tests at the CREA experimental farm assessed the vehicle’s whole-body vibrations on different surfaces (asphalt, headland, dirt road) using two tyre models and multiple speeds. A triaxial accelerometer on the wheelchair seat measured vibrations, which were analysed in accordance with ISO standards. Frequency analysis revealed significant vibrations in the 2–40 Hz range, with the Z-axis consistently showing the highest accelerations, which increased with the speed. Tyre A generally induced higher vibrations than Tyre B, likely due to the tread design. At high speeds, the effective accelerations exceeded safety thresholds on asphalt and headland. Statistical analysis confirmed speed as the dominant factor, with the surface type also playing a key role—headland generated the highest vibrations, followed by dirt road and asphalt. The results of these first tests highlighted the high potential of the vehicle to improve the agricultural mobility of disabled people, granting safety conditions and low vibration levels on all terrains at speeds up to 10 km h−1. At higher speeds, however, the vibration levels may exceed the exposure limits, depending on the irregularities of the terrain and the tyre model. Overcoming these limitations is achievable through the optimization of the suspensions and tyres and will be the subject of the next step of this study. This technology could also support wheelchair users in construction, natural parks, and urban mobility. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 2524 KiB  
Review
Regenerative Braking Systems in Electric Vehicles: A Comprehensive Review of Design, Control Strategies, and Efficiency Challenges
by Emilia M. Szumska
Energies 2025, 18(10), 2422; https://doi.org/10.3390/en18102422 - 8 May 2025
Cited by 3 | Viewed by 4976
Abstract
Regenerative braking systems (RBS enhance energy efficiency and range in electric vehicles (EVs) by recovering kinetic energy during braking for storage in batteries or alternative systems. This literature review examines RBS advancements from 2005 to 2024, focusing on system design, control strategies, energy [...] Read more.
Regenerative braking systems (RBS enhance energy efficiency and range in electric vehicles (EVs) by recovering kinetic energy during braking for storage in batteries or alternative systems. This literature review examines RBS advancements from 2005 to 2024, focusing on system design, control strategies, energy storage technologies, and the impact of external and kinematic factors on recovery efficiency. Based on a systematic analysis of 89 peer-reviewed articles from Scopus, it highlights a shift from basic PID controllers to advanced predictive algorithms like Model Predictive Control (MPC) and machine learning approaches. Technologies such as brake-by-wire and in-wheel motors improve safety and stability, with the latter excelling in all-wheel-drive setups over single-axle configurations. Hybrid Energy Storage Systems (HESS), combining batteries with supercapacitors or kinetic accumulators, address power peak demands, though cost and complexity limit scalability. Challenges include high computational requirements, component reliability in harsh conditions, and lack of standardized testing. Research gaps involve long-term degradation, autonomous vehicle integration, and driver behavior effects. Future work should explore cost-effective HESS, robust predictive controls for autonomous EVs, and standardized frameworks to enhance RBS performance and support sustainable transportation. Full article
Show Figures

Figure 1

31 pages, 18960 KiB  
Review
Critical Review of Direct-Drive In-Wheel Motors in Electric Vehicles
by Liang Li, Litao Dai, Shuangxia Niu, Weinong Fu and K. T. Chau
Energies 2025, 18(6), 1521; https://doi.org/10.3390/en18061521 - 19 Mar 2025
Cited by 1 | Viewed by 1687
Abstract
The primary challenge for electric vehicles in replacing oil-fueled vehicles today is their limited range, despite significant advancements in energy storage technology and alternative fuel vehicles over the past few decades. Direct-drive in-wheel motors (IWMs) can achieve higher efficiency by eliminating components such [...] Read more.
The primary challenge for electric vehicles in replacing oil-fueled vehicles today is their limited range, despite significant advancements in energy storage technology and alternative fuel vehicles over the past few decades. Direct-drive in-wheel motors (IWMs) can achieve higher efficiency by eliminating components such as gearboxes, differentials, and clutches, allowing for longer mileage with the same battery capacity. This positions them as a promising technology for the future of electric vehicles. This article primarily analyzes the key challenges that limit the widespread application of direct-drive IWMs in electric vehicles, including torque density, cost, reliability, efficiency, and ease of production. The article also investigates and compares the electromagnetic performance of the most representative motor topologies studied in direct-drive IWMs within both industrial and academic settings, and comprehensively evaluates the performance of these motor architectures with respect to the aforementioned performance requirements. Based on these investigations, this article aims to provide guidance and reference for the electromagnetic design and analysis of direct-drive IWMs. Full article
Show Figures

Figure 1

21 pages, 5339 KiB  
Article
Design and Stability Analysis of Six-Degree-of-Freedom Hydro-Pneumatic Spring Wheel-Leg
by Zhibo Wu, Bin Jiao, Chuanmeng Sun, Zezhou Xin, Yinzhi Jia and Heming Zhao
Appl. Sci. 2024, 14(21), 9815; https://doi.org/10.3390/app14219815 - 27 Oct 2024
Viewed by 1192
Abstract
Traditional hydro-pneumatic spring suspensions are limited to a single vertical degree of freedom, which cannot accommodate the significant technological changes introduced by the new in-wheel motor drive mode. Integrating the motor into the vehicle’s hub creates a direct motor drive mode, replacing the [...] Read more.
Traditional hydro-pneumatic spring suspensions are limited to a single vertical degree of freedom, which cannot accommodate the significant technological changes introduced by the new in-wheel motor drive mode. Integrating the motor into the vehicle’s hub creates a direct motor drive mode, replacing the traditional engine–transmission–drive shaft configuration. Together with the dual in-wheel motor wheelset structure, this setup can achieve both drive and differential steering functions. In this study, we designed a six-arm suspension wheel-leg device based on hydro-pneumatic springs, and its structural composition and functional characteristics are presented herein. The external single-chamber hydro-pneumatic springs used in the six-arm structure suspension were analyzed and mathematically modeled, and the nonlinear characteristic curves of the springs were derived. To overcome the instability caused by inconsistent extension lengths of the hydro-pneumatic springs during horizontal steering, the spring correction force, horizontal rotational torque, consistency, and stiffness of the six-degree-of-freedom hydro-pneumatic spring wheel-leg device were analyzed. Finally, with the auxiliary action of tension springs, the rotational torque of the hydro-pneumatic springs and the tension resistance torque of the tension spring counterbalanced each other, keeping the resultant torque on the wheelset at approximately 0 N∙m. The results suggest that the proposed device has excellent self-stabilizing performance and meets the requirements for straight-line driving and differential steering applications. This device provides a new approach for the drive mode and suspension design of the dual in-wheel motor wheelset. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

22 pages, 11126 KiB  
Article
Analytical Investigation of Vertical Force Control in In-Wheel Motors for Enhanced Ride Comfort
by Chanoknan Bunlapyanan, Sunhapos Chantranuwathana and Gridsada Phanomchoeng
Appl. Sci. 2024, 14(15), 6582; https://doi.org/10.3390/app14156582 - 27 Jul 2024
Cited by 2 | Viewed by 1387
Abstract
This study explores the effectiveness of vertical force control in in-wheel motors (IWMs) to enhance ride comfort in electric vehicles (EVs). A dynamic vehicle model and a proportional ride-blending controller were used to reduce vertical vibrations of the sprung mass. By converting the [...] Read more.
This study explores the effectiveness of vertical force control in in-wheel motors (IWMs) to enhance ride comfort in electric vehicles (EVs). A dynamic vehicle model and a proportional ride-blending controller were used to reduce vertical vibrations of the sprung mass. By converting the state-space model into a transfer function, the system’s frequency response was evaluated using road profiles generated according to ISO 8608 standards and converted into Power Spectral Density (PSD) inputs. The frequency-weighted acceleration (aw) was calculated based on ISO 2631 standards to measure ride comfort improvements. The results showed that increasing the proportional gain (Kp) effectively reduced the frequency-weighted acceleration and the RMS of the vertical acceleration of the sprung mass. However, the proportional gain could not be increased indefinitely due to the torque limitations of the IWMs. Optimal proportional gains for various road profiles demonstrated significant improvements in ride comfort. This study concludes that advanced suspension technologies, including the proportional ride-blending controller, can effectively mitigate the challenges of increased unsprung mass in IWM vehicles, thereby enhancing ride quality and vehicle dynamics. Full article
(This article belongs to the Special Issue Advances in Vehicle System Dynamics and Control)
Show Figures

Figure 1

16 pages, 63473 KiB  
Article
Modification of the In-Wheel Motor Housing and Its Effect on Temperature Reduction
by Muhammad Hasan Albana, Harus Laksana Guntur and Ary Bachtiar Khrisna Putra
World Electr. Veh. J. 2024, 15(3), 78; https://doi.org/10.3390/wevj15030078 - 21 Feb 2024
Cited by 1 | Viewed by 2763
Abstract
This research proposes a novel cooling system to minimize the external rotor type of electric motor temperature by installing fan blades (wafters) on the inner housing of the electric motor. Fan blades (wafters) are made by printing using 3D printer technology and using [...] Read more.
This research proposes a novel cooling system to minimize the external rotor type of electric motor temperature by installing fan blades (wafters) on the inner housing of the electric motor. Fan blades (wafters) are made by printing using 3D printer technology and using polylactic acid (PLA) as the material. Wafters are then installed on an in-wheel motor with a power of 1500 W, having 48 poles and 52 slots. The study included thermal simulation and experimental techniques to ascertain how fan blades (wafters) affected the electric motor’s thermal properties. The motor rotated at 500 rpm during the experimental test with no load condition. The temperature of the electric motor is known using an infrared thermal imager. Using Ansys Motor-CAD 15.1 software, thermal modeling employs the lumped circuit model approach. Thermal simulation results show almost the same results as the experimental test results. Applying wafters on the in-wheel motor housing significantly reduces the winding temperature by 3.047 °C or experiences a temperature reduction of 4.34%. Using wafters in the in-wheel motor housing also speeds up the stable state temperature of the electric motor by 9 min compared to in-wheel motors without wafters. Full article
Show Figures

Figure 1

19 pages, 5274 KiB  
Article
Torque Vectoring Control Strategies Comparison for Hybrid Vehicles with Two Rear Electric Motors
by Henrique de Carvalho Pinheiro, Massimiliana Carello and Elisabetta Punta
Appl. Sci. 2023, 13(14), 8109; https://doi.org/10.3390/app13148109 - 12 Jul 2023
Cited by 7 | Viewed by 3926
Abstract
In today’s automotive industry, electrification is a major trend. In-wheel electric motors are among the most promising technologies yet to be fully developed. Indeed, the presence of multiple in-wheel motors acting as independent actuators allows for the implementation of innovative active systems and [...] Read more.
In today’s automotive industry, electrification is a major trend. In-wheel electric motors are among the most promising technologies yet to be fully developed. Indeed, the presence of multiple in-wheel motors acting as independent actuators allows for the implementation of innovative active systems and control strategies. This paper analyzes different design possibilities for a torque vectoring system applied to an originally compact front-wheel drive hybrid electric vehicle with one internal combustion engine for the front axle and two added electric motors integrated in the wheels of the rear axle. A 14 degrees of freedom vehicle model is present o accurately reproduce the nonlinearities of vehicle dynamic phenomena and exploited to obtain high-fidelity numerical simulation results. Different control methods are compared, a PID, an LQR, and four different sliding mode control strategies. All controllers achieve sufficiently good results in terms of lateral dynamics compared with the basic hybrid version. The various aspects and features of the different strategies are analyzed and discussed. Chattering reduction strategies are developed to improve the performance of sliding mode controllers. For a complete overview, control systems are compared using a performance factor that weighs control accuracy and effort in different driving maneuvers, i.e., ramp and step steering maneuvers performed under quite different conditions ranging up to the limits. Full article
Show Figures

Figure 1

31 pages, 1566 KiB  
Review
In-Wheel Motor Drive Systems for Electric Vehicles: State of the Art, Challenges, and Future Trends
by Kritika Deepak, Mohamed Amine Frikha, Yassine Benômar, Mohamed El Baghdadi and Omar Hegazy
Energies 2023, 16(7), 3121; https://doi.org/10.3390/en16073121 - 29 Mar 2023
Cited by 58 | Viewed by 18989
Abstract
Recently, there has been significant attention given to the electrification of transportation due to concerns about fossil fuel depletion and environmental pollution. Conventional drive systems typically include a clutch, reduction gear, and mechanical differential, which results in power loss, noise, vibration, and additional [...] Read more.
Recently, there has been significant attention given to the electrification of transportation due to concerns about fossil fuel depletion and environmental pollution. Conventional drive systems typically include a clutch, reduction gear, and mechanical differential, which results in power loss, noise, vibration, and additional maintenance. However, in-wheel motor drive technology eliminates the need for these components, providing benefits such as higher system efficiency, improved wheel control, and increased passenger comfort. This article offers a comprehensive review of the technology and development of in-wheel motor drives. It begins with an overview of in-wheel motor drives in electric vehicles, followed by an exploration of the types of electric motors suitable for in-wheel motor drives. The paper then presents an industrial state of the art of in-wheel motors, comparing them with conventional motor drives, and reviews the implemented power electronics, control system, and cooling systems. Finally, the paper concludes by providing an outlook on the challenges and future trends of in-wheel drive systems. Full article
(This article belongs to the Collection "Electric Vehicles" Section: Review Papers)
Show Figures

Figure 1

10 pages, 4503 KiB  
Proceeding Paper
Suspension System Control Process for Buses with In-Wheel Motors
by Mohamed Belrzaeg, Abdussalam Ali Ahmed, Mohamed Mohamed Khaleel, Abdulgader Alsharif, Maamar Miftah Rahmah and Ahmed Salem Daw Alarga
Eng. Proc. 2023, 29(1), 4; https://doi.org/10.3390/engproc2023029004 - 11 Jan 2023
Cited by 1 | Viewed by 2368
Abstract
In the last few years, there has been considerable growth in in-wheel electric motors manufacturing and the number of electric buses operating around the world. As a result of this clear increase, competition between electric bus manufacturers is increasing to reach the best [...] Read more.
In the last few years, there has been considerable growth in in-wheel electric motors manufacturing and the number of electric buses operating around the world. As a result of this clear increase, competition between electric bus manufacturers is increasing to reach the best satisfaction and comfort for passengers. This paper aims to deliver significantly better results due to suspension system. This paper also aims to evaluate an active bus suspension system with an in-wheel electric motor and to show the effect of this motor on the performance of the bus’s suspension system. In this work, a quarter bus suspension system is simulated and modelled using Matlab software, in addition to using one of the well-known control technologies, which is the linear quadratic regulator (LQR). The results showed that the weight of the electric motors in the bus’s wheels had a slightly negative effect on passenger comfort, as the reason for this effect is because the electric motor increased the mass of the wheel. Full article
Show Figures

Figure 1

33 pages, 12088 KiB  
Article
Systematic Modeling and Analysis of On-Board Vehicle Integrated Novel Hybrid Renewable Energy System with Storage for Electric Vehicles
by Kabir A. Mamun, F. R. Islam, R. Haque, Aneesh A. Chand, Kushal A. Prasad, Krishneel K. Goundar, Krishneel Prakash and Sidharth Maharaj
Sustainability 2022, 14(5), 2538; https://doi.org/10.3390/su14052538 - 22 Feb 2022
Cited by 37 | Viewed by 4355
Abstract
The automobile industry and technology are putting a great significance in improving vehicles to become more fuel economical, but with incremental costs relative to conventional vehicle technologies; these new vehicles are electric vehicles (EV), plug-in hybrid electric vehicles (PHEV), and hybrid electric vehicles [...] Read more.
The automobile industry and technology are putting a great significance in improving vehicles to become more fuel economical, but with incremental costs relative to conventional vehicle technologies; these new vehicles are electric vehicles (EV), plug-in hybrid electric vehicles (PHEV), and hybrid electric vehicles (HEV). However, their significant capabilities to reduce petroleum consumption and achieve efficiency over their life cycles offer economic benefits for customers, industry, carmakers, and policymakers. In this paper, an HEV concept based on renewable energy resources (RERs) is proposed. The proposed HEV design utilizes solar PV energy, wind energy, fuel cell, and a supercapacitor (PV + WE + FC + SC) which generates electrical energy via a proton exchange membrane (PEM) and an SC to cater for strong torque requirements. The vehicle incorporates a battery pack in conjunction with an SC for the power demands and an FC as the backup energy supply. An alternator connected to turbine blades runs by wind energy while the car is moving forward, which produces electricity through the alternator to charge the battery. The design aims to ensure zero carbon emission and improved energy efficiency, is lightweight, and incorporates in-wheel motors to eliminate the mechanical transmissions. Modeling and simulation were carried out for each subsystem using MATLAB® and Simulink® packages. ANSYS Fluent simulation was used to analyze wind energy. The standard analysis, e.g., pressure, velocity, and vector contour, were also considered while designing the final model. To regulate the power supply and demand, the selection of energy sources was controlled by a rule-based supervisory controller following a logical sequence that prioritizes energy sources with the SC as a source in-vehicle stop-and-go situations while the battery acts as the primary source, FC as a backup supply, and wind and solar power to recharge the battery. Solar charging is switched on automatically once the vehicle is parked, and the controller controls the energy flow from the alternator during that period. Full article
(This article belongs to the Special Issue Smart and Sustainable EV Charging Infrastructure)
Show Figures

Figure 1

16 pages, 7552 KiB  
Article
Individual Drive-Wheel Energy Management for Rear-Traction Electric Vehicles with In-Wheel Motors
by Jose del C. Julio-Rodríguez, Alfredo Santana-Díaz. and Ricardo A. Ramirez-Mendoza
Appl. Sci. 2021, 11(10), 4679; https://doi.org/10.3390/app11104679 - 20 May 2021
Cited by 8 | Viewed by 3912
Abstract
In-wheel motor technology has reduced the number of components required in a vehicle’s power train system, but it has also led to several additional technological challenges. According to kinematic laws, during the turning maneuvers of a vehicle, the tires must turn at adequate [...] Read more.
In-wheel motor technology has reduced the number of components required in a vehicle’s power train system, but it has also led to several additional technological challenges. According to kinematic laws, during the turning maneuvers of a vehicle, the tires must turn at adequate rotational speeds to provide an instantaneous center of rotation. An Electronic Differential System (EDS) controlling these speeds is necessary to ensure speeds on the rear axle wheels, always guaranteeing a tractive effort to move the vehicle with the least possible energy. In this work, we present an EDS developed, implemented, and tested in a virtual environment using MATLAB™, with the proposed developments then implemented in a test car. Exhaustive experimental testing demonstrated that the proposed EDS design significantly improves the test vehicle’s longitudinal dynamics and energy consumption. This paper’s main contribution consists of designing an EDS for an in-wheel motor electric vehicle (IWMEV), with motors directly connected to the rear axle. The design demonstrated effective energy management, with savings of up to 21.4% over a vehicle without EDS, while at the same time improving longitudinal dynamic performance. Full article
(This article belongs to the Special Issue Frontiers in Mechatronics Systems for Automotive)
Show Figures

Figure 1

22 pages, 8099 KiB  
Article
Active Disturbance Rejection Control of Differential Drive Assist Steering for Electric Vehicles
by Junnian Wang, Xiandong Wang, Zheng Luo and Francis Assadian
Energies 2020, 13(10), 2647; https://doi.org/10.3390/en13102647 - 22 May 2020
Cited by 26 | Viewed by 4014
Abstract
The differential drive assist steering (DDAS) system makes full use of the advantages of independent control of wheel torque of electric vehicle driven by front in-wheel motors to achieve steering assistance and reduce the steering effort of the driver, as the electric power [...] Read more.
The differential drive assist steering (DDAS) system makes full use of the advantages of independent control of wheel torque of electric vehicle driven by front in-wheel motors to achieve steering assistance and reduce the steering effort of the driver, as the electric power steering (EPS) system does. However, as an indirect steering assist technology that applies steering system assistance via differential drive, its linear control algorithm, like existing proportion integration differentiation (PID) controllers, cannot take the nonlinear characteristics of the tires’ dynamics into account which results in poor performance in road feeling and tracking accuracy. This paper introduces an active disturbance rejection control (ADRC) method into the control issue of the DDAS. First, the third-order ADRC controller of the DDAS is designed, and the simulated annealing algorithm is used to optimize the parameters of ADRC controller offline considering that the parameters of ADRC controller are too many and the parameter tuning is complex. Finally, the 11-DOF model of the electric vehicle driven by in-wheel motors is built, and the standard working conditions are selected for simulation and experimental verification. The results show that the ADRC controller designed in this paper can not only obviously reduce the steering wheel effort of the driver like PID controller, but also have better nonlinear control performance in tracking accuracy and smooth road feeling of the driver than the traditional PID controller. Full article
Show Figures

Figure 1

19 pages, 4729 KiB  
Article
Optimal Torque Distribution Control of Multi-Axle Electric Vehicles with In-wheel Motors Based on DDPG Algorithm
by Liqiang Jin, Duanyang Tian, Qixiang Zhang and Jingjian Wang
Energies 2020, 13(6), 1331; https://doi.org/10.3390/en13061331 - 13 Mar 2020
Cited by 23 | Viewed by 4754
Abstract
In order to effectively reduce the energy consumption of the vehicle, an optimal torque distribution control for multi-axle electric vehicles (EVs) with in-wheel motors is proposed. By analyzing the steering dynamics, the formulas of additional steering resistance are given. Aiming at the multidimensional [...] Read more.
In order to effectively reduce the energy consumption of the vehicle, an optimal torque distribution control for multi-axle electric vehicles (EVs) with in-wheel motors is proposed. By analyzing the steering dynamics, the formulas of additional steering resistance are given. Aiming at the multidimensional continuous system that cannot be solved by traditional optimization methods, the deep deterministic policy gradient (DDPG) algorithm for deep reinforcement learning is adopted. Each wheel speed and deflection angle are selected as the state, the distribution ratio of drive torque is the optimized action and the state of charge (SOC) is the reward. After completing a large number of training for vehicle model, the algorithm is verified under conventional steering and extreme steering conditions. The maximum SOC decline of the vehicle can be reduced by about 5% under conventional steering conditions based on the motor efficiency mapused. The combination of artificial intelligence technology and actual situation provides an innovative solution to the optimization problem of the multidimensional state input and the continuous action output related to vehicles or similar complex systems. Full article
(This article belongs to the Special Issue Electric Systems for Transportation)
Show Figures

Graphical abstract

25 pages, 2328 KiB  
Article
Energy-Efficient Direct Yaw Moment Control for In-Wheel Motor Electric Vehicles Utilising Motor Efficiency Maps
by Peikun Sun, Annika Stensson Trigell, Lars Drugge and Jenny Jerrelind
Energies 2020, 13(3), 593; https://doi.org/10.3390/en13030593 - 28 Jan 2020
Cited by 7 | Viewed by 2890
Abstract
An active energy-efficient direct yaw moment control (DYC) for in-wheel motor electric vehicles taking motor efficiency maps into consideration is proposed in this paper. The potential contribution of DYC to energy saving during quasi-steady-state cornering is analysed. The study in this paper has [...] Read more.
An active energy-efficient direct yaw moment control (DYC) for in-wheel motor electric vehicles taking motor efficiency maps into consideration is proposed in this paper. The potential contribution of DYC to energy saving during quasi-steady-state cornering is analysed. The study in this paper has produced promising results which show that DYC can be used to reduce the power consumption while satisfying the same cornering demand. A controller structure that includes a driver model and an offline torque distribution law during continuous driving and cornering is developed. For comparison, the power consumption of stability DYC is also analysed. Simulations for double lane change manoeuvres are performed and driving conditions either with a constant velocity or with longitudinal acceleration are designed to verify the effectiveness of the proposed controller in different driving situations. Under constant velocity cornering, since the total torque demand is not high, two rear wheels are engaged and during cornering it is beneficial to distribute more torque to one wheel to improve energy efficiency. In the simulated driving manoeuvres, up to 10% energy can be saved compared to other control methods. During acceleration in cornering, since the total torque demand is high, it is energy-efficient to use all the four in-wheel motors during cornering. Full article
Show Figures

Figure 1

Back to TopTop