Magnetic Anisotropy Tailoring by 5d-Doping in (Fe,Co)5SiB2 Alloys
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure
2.2. Magnetic Moments
2.3. Magnetic Anisotropy
2.4. Curie Temperatures and Exchange-Coupling Parameters
3. Materials and Methods
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coey, J.M.D. Perspective and Prospects for Rare Earth Permanent Magnets. Engineering 2020, 6, 119–131. [Google Scholar] [CrossRef]
- Mohapatra, J.; Liu, J.P. Rare-Earth-Free Permanent Magnets: The Past and Future. In Handbook of Magnetic Materials; Elsevier: Amsterdam, The Netherlands, 2018; Volume 27, pp. 1–57. [Google Scholar] [CrossRef]
- Skokov, K.P.; Gutfleisch, O. Heavy rare earth free, free rare earth and rare earth free magnets—Vision and reality. Scr. Mater. 2018, 154, 289–294. [Google Scholar] [CrossRef]
- Cui, J.; Kramer, M.; Zhou, L.; Liu, F.; Gabay, A.; Hadjipanayis, G.; Sellmyer, D. Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 2018, 158, 118–137. [Google Scholar] [CrossRef]
- Aronsson, B.; Engström, I. X-ray Investigations on Me-Si-B Systems (Me = Mn, Fe, Co). Acta Chem. Scand 1960, 14, 1403. [Google Scholar] [CrossRef]
- Werwiński, M.; Kontos, S.; Gunnarsson, K.; Svedlindh, P.; Cedervall, J.; Höglin, V.; Sahlberg, M.; Edström, A.; Eriksson, O.; Rusz, J. Magnetic properties of Fe5SiB2 and its alloys with P, S, and Co. Phys. Rev. B 2016, 93, 174412. [Google Scholar] [CrossRef]
- Cedervall, J.; Kontos, S.; Hansen, T.C.; Balmes, O.; Martinez-Casado, F.J.; Matej, Z.; Beran, P.; Svedlindh, P.; Gunnarsson, K.; Sahlberg, M. Magnetostructural transition in Fe5SiB2 observed with neutron diffraction. J. Solid State Chem. 2016, 235, 113–118. [Google Scholar] [CrossRef]
- Hirian, R.; Isnard, O.; Pop, V.; Benea, D. Investigations on the magnetic properties of the Fe5−xCoxSiB2 alloys by experimental and band structure calculation methods. J. Magn. Magn. Mater. 2020, 505, 166748. [Google Scholar] [CrossRef]
- Ericsson, T.; Häggström, L.; Wäppling, R. Spin rotation in Fe5SiB2. Phys. Scr. 1978, 17, 83–86. [Google Scholar] [CrossRef]
- McGuire, M.A.; Parker, D.S. Magnetic and structural properties of ferromagnetic Fe5PB2 and Fe5SiB2 and effects of Co and Mn substitutions. J. Appl. Phys. 2015, 118, 163903. [Google Scholar] [CrossRef]
- Lejeune, B.T.; Barua, R.; McDonald, I.J.; Gabay, A.M.; Lewis, L.H.; Hadjipanayis, G.C. Synthesis and processing effects on magnetic properties in the Fe5SiB2 system. J. Alloys Compd. 2018, 731, 995–1000. [Google Scholar] [CrossRef]
- Clulow, R.; Hedlund, D.; Vishina, A.; Svedlindh, P.; Sahlberg, M. Magnetic and structural properties of the Fe5Si1−xGexB2 system. J. Solid State Chem. 2022, 316, 123576. [Google Scholar] [CrossRef]
- Hedlund, D.; Cedervall, J.; Edström, A.; Werwiński, M.; Kontos, S.; Eriksson, O.; Rusz, J.; Svedlindh, P.; Sahlberg, M.; Gunnarsson, K.J. Magnetic properties of the Fe5SiB2−Fe5PB2 system. Phys. Rev. B 2017, 96, 094433. [Google Scholar] [CrossRef]
- Edström, A.; Werwiński, M.; Rusz, J.; Eriksson, O.; Skokov, K.P.; Radulov, I.A.; Ener, S.; Kuz’min, M.D.; Hong, J.; Fries, M.; et al. Effect of doping by 5d elements on magnetic properties of alloys, Magnetic properties of (Fe1−xCox)2B alloys and the effect of doping by 5d elements. Phys. Rev. B 2015, 92, 174413. [Google Scholar] [CrossRef]
- Khan, I.; Hong, J. Site dependent enhancement of magnetic anisotropy in 4d and 5d impurity doped α-Fe16N2: A first principles study. Curr. Appl. Phys. 2018, 18, 526–533. [Google Scholar] [CrossRef]
- Thakur, J.; Rani, P.; Tomar, M.; Gupta, V.; Kashyap, M.K. Enhancement of magnetic anisotropy of Fe5PB2 with W substitution: Ab-initio study. AIP Conf. Proc. 2019, 2093, 020012. [Google Scholar] [CrossRef]
- Hirian, R.; Pop, V.; Isnard, O.; Benea, D. Magnetic properties of the (Fe,Co)5SiB2 alloys by W doping. Stud. UBB Phys. 2022, 67, 1. [Google Scholar] [CrossRef]
- Benea, D.; Pop, V. Magnetic Properties of the Fe2B Alloy Doped with Transition Metal Elements. Magnetochemistry 2023, 9, 109. [Google Scholar] [CrossRef]
- Lawrence, R.A.; Donaldson, S.J.; Probert, M.I. Magnetic Transition State Searching: Beyond the Static Ion Approximation. Magnetochemistry 2023, 9, 42. [Google Scholar] [CrossRef]
- Kaštil, J.; Hirian, R.; Isnard, O. Effect of pressure on the magnetic and structural properties of Fe5SiB2 compound. Intermetallics 2019, 110, 106484. [Google Scholar] [CrossRef]
- Pan, Y.; Guan, W.M. Exploring the structural stability and mechanical properties of TM5SiB2 ternary silicides. Ceram. Int. 2018, 44, 9893. [Google Scholar] [CrossRef]
- Kokalj, A. XCrySDen—A new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 1999, 17, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Ebert, H.; Ködderitzsch, D.; Minar, J. Calculating condensed matter properties using the KKR-Green’s function method—Recent developments and applications. Rep. Prog. Phys. 2011, 74, 096501. [Google Scholar] [CrossRef]
- Faulkner, J.S.; Stocks, G.M. Calculating properties with the coherent-potential approximation. Phys. Rev. B 1980, 21, 3222. [Google Scholar] [CrossRef]
- Munich SPRKKR Band Structure Program Package. Available online: https://www.ebert.cup.uni-muenchen.de/index.php/de/software/13-sprkkr (accessed on 8 December 2023).
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.; Pack, J. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Liechtenstein, A.I.; Katsnelson, M.I.; Antropov, V.P.; Gubanov, V.A. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 1987, 67, 65–74. [Google Scholar] [CrossRef]
- Mankovsky, S.; Polesya, S.; Minar, J.; Hoffmann, F.; Back, D.H.; Ebert, H. Spin-orbit coupling effect in (Ga, Mn) As films: Anisotropic exchange interactions and magnetocrystalline anisotropy. Phys. Rev. B 2011, 84, 201201. [Google Scholar] [CrossRef]
- Nieves, P.; Arapan, S.; Maudes-Raedo, J.; Marticorena-Sánchez, R.; Del Brío, N.L.; Kovacs, A.; Echevarria-Bonet, C.; Salazar, D.; Weischenberg, J.; Zhang, H.; et al. Database of novel magnetic materials for high-performance permanent magnet development. Comput. Mat. Sci. 2019, 168, 188–202. [Google Scholar] [CrossRef]
SPR-KKR | FPLO [6] | Neutron Diffraction [7] | |||||||
---|---|---|---|---|---|---|---|---|---|
VWN-ASA | GGA-ASA | GGA-FP | GGA-FP | ||||||
ms (µB) | ml (µB) | ms (µB) | ml (µB) | ms (µB) | ml (µB) | ms (µB) | ml (µB) | mtot (µB) | |
Fe 4c | 2.20 | 0.05 | 2.35 | 0.05 | 2.08 | 0.05 | 2.24 | 0.05 | 2.31 |
Fe 16l | 1.61 | 0.04 | 1.81 | 0.04 | 1.88 | 0.04 | 1.87 | 0.04 | 2.10 |
Si 4a | −0.14 | - | −0.17 | - | −0.16 | - | −0.25 | - | - |
B 8h | −0.13 | - | −0.15 | - | −0.14 | - | −0.25 | - | - |
Total (µB/f.u.) | 8.25 | 0.21 | 9.12 | 0.22 | 9.19 | 0.22 | 8.98 | 0.22 | 10.71 |
8.46 | 9.34 | 9.41 | 9.20 | ||||||
Exp. Ms(µB/f.u.) [7] | 9.35 |
Lattice Const. a,c (Å) | ms (µB/f.u.) | ml (µB/f.u.) | µ0Ms (T) | K1 (meV/f.u.) | K1 (MJ/m3) | κ | Tc (K) | |
---|---|---|---|---|---|---|---|---|
Fe4.1W0.9SiB2 | 5.64; 10.47 | 8.14 | 0.23 | 1.17 | 0.24 | 0.46 | 0.65 | 863 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benea, D. Magnetic Anisotropy Tailoring by 5d-Doping in (Fe,Co)5SiB2 Alloys. Inorganics 2024, 12, 6. https://doi.org/10.3390/inorganics12010006
Benea D. Magnetic Anisotropy Tailoring by 5d-Doping in (Fe,Co)5SiB2 Alloys. Inorganics. 2024; 12(1):6. https://doi.org/10.3390/inorganics12010006
Chicago/Turabian StyleBenea, Diana. 2024. "Magnetic Anisotropy Tailoring by 5d-Doping in (Fe,Co)5SiB2 Alloys" Inorganics 12, no. 1: 6. https://doi.org/10.3390/inorganics12010006
APA StyleBenea, D. (2024). Magnetic Anisotropy Tailoring by 5d-Doping in (Fe,Co)5SiB2 Alloys. Inorganics, 12(1), 6. https://doi.org/10.3390/inorganics12010006