First Results of a Study on the Vibrations Transmitted to the Driver by an Electric Vehicle for Disabled People During Transfer to a Farm
Abstract
:1. Introduction
2. Materials and Methods
- The tyre model: two tyre models were mounted on the prototype;
- The ground surface: the tests were carried out on asphalt, headland, and dirt road;
- The travel speed: various speeds were adopted on each surface.
2.1. The Prototype of Electric Vehicle
- To give the possibility of accessing the driving place of the vehicle directly without transferring from the wheelchair to a conventional driver’s seat;
- To securely fix the wheelchair to the floor of the vehicle so as to allow the disabled person to drive it safely without being affected by the jolts due to irregularities in the road surface;
- To facilitate the driving and control operations of the vehicle and ensure safe conditions.
2.1.1. Electric Powering and Control System of the Prototype
2.1.2. Chassis
2.1.3. Suspension System
2.2. Tyre Models
2.3. Test Surface and Travel Speed
2.4. Measurement of Vibrations
- awki is the weighted acceleration on the k-th axis (k = X, Y or Z) in the i-th frequency band (1 ≤ i ≤ 23, where 23 is the number of frequency bands in the range 0.5–80 Hz) measured at t;
- T is the duration (s) of the measurement.
- awk is the r.m.s. weighted acceleration on the k-th axis (k = X, Y or Z).
- kx, ky, and kz are the corrective coefficients established on the basis of the position assumed by the operator when they are exposed to vibrations: in the case of a sitting position, we have kx = ky = 1.4 and kz = 1.
- A(8) is the weighted equivalent acceleration and represents an indicator of the level of vibration that the operator can be exposed to during the reference time, T0. A(8) varies depending on the level of caution adopted. In Italy, the D. Lgs 81/08 (Title VIII, Physical Agents, Chapter III, Protection of workers from the risks of exposure to vibrations) establishes the following maximum levels of weighted acceleration values allowed for 8 h of work:
- Limit value: A(8) = alim < 1 m s−2;
- Action value: A(8) = aact = 0.5 m s−2;
- T0 is the reference exposure time corresponding to 8 h of work;
- Tmax is the maximum time of exposure to av and varies depending on the value of A(8) that is adopted. It is calculated by making the formula explicit with respect to Tmax.
2.5. Data Analysis
3. Results and Discussion
3.1. Test Results
- The root mean square of the frequency band axial accelerations (awx, awy, awz), resulting from Relation (2);
- The acceleration vector (av), resulting from Relation (3);
- The maximum exposure time (Tmax), resulting from Relation (4) and referring to the limit value (alim = 1 m s−2) and action value (aact = 0.5 m s−2).
3.2. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giarè, F.; Borsotto, P.; Signoriello, I. Social Farming in Italy. Analysis of an inclusive model. Ital. Rev. Agric. Econ. 2019, 73, 89–105. [Google Scholar] [CrossRef]
- Decreto del 17 gennaio 2005 del Ministero delle Infrastrutture e dei Trasporti—Individuazione dei tipi e delle Caratteristiche Delle Macchine Agricole e Delle Macchine Operatrici che, Eventualmente adattate, Possono Essere Guidate dai Titolari di Patenti Speciali. Gazzetta Ufficiale della Repubblica Italiana, n. 33 del 10 febbraio 2005. Available online: https://www.certifico.com/marcatura-ce/direttive-nuovo-approccio/176-direttiva-ped/5692-decreto-17-gennaio-2005 (accessed on 20 March 2025).
- Stuthridge, R.W.; Field, W.E. Enhancing Worksite Mobility for Farmers and Ranchers with Physical Disabilities. In Proceedings of the American Society of Agricultural and Biological Engineers, Dallas, TX, USA, 29 July–1 August 2012; Volume 7, pp. 6224–6240. [Google Scholar] [CrossRef]
- Fanigliulo, R.; Del Duca, L.; Fornaciari, L.; Grilli, R.; Tomasone, R.; Pochi, D. Efficiency of an ANC System in the Tractor Cabin under Controlled Engine Workload. Noise Control Eng. J. 2020, 68, 339–357. [Google Scholar] [CrossRef]
- Faber, B.M.; Sommerfeldt, S.D. Global Active Control of Energy Density in a Mock Tractor Cabin. Noise Control Eng. J. 2006, 54, 187–193. [Google Scholar] [CrossRef]
- Pochi, D.; Fornaciari, L.; Vassalini, G.; Grilli, R.; Fanigliulo, R. Levels of Whole-Body Vibrations Transmitted to the driver of a Tractor Equipped with Self-Levelling Cab during Soil Primary Tillage. AgriEngineering 2022, 4, 695–706. [Google Scholar] [CrossRef]
- Sediel, H.; Heide, R. Long-term Effect of Whole-body Vibration: A Critical Survey of the Literature. Int. Arch. Occup. Environ. Health 1986, 58, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Bovenzi, M.; Betta, A. Low-back Disorders in Agricultural Tractor Drivers Exposed to Whole-body Vibration and Postural Stress. Appl. Ergon. 1994, 25, 231–241. [Google Scholar] [CrossRef]
- Lines, J.; Stiles, M.; Whyte, R. Whole body Vibration during Tractor Driving. J. Low Freq. Noise Vib. Act. Control 1995, 14, 87–104. [Google Scholar] [CrossRef]
- European Union. Directive 2002/44/EC of the European Parliament and of the Council of 25 June 2002 on the Minimum Health and Safety Requirements Regarding the Exposure of Workers to the Risks Arising from Physical Agents (Vibration) (Sixteenth Individual Directive within the Meaning of Article 16 of Directive 89/391/EEC); Joint Statement by the European Parliament and the Council: Brussels, Belgium, 2019. [Google Scholar]
- Decreto Legislativo 9 aprile 2008, n. 81—Attuazione dell’articolo 1 della Legge 3 agosto 2007, n. 123 in materia di tutela della salute e della sicurezza nei luoghi di lavoro. Gazzetta Ufficiale della Repubblica Italiana, n. 101 del 30 aprile 2008. Available online: https://www.gazzettaufficiale.it/eli/id/2008/04/30/008G0104/s (accessed on 20 March 2025).
- Secinaro, S.; Calandra, D.; Lanzalonga, F.; Ferraris, A. Electric Vehicles’ Consumer Behaviours: Mapping the Field and Providing a Research Agenda. J. Bus. Res. 2022, 150, 399–416. [Google Scholar] [CrossRef]
- Rakem, J.; Janečková, R.; Otipka, V.; Prokop, A.; Řehák, K.; Žlábek, P. Multi-Body Model of Agricultural Tractor for Vibration Transmission Investigation. Appl. Sci. 2024, 14, 8451. [Google Scholar] [CrossRef]
- Cutini, M.; Brambilla, M.; Pochi, D.; Fanigliulo, R.; Bisaglia, C. A Simplified Approach to the Evaluation of the Influences of Key Factors on Agricultural Tractor Fuel Consumption during Heavy Drawbar Tasks under Field Conditions. Agronomy 2022, 12, 1017. [Google Scholar] [CrossRef]
- Kim, J.H.; Dennerlein, J.T.; Johnson, P.W. The Effect of a Multi-axis Suspension on Whole Body Vibration Exposures and Physical Stress in the Neck and Low Back in Agricultural Tractor Applications. Appl. Ergon. 2018, 68, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Servadio, P.; Belfiore, N.P. Influence of Tyres Characteristics and Travelling Speed on Ride Vibrations of a Modern Medium Powered Tractor Part I: Analysis of the Driving Seat Vibration. Agric. Eng. Int. CIGR J. 2013, 15, 119–131. [Google Scholar]
- Bleda, A.L.; Leal, J.L.; Beteta, M.A.; Maestre, R.; Abbenante, S.E.; Puche-Forte, J.F. e2Drive: Enhancing Urban Mobility and Safety for Physically Disabled Drivers Through Smart Sensor System. In Lecture Notes in Network and System, 1st ed.; Bravo, J., Nugent, C., Cleland, I., Eds.; International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI 2024); Springer: Cham, Switzerland, 2020; Volume 1212, pp. 558–565. [Google Scholar] [CrossRef]
- Lamedica, R.; Maccioni, M.; Ruvio, A.; Carere, F.; Mortelliti, N.; Gatta, F.M.; Geri, A. Optimization of e-Mobility Service for Disabled People Using a Multistep Integrated Methodology. Energies 2022, 15, 2751. [Google Scholar] [CrossRef]
- Nair, M.R.; Anshadh, A.; Mohan, R.K.M.; Anu, S.A.; Arad, V.M.; Afsal, M. Design, Analysis and Fabrication of Solar-Powered Electric Vehicle for Handicapped-A Sustainable Approach. In Advancement in Materials Processing Technology, 1st ed.; Prasad, R., Sahu, R., Sahoo, K.L., Jadhav, G.N., Eds.; Advancement in Materials Processing Technology (AMPT 2020); Springer: Cham, Switzerland, 2022; Volume 12, pp. 189–196. [Google Scholar] [CrossRef]
- European tyre and Rim Technical Organisation. Engineering Design Information-Agricultural Tractor and Implement Tyres: Care and Maintenance; European tyre and Rim Technical Organisation: Brussels, Belgium, 2013. [Google Scholar]
- ISO 2631-1:1997/Amd 1:2010; Mechanical Vibration and Shock. Evaluation of Human Exposure to Whole-Body Vibration. Part 1: General Requirements; Amendment 1. Technical Committee: ISO/TC 108/SC 4. International Organisation for Standardisation: Geneva, Switzerland, 1997.
- ISO 8041-1:2017; Human Response to Vibration. Measuring Instrumentation. Part 1: General Purpose Vibration Meters. International Organisation for Standardisation: Geneva, Switzerland, 2017.
- ISO 16063-1:1998/Amd 1:2016; Methods for the Calibration of Vibration and Shock Transducers. Part 1: Basic Concepts. Amendment 1. Technical Committee: ISO/TC 108. International Organisation for Standardisation: Geneva, Switzerland, 1998.
- ISO 5348:2021; Mechanical Vibration and Shock. Mechanical Mounting of Accelerometers. International Organisation for Standardisation: Geneva, Switzerland, 2021.
- Anaya-Martinez, M.; Lozoya-Santos, J.; Félix-Herrán, L.C.; Tudon-Martinez, J.C.; Ramirez-Mendoza, R.A.; Morales-Menendez, R. Control of Automotive Semi-Active MR Suspensions for In-Wheel Electric Vehicles. Appl. Sci. 2020, 10, 4522. [Google Scholar] [CrossRef]
- Fow, A.; Duke, M. Active Electromagnetic Damping for Lightweight Electric Vehicles. In Proceedings of the 6th International Conference on Automation, Robotics and Applications (ICARA), Queenstown, New Zealand, 17–19 February 2015. [Google Scholar] [CrossRef]
- Pochi, D.; Fornaciari, L.; Grilli, R.; Betto, M.; Benigni, S.; Fanigliulo, R. First Tests on a Prototype Device for the Active Control of Whole-Body Vibrations on Agricultural Tractors. In Lecture Notes in Civil Engineering, 1st ed.; Coppola, A., Di Renzo, G., Altieri, G., D’Antonio, P., Eds.; Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production. MID-TERM AIIA 2019; Springer: Cham, Switzerland, 2020; Volume 67, pp. 661–670. [Google Scholar] [CrossRef]
- Palmieri, N.; Tomasone, R.; Cedrola, C.; Puri, D.; Pagano, M. Factors Affecting Disabled Consumer Preferences for an Electric Vehicle for Rural Mobility: An Italian Experimental Study. Sustainability 2023, 15, 5570. [Google Scholar] [CrossRef]
Electric Motors | Height | 244 mm |
Length | 244 mm | |
Width | 275 mm | |
Mass | 13 kg | |
Rated voltage | 48 V DC | |
Rated power (48 V) | 2000 W | |
Max speed (48 V) | 494 rpm | |
Max torque (48 V) | 149 Nm | |
Power Supply System (Battery Pack) | Winston Cells | type LiFePO4 |
Cell current | 100 Ah | |
Cell rated voltage | 3.2 V | |
Number of cells | 15 (in series) | |
Battery pack total voltage | 48 V | |
Battery pack total mass | 49.5 kg | |
Battery pack total volume | 30 dm3 |
Masses | Total, kg | 800 | Battery pack included |
Battery pack, kg | 375 | ||
Max. transportable mass, kg | >300 | ||
Max. platform capacity, kg | >300 | ||
Dimensions | Height, mm | 1600 | |
Length, mm | 2200 | ||
Width, mm | 1400 | Closed platform | |
2050 | Open platform | ||
2400 | Open platform extended | ||
Others | Traction | 4 WD | |
Steering system | 4 WS | Electronically controlled | |
Turning radius, m | 2.5 | Four-wheel steering | |
Tyre size, m | 165/70 R14 | ||
Maximum speed, km h−1 | 20 | Limited | |
Driving autonomy, km | 70 | Urban cycle | |
40 | Rural envir., frequent restarts | ||
Steering aids | Accelerator | Wireless, trigger-operated | |
Brake/handbrake | Manual push-forward lever | ||
Power assisted steering |
Test Surface | Travel Speed, km h−1 | ||||
---|---|---|---|---|---|
Asphalt | - | 10 | - | 20 | 30 |
Headland | 5 | 10 | 15 | - | - |
Dirt Road | - | 10 | - | 20 | - |
Speed km h−1 | Repl. St. Ind. | Tyre A | Tyre B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
awx | awy | awz | av | alim < 1 m s−2 | aact = 0.5 m s−2 | awx | awy | awz | av | alim < 1 m s−2 | aact = 0.5 m s−2 | ||
m s−2 | Tmax (h) | m s−2 | Tmax (h) | ||||||||||
30 | 1 | 0.22 | 0.28 | 1.48 | 1.57 | 3.63 | 0.92 | 0.18 | 0.31 | 1.03 | 1.15 | 7.50 | 1.87 |
2 | 0.24 | 0.31 | 1.56 | 1.66 | 3.27 | 0.82 | 0.16 | 0.23 | 0.92 | 1.00 | 9.38 | 2.35 | |
3 | 0.22 | 0.34 | 1.57 | 1.67 | 3.22 | 0.80 | 0.19 | 0.29 | 1.04 | 1.15 | 7.45 | 1.87 | |
Aver. | 0.23 | 0.31 | 1.54 | 1.63 | 3.37 | 0.84 | 0.17 | 0.27 | 1.00 | 1.06 | 8.11 | 2.03 | |
St.D. | 0.01 | 0.03 | 0.05 | 0.06 | - | - | 0.02 | 0.04 | 0.09 | 0.10 | - | - | |
C.V. | 3.45 | 9.55 | 3.25 | 3.55 | - | - | 9.14 | 13.24 | 9.70 | 9.87 | - | - | |
St. Er. | 0.00 | 0.02 | 0.03 | 0.03 | - | - | 0.01 | 0.02 | 0.05 | 0.06 | - | - | |
20 | 1 | 0.16 | 0.18 | 0.62 | 0.71 | <12 | 5.17 | 0.13 | 0.17 | 0.63 | 0.69 | <12 | 5.10 |
2 | 0.16 | 0.17 | 0.61 | 0.70 | <12 | 5.28 | 0.13 | 0.19 | 0.64 | 0.71 | <12 | 4.97 | |
3 | 0.16 | 0.17 | 0.65 | 0.73 | <12 | 4.78 | 0.15 | 0.26 | 0.81 | 0.91 | <12 | 3.03 | |
Aver. | 0.16 | 0.18 | 0.63 | 0.71 | <12 | 5.08 | 0.15 | 0.21 | 0.69 | 0.81 | <12 | 4.37 | |
St.D. | 0.00 | 0.00 | 0.02 | 0.01 | - | - | 0.02 | 0.05 | 0.10 | 0.12 | - | - | |
C.V. | 0.35 | 2.34 | 2.70 | 2.10 | - | - | 16.60 | 21.19 | 14.38 | 15.35 | - | - | |
St. Er. | 0.00 | 0.00 | 0.01 | 0.01 | - | - | 0.01 | 0.03 | 0.06 | 0.07 | - | - | |
10 | 1 | 0.12 | 0.12 | 0.33 | 0.41 | <12 | <12 | 0.08 | 0.15 | 0.47 | 0.53 | <12 | 9.10 |
2 | 0.12 | 0.11 | 0.31 | 0.38 | <12 | <12 | 0.10 | 0.21 | 0.58 | 0.66 | <12 | 5.95 | |
3 | 0.11 | 0.13 | 0.37 | 0.44 | <12 | <12 | 0.11 | 0.20 | 0.58 | 0.66 | <12 | 5.97 | |
Aver. | 0.12 | 0.12 | 0.34 | 0.41 | <12 | <12 | 0.10 | 0.18 | 0.54 | 0.62 | <12 | 7.01 | |
St.D. | 0.01 | 0.01 | 0.03 | 0.03 | - | - | 0.02 | 0.03 | 0.06 | 0.08 | - | - | |
C.V. | 5.28 | 8.10 | 8.87 | 6.79 | - | - | 15.56 | 16.42 | 11.78 | 12.70 | - | - | |
St. Er. | 0.00 | 0.01 | 0.02 | 0.02 | - | - | 0.01 | 0.02 | 0.04 | 0.05 | - | - |
Speed km h−1 | Repl. St. Ind. | Tyre A | Tyre B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
awx | awy | awz | av | alim < 1 m s−2 | aact = 0.5 m s−2 | awx | awy | awz | av | alim < 1 m s−2 | aact = 0.5 m s−2 | ||
m s−2 | Tmax (h) | m s−2 | Tmax (h) | ||||||||||
15 | 1 | 0.20 | 0.37 | 1.19 | 1.33 | 5.60 | 1.40 | 0.19 | 0.30 | 0.94 | 1.07 | 9.03 | 2.27 |
2 | 0.25 | 0.41 | 1.44 | 1.59 | 3.85 | 0.97 | 0.19 | 0.32 | 1.05 | 1.18 | 7.23 | 1.80 | |
3 | 0.25 | 0.43 | 1.48 | 1.63 | 3.67 | 0.92 | 0.21 | 0.31 | 1.03 | 1.16 | 7.48 | 1.87 | |
Aver. | 0.23 | 0.40 | 1.37 | 1.52 | 4.37 | 1.09 | 0.20 | 0.31 | 1.01 | 1.13 | 7.92 | 1.98 | |
St.D. | 0.03 | 0.03 | 0.15 | 0.16 | - | - | 0.01 | 0.01 | 0.06 | 0.06 | - | - | |
C.V. | 12.75 | 7.13 | 11.20 | 10.67 | - | - | 6.31 | 3.24 | 5.90 | 5.24 | - | - | |
St. Er. | 0.02 | 0.02 | 0.09 | 0.09 | - | - | 0.01 | 0.01 | 0.03 | 0.03 | - | - | |
10 | 1 | 0.20 | 0.29 | 1.04 | 1.15 | 7.43 | 1.87 | 0.16 | 0.26 | 0.72 | 0.84 | <12 | 3.85 |
2 | 0.18 | 0.28 | 0.95 | 1.05 | 8.93 | 2.23 | 0.14 | 0.21 | 0.62 | 0.72 | <12 | 5.22 | |
3 | 0.20 | 0.33 | 0.99 | 1.12 | 8.23 | 2.05 | 0.12 | 0.20 | 0.64 | 0.71 | <12 | 4.92 | |
Aver. | 0.20 | 0.30 | 0.99 | 1.11 | 8.20 | 2.05 | 0.14 | 0.22 | 0.66 | 0.76 | <12 | 4.66 | |
St.D. | 0.01 | 0.03 | 0.05 | 0.05 | - | - | 0.02 | 0.03 | 0.05 | 0.07 | - | - | |
C.V. | 6.62 | 9.39 | 4.61 | 4.57 | - | - | 15.73 | 15.43 | 8.09 | 9.50 | - | - | |
St. Er. | 0.01 | 0.02 | 0.03 | 0.03 | - | - | 0.01 | 0.02 | 0.03 | 0.04 | - | - | |
5 | 1 | 0.11 | 0.18 | 0.53 | 0.60 | <12 | 7.20 | 0.08 | 0.14 | 0.43 | 0.48 | <12 | 11.02 |
2 | 0.11 | 0.16 | 0.46 | 0.53 | <12 | 9.58 | 0.10 | 0.21 | 0.43 | 0.54 | <12 | 10.62 | |
3 | 0.10 | 0.15 | 0.48 | 0.54 | <12 | 8.83 | 0.10 | 0.18 | 0.45 | 0.54 | <12 | 9.75 | |
Aver. | 0.11 | 0.16 | 0.49 | 0.56 | <12 | 8.54 | 0.09 | 0.18 | 0.44 | 0.52 | <12 | 10.46 | |
St.D. | 0.00 | 0.02 | 0.04 | 0.04 | - | - | 0.01 | 0.02 | 0.02 | 0.04 | - | - | |
C.V. | 4.02 | 10.77 | 7.44 | 7.25 | - | - | 11.48 | 11.11 | 4.55 | 7.69 | - | - | |
St. Er. | 0.00 | 0.01 | 0.02 | 0.02 | - | - | 0.01 | 0.01 | 0.01 | 0.02 | - | - |
Speed km h−1 | Repl. St. Ind. | Tyre A | Tyre B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
awx | awy | awz | av | alim < 1 m s−2 | aact = 0.5 m s−2 | awx | awy | awz | av | alim < 1 m s−2 | aact = 0.5 m s−2 | ||
m s−2 | Tmax (h) | m s−2 | Tmax (h) | ||||||||||
20 | 1 | 0.18 | 0.19 | 0.94 | 1.01 | 9.02 | 2.25 | 0.13 | 0.17 | 0.74 | 0.80 | <12 | 3.00 |
2 | 0.16 | 0.23 | 0.92 | 1.00 | 9.37 | 2.35 | 0.14 | 0.20 | 0.83 | 0.90 | 11.00 | 2.00 | |
3 | 0.21 | 0.27 | 0.93 | 0.73 | 9.18 | 2.30 | 0.14 | 0.18 | 0.82 | 0.88 | 11.00 | 2.00 | |
Aver. | 0.18 | 0.23 | 0.93 | 0.91 | 9.19 | 2.30 | 0.14 | 0.19 | 0.80 | 0.86 | 11.00 | 2.33 | |
St.D. | 0.03 | 0.04 | 0.01 | 0.16 | - | - | 0.01 | 0.02 | 0.05 | 0.06 | - | - | |
C.V. | 15.70 | 18.38 | 0.96 | 17.68 | - | - | 6.34 | 8.33 | 6.70 | 6.61 | - | - | |
St.Er. | 0.02 | 0.02 | 0.01 | 0.09 | - | - | 0.00 | 0.01 | 0.03 | 0.03 | - | - | |
10 | 1 | 0.12 | 0.15 | 0.59 | 0.65 | <12 | 5.67 | 0.07 | 0.11 | 0.44 | 0.48 | <12 | 10.00 |
2 | 0.11 | 0.13 | 0.54 | 0.59 | <12 | 6.88 | 0.09 | 0.13 | 0.49 | 0.54 | <12 | 8.00 | |
3 | 0.12 | 0.14 | 0.56 | 0.62 | <12 | 6.32 | 0.08 | 0.13 | 0.52 | 0.56 | <12 | 7.00 | |
Aver. | 0.12 | 0.14 | 0.57 | 0.62 | <12 | 6.29 | 0.08 | 0.12 | 0.49 | 0.53 | <12 | 8.33 | |
St.D. | 0.01 | 0.01 | 0.03 | 0.03 | - | - | 0.01 | 0.01 | 0.04 | 0.05 | - | - | |
C.V. | 4.66 | 7.39 | 4.90 | 5.04 | - | - | 8.61 | 9.85 | 8.65 | 8.58 | - | - | |
St.Er. | 0.00 | 0.01 | 0.02 | 0.02 | - | - | 0.00 | 0.01 | 0.02 | 0.03 | - | - |
Surface | Speed km h−1 | Rep. | Tyre A | Tyre B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | |||||||||
awpeak | CF | awpeak | CF | awpeak | CF | awpeak | CF | awpeak | CF | awpeak | CF | |||
m s−2 | - | m s−2 | - | m s−2 | - | m s−2 | - | m s−2 | - | m s−2 | - | |||
Asphalt | 30 | 1 | 1.51 | 6.27 | 1.22 | 4.07 | 7.49 | 5.19 | 1.10 | 5.99 | 1.10 | 3.85 | 4.41 | 4.43 |
2 | 1.29 | 5.88 | 1.08 | 3.66 | 9.69 | 6.53 | 0.71 | 4.44 | 0.86 | 3.41 | 4.47 | 4.96 | ||
3 | 1.26 | 5.73 | 1.47 | 4.44 | 9.29 | 6.23 | 1.14 | 6.17 | 0.95 | 3.40 | 4.93 | 4.98 | ||
20 | 1 | 0.81 | 5.69 | 0.87 | 4.97 | 2.85 | 4.67 | 0.60 | 4.92 | 0.84 | 5.01 | 3.18 | 5.27 | |
2 | 0.79 | 5.33 | 0.93 | 5.47 | 2.89 | 4.92 | 0.81 | 6.40 | 0.83 | 4.28 | 2.96 | 4.82 | ||
3 | 0.87 | 5.44 | 0.80 | 4.66 | 2.33 | 3.82 | 0.77 | 5.44 | 1.65 | 6.90 | 4.34 | 5.64 | ||
10 | 1 | 0.61 | 5.28 | 0.43 | 3.73 | 1.69 | 5.29 | 0.36 | 4.38 | 0.67 | 4.41 | 2.47 | 5.49 | |
2 | 0.35 | 3.12 | 0.52 | 4.91 | 1.28 | 4.31 | 0.69 | 6.92 | 1.09 | 5.33 | 3.87 | 7.07 | ||
3 | 0.45 | 4.08 | 0.56 | 4.38 | 1.35 | 3.86 | 0.66 | 6.13 | 1.02 | 5.35 | 3.30 | 5.98 | ||
Headland | 15 | 1 | 0.95 | 4.86 | 1.86 | 4.92 | 4.43 | 3.85 | 0.81 | 4.29 | 1.10 | 3.67 | 3.72 | 4.10 |
2 | 0.91 | 3.73 | 1.54 | 3.81 | 5.60 | 4.02 | 1.51 | 7.25 | 2.13 | 6.03 | 6.51 | 6.16 | ||
3 | 1.02 | 4.24 | 1.41 | 3.30 | 5.09 | 3.63 | 0.81 | 4.12 | 1.11 | 3.72 | 4.92 | 4.95 | ||
10 | 1 | 0.73 | 3.75 | 1.06 | 3.76 | 3.90 | 3.90 | 0.56 | 3.77 | 1.11 | 4.54 | 2.90 | 4.13 | |
2 | 0.65 | 3.65 | 1.22 | 4.51 | 3.79 | 4.14 | 0.53 | 4.00 | 0.83 | 3.98 | 2.38 | 4.07 | ||
3 | 1.14 | 5.76 | 2.27 | 6.87 | 4.98 | 5.20 | 0.43 | 3.69 | 0.63 | 3.21 | 2.49 | 4.05 | ||
5 | 1 | 0.53 | 5.13 | 0.84 | 4.96 | 1.82 | 3.63 | 0.36 | 4.11 | 0.60 | 4.33 | 1.70 | 4.14 | |
2 | 0.61 | 5.74 | 0.73 | 4.63 | 1.93 | 4.40 | 0.37 | 3.60 | 0.94 | 4.73 | 1.76 | 4.24 | ||
3 | 0.61 | 6.15 | 0.51 | 3.60 | 2.52 | 5.33 | 0.46 | 4.58 | 0.64 | 3.62 | 2.68 | 6.21 | ||
Dirt Road | 20 | 1 | 1.12 | 6.48 | 0.83 | 4.17 | 6.25 | 6.91 | 0.70 | 5.66 | 0.74 | 4.18 | 3.63 | 5.10 |
2 | 0.80 | 5.39 | 1.57 | 6.83 | 5.87 | 6.64 | 0.87 | 6.26 | 0.80 | 4.00 | 4.15 | 5.04 | ||
3 | 0.84 | 3.92 | 1.14 | 4.17 | 3.80 | 4.16 | 0.89 | 6.33 | 1.14 | 6.00 | 4.72 | 5.89 | ||
10 | 1 | 0.63 | 5.60 | 0.78 | 5.27 | 2.65 | 4.66 | 0.27 | 3.93 | 0.48 | 4.63 | 2.04 | 4.82 | |
2 | 0.46 | 4.17 | 0.57 | 4.35 | 2.33 | 4.45 | 0.55 | 6.37 | 0.51 | 4.02 | 2.01 | 4.21 | ||
3 | 0.71 | 6.30 | 0.81 | 5.98 | 2.50 | 4.67 | 0.32 | 4.10 | 0.50 | 4.19 | 2.43 | 4.78 |
Surface | Factors of Variation | Df | Sum Sq. | Mean Sq. | F Value | Pr (>F) | Signif. | Effect Size (η2) |
---|---|---|---|---|---|---|---|---|
Asphalt | Replic. | 2 | 0.026 | 0.013 | - | - | - | |
Tyre | 1 | 0.036 | 0.036 | 9.04 | 0.013 | * | 0.06 | |
Speed | 2 | 2.333 | 1.166 | 293.88 | 1.31 × 10−9 | *** | 0.39 | |
Tyre:Speed | 2 | 0.459 | 0.230 | 57.83 | 3.19 × 10−6 | *** | 0.55 | |
Residuals | 10 | 0.040 | 0.004 | - | - | - | ||
Headland | Replic. | 2 | 0.002 | 0.001 | - | - | - | |
Tyre | 1 | 0.320 | 0.320 | 40.22 | 8.44 × 10−5 | *** | 0.37 | |
Speed | 2 | 1.923 | 0.962 | 120.79 | 9.92 × 10−8 | *** | 0.06 | |
Tyre:speed | 2 | 0.095 | 0.047 | 5.94 | 0.020 | * | 0.57 | |
Residuals | 10 | 0.080 | 0.008 | - | - | - | ||
Dirt Road | Replic. | 2 | 0.007 | 0.004 | - | - | - | |
Tyre | 1 | 0.016 | 0.016 | 1.70 | 0.240 | - | 0.37 | |
Speed | 1 | 0.295 | 0.295 | 30.77 | 0.001 | ** | 0.11 | |
Tyre:speed | 1 | 0.001 | 0.001 | 0.13 | 0.733 | - | 0.51 | |
Residuals | 6 | 0.058 | 0.010 | - | - | - |
Factors of Variab. | Pairwise Compar. | Diff. | lwr | upr | p Adj. |
---|---|---|---|---|---|
Tyre | B-A-0.0 | −0.0893 | −0.1652 | 0.0134 | 0.0249 |
Speed | v20-v10 | 0.2265 | 0.1127 | 0.3403 | 5.039−4 |
v30-v10 | 0.8513 | 0.7374 | 0.9651 | 0 | |
v30-v20 | 0.6248 | 0.5110 | 0.7386 | 0 | |
Interaction Tyre:Speed | A:v30-A:v10 | 1.2202 | 1.0175 | 1.4229 | 0 |
A:v30-B:v10 | 1.0156 | 0.8129 | 1.2183 | 0 | |
A:v30-A:v20 | 0.9218 | 0.7191 | 1.1245 | 0 | |
A:v30-B:v20 | 0.8610 | 0.6583 | 1.0637 | 1.00−7 | |
B:v30-A:v10 | 0.6870 | 0.4843 | 0.8896 | 1.00−6 | |
B:v30-A:v30 | −0.5332 | −0.7359 | −0.3305 | 1.560−5 | |
B:v30-B:v10 | 0.4823 | 0.2797 | 0.6850 | 4.360−5 | |
B:v30-A:v20 | 0.3886 | 0.1859 | 0.5913 | 3.569−4 | |
B:v20-A:v10 | 0.3592 | 0.1565 | 0.5619 | 7.317−4 | |
B:v30-B:v20 | 0.3278 | 0.1251 | 0.5304 | 0.0016 | |
A:v20-A:v10 | 0.2984 | 0.0957 | 0.5011 | 0.0035 | |
B:v10-A:v10 | 0.2046 | 0.0019 | 0.4073 | 0.0474 | |
B:v20-B:v10 | 0.1546 | −0.0481 | 0.3573 | 0.1808 | |
A:v20-B:v10 | 0.0938 | −0.1089 | 0.2965 | 0.6398 | |
B:v20-A:v20 | 0.0608 | −0.1419 | 0.2635 | 0.9066 |
Factors of Variab. | Pairwise Compar. | Diff. | lwr | upr | p Adj. |
---|---|---|---|---|---|
Tyre | B−A | −0.2667 | −0.3515 | −0.1820 | 1.7600 × 10−5 |
Speed | v15−v10 | 0.3931 | 0.2660 | 0.5203 | 7.60−6 |
v5−v10 | −0.4075 | −0.5347 | −0.2804 | 5.30−6 | |
v5−v15 | −0.8006 | −0.9278 | −0.6735 | 0 | |
Interaction Tyre:Speed | B:v5−A:v15 | −1.0243 | −1.2507 | −0.7979 | 0 |
A:v5−A:v15 | −0.9617 | −1.1881 | −0.7353 | 1.00−7 | |
A:v15−B:v10 | 0.7619 | 0.5355 | 0.9883 | 1.10−6 | |
B:v5−B:v15 | −0.6395 | −0.8659 | −0.4131 | 7.40−6 | |
B:v5−A:v10 | −0.6152 | −0.8416 | −0.3888 | 1.110−5 | |
A:v5−B:v15 | −0.5769 | −0.8033 | −0.3505 | 2.170−5 | |
A:v5−A:v10 | −0.5526 | −0.7790 | −0.3262 | 3.370−5 | |
A:v15−A:v10 | 0.4092 | 0.1828 | 0.6356 | 0.0006 | |
B:v15−A:v15 | −0.3849 | −0.6113 | −0.1585 | 0.0011 | |
B:v15−B:v10 | 0.3770 | 0.1507 | 0.6034 | 0.0013 | |
B:v10−A:v10 | −0.3528 | −0.5792 | −0.1264 | 0.0022 | |
B:v5−B:v10 | −0.2624 | −0.4888 | −0.0360 | 0.0203 | |
A:v5−B:v10 | −0.1998 | −0.4262 | 0.0266 | 0.0959 | |
B:v5−A:v5 | −0.0626 | −0.2890 | 0.1638 | 0.9313 | |
B:v15−A:v10 | 0.0243 | −0.2021 | 0.2507 | 0.9990 |
Factors of Var. | Pairwise Compar. | Diff. | lwr | upr | p Adj. |
---|---|---|---|---|---|
Tyre | B−A | −0.0737 | −0.1934029 | 0.0459 | 0.193 |
Speed | v20−v10 | 0.3135 | 0.1938 | 0.4332 | 3.09–4 |
Interaction Tyre:Speed | A:v20−B:v10 | 0.3872 | 0.1522 | 0.6223 | 3.32–3 |
B:v20−B:v10 | 0.3337 | 0.0987 | 0.5687 | 0.0081 | |
A:v20−A:v10 | 0.2933 | 0.0583 | 0.5283 | 0.0167 | |
B:v20−A:v10 | 0.2398 | 0.0048 | 0.4748 | 0.0456 | |
B:v10−A:v10 | −0.0939 | −0.3290 | 0.1411 | 0.5988 | |
B:v20−A:v20 | −0.0535 | −0.2885 | 0.1815 | 0.8827 |
Factors of Var. | Df | Sum Sq. | Mean Sq. | F Value | Pr (>F) | Signif. | Effect Size (η2) |
---|---|---|---|---|---|---|---|
Replication | 2 | 0.0027 | 0.00136 | 0.416 | 0.6706 | − | |
Tyre | 1 | 0.0293 | 0.02931 | 8.979 | 0.0134 | * | 0.08 |
Surface | 2 | 0.6162 | 0.30811 | 94.402 | 3.22 × 10−7 | *** | 0.36 |
Tyre:Surface | 2 | 0.2334 | 0.11669 | 35.753 | 2.78 × 10−5 | *** | 0.56 |
Residuals | 10 | 0.0326 | 0.00326 | − | − | − |
Factors of Var. | Pairwise Compar. | Diff. | lwr | upr | p Adj. |
---|---|---|---|---|---|
Tyre | B−A | −0.08069842 | −0.1364476 | −0.02494923 | 0.0083147 |
Surface | DR−Asph. | 0.0585 | −0.0251 | 0.1421 | 1.9020 × 10−1 |
HL−Asph. | 0.4185 | 0.3349 | 0.5021 | 0 | |
HL−DR | 0.3599 | 0.2763 | 0.4435 | 2.0 × 10−7 | |
Interaction Tyre:Surface | A:HL−A:Asph. | 0.6972 | 0.5483 | 0.8460 | 0 |
A:HL−B:DR | 0.5833 | 0.4344 | 0.7322 | 2.0−7 | |
A:HL−B:Asph. | 0.4926 | 0.3437 | 0.6414 | 1.30−6 | |
A:HL−A:DR | 0.4893 | 0.3405 | 0.6382 | 1.40−6 | |
B:HL−A:HL | −0.3528 | −0.5016 | −0.2039 | 4.550−5 | |
B:HL−A:Asph. | 0.3444 | 0.1955 | 0.4933 | 5.790−5 | |
B:HL−B:DR | 0.2305 | 0.0817 | 0.3794 | 2.341−3 | |
A:DR−A:Asph. | 0.2078 | 0.0590 | 0.3567 | 0.0054 | |
B:Asph.−A:Asph. | 0.2046 | 0.0557 | 0.3535 | 0.0060 | |
B:HL−B:Asph. | 0.1398 | −0.0091 | 0.2887 | 0.0703 | |
B:HL−A:DR | 0.1366 | −0.0123 | 0.2854 | 0.0792 | |
B:DR−A:Asph. | 0.1139 | −0.0350 | 0.2627 | 0.1788 | |
B:DR−A:DR | −0.0939 | −0.2428 | 0.0549 | 0.3393 | |
B:DR−B:Asph. | −0.0907 | −0.2396 | 0.0581 | 0.3726 | |
A:DR−B:Asph. | 0.0032 | −0.1457 | 0.1521 | 1.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fornaciari, L.; Tomasone, R.; Puri, D.; Cedrola, C.; Grilli, R.; Fanigliulo, R.; Pochi, D.; Pagano, M. First Results of a Study on the Vibrations Transmitted to the Driver by an Electric Vehicle for Disabled People During Transfer to a Farm. Agriculture 2025, 15, 1132. https://doi.org/10.3390/agriculture15111132
Fornaciari L, Tomasone R, Puri D, Cedrola C, Grilli R, Fanigliulo R, Pochi D, Pagano M. First Results of a Study on the Vibrations Transmitted to the Driver by an Electric Vehicle for Disabled People During Transfer to a Farm. Agriculture. 2025; 15(11):1132. https://doi.org/10.3390/agriculture15111132
Chicago/Turabian StyleFornaciari, Laura, Roberto Tomasone, Daniele Puri, Carla Cedrola, Renato Grilli, Roberto Fanigliulo, Daniele Pochi, and Mauro Pagano. 2025. "First Results of a Study on the Vibrations Transmitted to the Driver by an Electric Vehicle for Disabled People During Transfer to a Farm" Agriculture 15, no. 11: 1132. https://doi.org/10.3390/agriculture15111132
APA StyleFornaciari, L., Tomasone, R., Puri, D., Cedrola, C., Grilli, R., Fanigliulo, R., Pochi, D., & Pagano, M. (2025). First Results of a Study on the Vibrations Transmitted to the Driver by an Electric Vehicle for Disabled People During Transfer to a Farm. Agriculture, 15(11), 1132. https://doi.org/10.3390/agriculture15111132