Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = in-plane gradient magnetic field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3758 KiB  
Article
In-Plane Gradient Magnetic Field-Induced Topological Defects in Rotating Spin-1 Bose–Einstein Condensates with SU(3) Spin-Orbit Coupling
by Hui Yang, Peng-Yu Li and Bo Yu
Entropy 2025, 27(5), 508; https://doi.org/10.3390/e27050508 - 9 May 2025
Viewed by 454
Abstract
We study the topological defects and spin structures of rotating SU(3) spin–orbit-coupled spin F=1 Bose–Einstein condensates (BECs) in an in-plane quadrupole field with ferromagnetic spin interaction, and the BECs is confined by a harmonic trap. Without rotation, as the quadrupole field [...] Read more.
We study the topological defects and spin structures of rotating SU(3) spin–orbit-coupled spin F=1 Bose–Einstein condensates (BECs) in an in-plane quadrupole field with ferromagnetic spin interaction, and the BECs is confined by a harmonic trap. Without rotation, as the quadrupole field strength is increased, the spin F=1 BECs with SU(3) spin–orbit coupling (SOC) evolves from the initial Thomas–Fermi phase into the stripe phase; then, it enters a vortex–antivortex cluster state and eventually a polar-core vortex state. In the absence of rotation with the given quadrupole field, the enhancing SU(3) SOC strength can cause a phase transition from a central Mermin–Ho vortex to a vortex–antivortex cluster, subsequently converting to a bending vortex–antivortex chain. In addition, when considering rotation, it is found that this system generates the following five typical quantum phases: a three-vortex-chain cluster structure with mutual angles of approximately 2π3, a tree-fork-like vortex chain cluster, a rotationally symmetric vortex necklace, a diagonal vortex chain cluster, and a density hole vortex cluster. Particularly, the system exhibits unusual topological structures and spin textures, such as a bending half-skyrmion–half-antiskyrmion (meron–antimeron) chain, three half-skyrmion (meron) chains with mutual angles of an approximately 2π3, slightly curved diagonal half-skyrmion (meron) cluster lattice, a skyrmion–half-skyrmion (skyrmion-meron) necklace, and a tree-fork-like half-skyrmion (meron) chain cluster lattice. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

11 pages, 2569 KiB  
Article
Magnetic Anisotropy Tailoring by 5d-Doping in (Fe,Co)5SiB2 Alloys
by Diana Benea
Inorganics 2024, 12(1), 6; https://doi.org/10.3390/inorganics12010006 - 22 Dec 2023
Cited by 1 | Viewed by 1889
Abstract
Band-structure calculations were performed using the spin-polarized relativistic Korringa–Kohn–Rostoker (SPR-KKR) band-structure method, determining intrinsic magnetic properties, such as magnetic moments, magnetocrystalline anisotropy energy (MAE), and Curie temperatures, of Fe5−x−yCoxMySiB2 (M = Re, W) alloys. The general [...] Read more.
Band-structure calculations were performed using the spin-polarized relativistic Korringa–Kohn–Rostoker (SPR-KKR) band-structure method, determining intrinsic magnetic properties, such as magnetic moments, magnetocrystalline anisotropy energy (MAE), and Curie temperatures, of Fe5−x−yCoxMySiB2 (M = Re, W) alloys. The general gradient approximation (GGA) for the exchange–correlation potential and the atomic sphere approximation (ASA) were used in the calculations. Previous studies have shown that for Fe5SiB2, the easy magnetization direction is in-plane, but it turns axial for Co-doping in the range 1 < x ≤ 2.5 (y = 0). Furthermore, studies have shown that 5d-doping enhances the MAE by enabling the strong spin–orbit coupling of Fe–3d and M–5d states. The aim of the present theoretical calculations was to find the dependence of the anisotropy constant K1 for combined Co- and M-doping, building a two-dimensional (2D) map of K1 for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1. Similar theoretical 2D maps for magnetization and Curie temperature vs. Co and M content (M = W and Re) were built, allowing for the selection of alloy compositions with enhanced values of uniaxial anisotropy, magnetization, and Curie temperature. The magnetic properties of the Fe4.1W0.9SiB2 alloy that meet the selection criteria for axial anisotropy K1 > 0.2 meV/f.u., Curie temperature Tc > 800 K determined by the mean-field approach, and magnetization µ0Ms > 1 T are discussed. Full article
(This article belongs to the Special Issue Magnetic Materials and Their Applications)
Show Figures

Figure 1

13 pages, 6581 KiB  
Article
Diffusion Tensor Imaging of a Median Nerve by Magnetic Resonance: A Pilot Study
by Kanza Awais, Žiga Snoj, Erika Cvetko and Igor Serša
Life 2022, 12(5), 748; https://doi.org/10.3390/life12050748 - 18 May 2022
Cited by 7 | Viewed by 2705
Abstract
The magnetic resonance Diffusion Tensor Imaging (DTI) is a powerful extension of Diffusion Weighted Imaging (DWI) utilizing multiple bipolar gradients, allowing for the evaluation of the microstructural environment of the highly anisotropic tissues. DTI was predominantly used for the assessment of the central [...] Read more.
The magnetic resonance Diffusion Tensor Imaging (DTI) is a powerful extension of Diffusion Weighted Imaging (DWI) utilizing multiple bipolar gradients, allowing for the evaluation of the microstructural environment of the highly anisotropic tissues. DTI was predominantly used for the assessment of the central nervous system (CNS), but with the advancement in magnetic resonance (MR) hardware and software, it has now become possible to image the peripheral nerves which were difficult to evaluate previously because of their small caliber. This study focuses on the assessment of the human median peripheral nerve ex vivo by DTI microscopy at 9.4 T magnetic field which allowed the evaluation of diffusion eigenvalues, the mean diffusivity and the fractional anisotropy at 35 μm in-plane resolution. The resolution was sufficient for clear depiction of all nerve anatomical structures and therefore further image analysis allowed the obtaining of average values for DT parameters in nerve fascicles (intrafascicular region and perineurium) as well as in the surrounding epineurium. The results confirmed the highest fractional anisotropy of 0.33 and principal diffusion eigenvalue of 1.0 × 10−9 m2/s in the intrafascicular region, somewhat lower values of 0.27 and 0.95 × 10−9 m2/s in the perineurium region and close to isotropic with very slow diffusion (0.15 and 0.05 × 10−9 m2/s) in the epineurium region. Full article
(This article belongs to the Special Issue Imaging in Neurosurgery: State of the Art)
Show Figures

Figure 1

14 pages, 7099 KiB  
Article
Tailored Magnetic Linear Birefringence in Wedge-Shaped Co Nanocluster Assemblies
by Miguel A. Arranz, Elena H. Sánchez, Víctor Ruiz-Díez, José L. Sánchez-Rojas and José M. Colino
Appl. Sci. 2022, 12(1), 100; https://doi.org/10.3390/app12010100 - 23 Dec 2021
Viewed by 1748
Abstract
The purpose of this paper is to present an experimental method to induce strong magnetic linear birefringence in two-dimensional assemblies of Co nanoclusters grown on glass plates. Additionally, we have also correlated the magnitude and characteristics of that nonlinear magneto-optical effect with the [...] Read more.
The purpose of this paper is to present an experimental method to induce strong magnetic linear birefringence in two-dimensional assemblies of Co nanoclusters grown on glass plates. Additionally, we have also correlated the magnitude and characteristics of that nonlinear magneto-optical effect with the thickness and profile of those disordered nanostructures. For those aims, we have grown Co nanocluster assemblies on amorphous substrates, by means of pulsed laser ablation in off-axis geometry. This approach enabled us to obtain magnetic media with an intended and pronounced thickness profile, i.e., wedge-shaped assembly, to investigate the orientation and behavior of surface magnetization regarding both the thickness gradient direction and in-plane magnetic field. That study was accomplished by measuring the magneto-optical effects in reflection and transmission configurations, unveiling an out-of-plane magnetization whose magnitude depends closely on the thickness gradient direction. That component, arising from a graded magnetic anisotropy along the wedged nanostructure, adds a reversal mechanism to the surface magnetization, thus being responsible for the magnetic linear birefringence in our ultrathin Co assemblies. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

4 pages, 1636 KiB  
Proceeding Paper
MOEMS Based Single Chip Lorentz Force Magnetic Gradiometer
by Matthias Kahr, Michael Stifter, Harald Steiner, Wilfried Hortschitz, Gabor Kovacs, Andreas Kainz, Johannes Schalko and Franz Keplinger
Proceedings 2018, 2(13), 724; https://doi.org/10.3390/proceedings2130724 - 21 Dec 2018
Viewed by 1673
Abstract
The functional principle of an optical gradient magnetic field sensor consisting of two independent laterally oscillating masses on a single chip is reported. These oscillations are caused by the Lorentz forces resulting from an alternating current through the masses interacting with a static [...] Read more.
The functional principle of an optical gradient magnetic field sensor consisting of two independent laterally oscillating masses on a single chip is reported. These oscillations are caused by the Lorentz forces resulting from an alternating current through the masses interacting with a static magnetic field. Light is modulated by relative in-plane movement of the masses and a fixed frame and subsequently detected by two photodiodes. Evaluation of magnitude and phase of the output signal reveals information about the uniformity of the magnetic field. The sensor is capable of detecting uniaxially strength and direction of magnetic gradient fields, offset gradient fields and homogeneous fields. Full article
(This article belongs to the Proceedings of EUROSENSORS 2018)
Show Figures

Figure 1

23 pages, 8516 KiB  
Article
Modulation of Magnetic Properties at the Nanometer Scale in Continuously Graded Ferromagnets
by Lorenzo Fallarino, Patricia Riego, Brian J. Kirby, Casey W. Miller and Andreas Berger
Materials 2018, 11(2), 251; https://doi.org/10.3390/ma11020251 - 6 Feb 2018
Cited by 19 | Viewed by 4802
Abstract
Ferromagnetic alloy materials with designed composition depth profiles provide an efficient route for the control of magnetism at the nanometer length scale. In this regard, cobalt-chromium and cobalt-ruthenium alloys constitute powerful model systems. They exhibit easy-to-tune magnetic properties such as saturation magnetization M [...] Read more.
Ferromagnetic alloy materials with designed composition depth profiles provide an efficient route for the control of magnetism at the nanometer length scale. In this regard, cobalt-chromium and cobalt-ruthenium alloys constitute powerful model systems. They exhibit easy-to-tune magnetic properties such as saturation magnetization MS and Curie temperature TC while preserving their crystalline structure over a wide composition range. In order to demonstrate this materials design potential, we have grown a series of graded Co1−xCrx and Co1−wRuw (10 1 ¯ 0) epitaxial thin films, with x and w following predefined concentration profiles. Structural analysis measurements verify the epitaxial nature and crystallographic quality of our entire sample sets, which were designed to exhibit in-plane c-axis orientation and thus a magnetic in-plane easy axis to achieve suppression of magnetostatic domain generation. Temperature and field-dependent magnetic depth profiles have been measured by means of polarized neutron reflectometry. In both investigated structures, TC and MS are found to vary as a function of depth in accordance with the predefined compositional depth profiles. Our Co1−wRuw sample structures, which exhibit very steep material gradients, allow us to determine the localization limit for compositionally graded materials, which we find to be of the order of 1 nm. The Co1−xCrx systems show the expected U-shaped TC and MS depth profiles, for which these specific samples were designed. The corresponding temperature dependent magnetization profile is then utilized to control the coupling along the film depth, which even allows for a sharp onset of decoupling of top and bottom sample parts at elevated temperatures. Full article
(This article belongs to the Special Issue Advances in Superconductive and Magnetic Nanomaterials)
Show Figures

Figure 1

Back to TopTop