Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = improved reverse electrodialysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5698 KiB  
Review
Water–Energy Nexus: Membrane Engineering Towards a Sustainable Development
by Alessandra Criscuoli
Membranes 2025, 15(4), 98; https://doi.org/10.3390/membranes15040098 - 26 Mar 2025
Cited by 1 | Viewed by 861
Abstract
Sustainable development is linked to the achievement of several different objectives, as outlined by the 17 Sustainable Development Goals (SDGs) defined by the United Nations. Among them are the production of clean water and the combat of climate change, which is strictly linked [...] Read more.
Sustainable development is linked to the achievement of several different objectives, as outlined by the 17 Sustainable Development Goals (SDGs) defined by the United Nations. Among them are the production of clean water and the combat of climate change, which is strictly linked to the use of fossil fuels as a primary energy source and their related CO2 emissions. Water and energy are strongly interconnected. For instance, when processing water, energy is needed to pump, treat, heat/cool, and deliver water. Membrane operations for water treatment/desalination contribute to the recovery of purified/fresh water and reducing the environmental impact of waste streams. However, to be sustainable, water recovery must not be energy intensive. In this respect, this contribution aims to illustrate the state of the art and perspectives in desalination by reverse osmosis (RO), discussing the various approaches looking to improve the energy efficiency of this process. In particular, the coupling of RO with other membrane operations, like pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and forward osmosis (FO), as well as the osmotic-assisted reverse osmosis (OARO) system, are reported. Moreover, the possibility of coupling a membrane distillation (MD) unit to an RO one to increase the overall freshwater recovery factor and reduce the brine volumes that are disposed is also discussed. Specific emphasis is placed on the strategies being applied to reduce the MD thermal energy demand, so as to couple the production of the blue gold with the fight against climate change. Full article
Show Figures

Figure 1

28 pages, 1935 KiB  
Review
Use of Membrane Techniques for Removal and Recovery of Nutrients from Liquid Fraction of Anaerobic Digestate
by Magdalena Zielińska and Katarzyna Bułkowska
Membranes 2025, 15(2), 45; https://doi.org/10.3390/membranes15020045 - 2 Feb 2025
Cited by 6 | Viewed by 2649
Abstract
This review focuses on the use of membrane techniques to recover nutrients from the liquid fraction of digestate (LFD) and emphasizes their role in promoting the principles of the circular economy. A range of membrane separation processes are examined, including microfiltration (MF), ultrafiltration [...] Read more.
This review focuses on the use of membrane techniques to recover nutrients from the liquid fraction of digestate (LFD) and emphasizes their role in promoting the principles of the circular economy. A range of membrane separation processes are examined, including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD) and new tools and techniques such as membrane contactors (MCs) with gas-permeable membranes (GPMs) and electrodialysis (ED). Key aspects that are analyzed include the nutrient concentration efficiency, integration with biological processes and strategies to mitigate challenges such as fouling, high energy requirements and scalability. In addition, innovative hybrid systems and pretreatment techniques are examined for their potential to improve the recovery rates and sustainability. The review also addresses the economic and technical barriers to the full-scale application of these technologies and identifies future research directions, such as improving the membrane materials and reducing the energy consumption. The comprehensive assessment of these processes highlights their contribution to sustainable nutrient management and bio-based fertilizer production. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

16 pages, 4077 KiB  
Article
Reverse Electrodialysis with Continuous Random Variation in Nanochannel Shape: Salinity Gradient-Driven Power Generation
by Runchen Zhao, Jinhui Zhou, Tianqi Bu, Hao Li and Yanmei Jiao
Nanomaterials 2024, 14(15), 1302; https://doi.org/10.3390/nano14151302 - 2 Aug 2024
Cited by 1 | Viewed by 1597
Abstract
The shape of nanochannels plays a crucial role in the ion selectivity and overall performance of reverse electrodialysis (RED) systems. However, current research on two-dimensional nanochannel shapes is largely limited to a few fixed asymmetric forms. This study explores the impact of randomly [...] Read more.
The shape of nanochannels plays a crucial role in the ion selectivity and overall performance of reverse electrodialysis (RED) systems. However, current research on two-dimensional nanochannel shapes is largely limited to a few fixed asymmetric forms. This study explores the impact of randomly shaped nanochannels using dimensionless methods, controlling their randomness by varying their length and shape amplitude. The research systematically compares how alterations in the nanochannel length and shape amplitude influence various system performance parameters. Our findings indicate that increasing the nanochannel length can significantly enhance the system performance. While drastic changes in the nanochannel shape amplitude positively affect the system performance, the most significant improvements arise from the interplay between the nanochannel length and shape amplitude. This compounding effect creates a local optimum, resulting in peak system performance. Within the range of dimensionless lengths from 0 to 30, the system reaches its optimal performance at a dimensionless length of approximately 25. Additionally, we explored two other influencing factors: the nanochannel surface charge density and the concentration gradient of the solution across the nanochannel. Optimal performance is observed when the nanochannel has a high surface charge density and a low concentration gradient, particularly with random shapes. This study advances the theoretical understanding of RED systems in two-dimensional nanochannels, guiding research towards practical operational conditions. Full article
Show Figures

Figure 1

20 pages, 2850 KiB  
Article
RETRACTED: A Study on Life Cycle Impact Assessment of Seawater Desalination Systems: Seawater Reverse Osmosis Integrated with Bipolar-Membrane-Enhanced Electro-Dialysis Process
by Farayi Musharavati
Sustainability 2023, 15(24), 16673; https://doi.org/10.3390/su152416673 - 8 Dec 2023
Cited by 2 | Viewed by 2786 | Retraction
Abstract
A lot of research has been carried out to improve the sustainability of seawater desalination. Despite progress, relatively few studies have analyzed the sustainability of seawater desalination processes integrated on two fronts, i.e., (i) process integration and (ii) energy integration. In addition, life [...] Read more.
A lot of research has been carried out to improve the sustainability of seawater desalination. Despite progress, relatively few studies have analyzed the sustainability of seawater desalination processes integrated on two fronts, i.e., (i) process integration and (ii) energy integration. In addition, life cycle assessment studies on multi-stage flash (MSF) desalination often neglect the impact of the disposed brine by assuming that dilution of the discharged brine impacts on ecological systems less. The present study contributes to these omissions by exploring the environmental sustainability of seawater desalination systems using life cycle impact assessment (LCIA). More specifically, the LCIA of Seawater Reverse Osmosis (SWRO) integrated with (i) an Electro-Dialysis (EDBMED) process and (ii) solar photovoltaics (PV) is investigated. Life cycle analysis was used to identify pertinent indicators of the LCIA and their implications in SWRO. The comparative analysis reveals that the advantage of SWRO as compared to other technologies such as MSF is energy efficiency, at estimated levels of 75.0%. The study concludes that despite the technological challenges associated with sustainable desalination and sustainable brine management, integrating renewable energy into seawater desalination can contribute to the sustainability improvements of seawater desalination systems. The findings of this paper provide an initial assessment of the ecological footprints of seawater desalination systems. Full article
Show Figures

Graphical abstract

20 pages, 8184 KiB  
Article
Surface-Modified Pore-Filled Anion-Exchange Membranes for Efficient Energy Harvesting via Reverse Electrodialysis
by Ji-Hyeon Lee, Do-Hyeong Kim and Moon-Sung Kang
Membranes 2023, 13(12), 894; https://doi.org/10.3390/membranes13120894 - 30 Nov 2023
Cited by 3 | Viewed by 3162
Abstract
In this study, novel pore-filled anion-exchange membranes (PFAEMs) modified with polypyrrole (PPy) and reduced graphene oxide (rGO) were developed to improve the energy harvesting performance of reverse electrodialysis (RED). The surface-modified PFAEMs were fabricated by varying the contents of PPy and rGO through [...] Read more.
In this study, novel pore-filled anion-exchange membranes (PFAEMs) modified with polypyrrole (PPy) and reduced graphene oxide (rGO) were developed to improve the energy harvesting performance of reverse electrodialysis (RED). The surface-modified PFAEMs were fabricated by varying the contents of PPy and rGO through simple spin coating and chemical/thermal treatments. It was confirmed that the PPy and PPy/rGO layers introduced on the membrane surface did not significantly increase the electrical resistance of the membrane and could effectively control surface characteristics, such as structural tightness, hydrophilicity, and electrostatic repulsion. The PPy/rGO-modified PFAEM showed excellent monovalent ion selectivity, more than four times higher than that of the commercial membrane (AMX, Astom Corp., Tokyo, Japan). This means that the PPy/rGO layer can effectively reduce the permeation of multivalent ions with a high charge intensity and a relatively large hydration radius compared to monovalent ions. The results of evaluating the performance of the surface-modified PFAEMs by applying them to a RED cell revealed that the decrease in potential difference occurring in the membrane was reduced by effectively suppressing the uphill transport of multivalent ions. Consequently, the PPy/rGO-modified membrane exhibited a 5.43% higher power density than the AMX membrane. Full article
(This article belongs to the Special Issue Surface Modification of Ion Exchange Membranes)
Show Figures

Graphical abstract

21 pages, 2836 KiB  
Article
Assessment of Data Capture Conditions Effect on Reverse Electrodialysis Process Using a DC Electronic Load
by Jesus Nahum Hernandez-Perez, Marco Antonio Hernández-Nochebuena, Jéssica González-Scott, Rosa de Guadalupe González-Huerta, José Luis Reyes-Rodríguez and Alfredo Ortiz
Energies 2023, 16(21), 7282; https://doi.org/10.3390/en16217282 - 26 Oct 2023
Cited by 1 | Viewed by 1483
Abstract
Reverse electrodialysis (RED), an emerging membrane-based technology, harnesses salinity gradient energy for sustainable power generation. Accurate characterization of electrical parameters in RED stacks is crucial to monitoring its performance and exploring possible applications. In this study, a DC electronic load module (DCELM) is [...] Read more.
Reverse electrodialysis (RED), an emerging membrane-based technology, harnesses salinity gradient energy for sustainable power generation. Accurate characterization of electrical parameters in RED stacks is crucial to monitoring its performance and exploring possible applications. In this study, a DC electronic load module (DCELM) is implemented in a constant current condition (CC mode) for characterization of lab scale RED process, using a RED prototype in-house designed and manufactured (RU1), at different data capture setups (DCS), on which the total number of steps for data capture (NS) and the number of measurements per step (ρ) are the parameters that were modified to study their effect on obtained electrical parameters in RED. NS of 10, 50, and 100 and ρ of 10 and 20 were used with this purpose. The accuracy of resulting current and voltage steps can be enhanced by increasing NS and ρ values, and according to obtained results, the higher accuracy of resulting output current and voltage steps, with low uncertainty of the average output steps (AOS) inside the operational region of power curve, was obtained using a DCS of NS = 100 and ρ = 20. The developed DCELM is a low-cost alternative to commercial electronic load devices, and the proposed methodology in this study represents an adaptative and optimizable CC mode characterization of RED process. The results obtained in this study suggest that data capture conditions have a direct influence of RED performance, and the accuracy of electrical parameters can be improved by optimizing the DCS parameters, according to the required specifications and the scale of RED prototypes. Full article
(This article belongs to the Special Issue Power System Analysis Control and Operation)
Show Figures

Figure 1

16 pages, 9054 KiB  
Article
Optimization Study on Salinity Gradient Energy Capture from Brine and Dilute Brine
by Hailong Gao, Zhiyong Xiao, Jie Zhang, Xiaohan Zhang, Xiangdong Liu, Xinying Liu, Jin Cui and Jianbo Li
Energies 2023, 16(12), 4643; https://doi.org/10.3390/en16124643 - 11 Jun 2023
Cited by 1 | Viewed by 1563
Abstract
The power conversion of salinity gradient energy (SGE) between concentrated brine from seawater desalination and seawater by reverse electrodialysis (RED) benefits energy conservation and also dilutes the discharge concentration to relieve the damage to coastal ecosystems. However, two key performance indexes of the [...] Read more.
The power conversion of salinity gradient energy (SGE) between concentrated brine from seawater desalination and seawater by reverse electrodialysis (RED) benefits energy conservation and also dilutes the discharge concentration to relieve the damage to coastal ecosystems. However, two key performance indexes of the maximum net power density and energy conversion efficiency for a RED stack harvesting the energy usually cannot reach the optimal simultaneously. Here, an optimization study on the two indexes was implemented to improve the performance of RED in harvesting the energy. A RED model for capturing the SGE between concentrated brine and seawater was constructed, and the correlation coefficients in the model were experimentally determined. Based on the model, the effects of a single variable (concentration, flow rate, temperature, thickness of the compartment, length of the electrode) on the performance of a RED stack are analyzed. The multi-objective optimization method based on the genetic algorithm was further introduced to obtain the optimal solution set, which could achieve the larger net power density and energy conversion efficiency with coordination. The ranges of optimal feed parameters and stack size were also obtained. The optimal flow velocity of the dilute solution and the concentration of the dilute solution are approximately 7.3 mm/s and 0.4 mol/kg, respectively. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

14 pages, 1200 KiB  
Review
Applicability of Composite Magnetic Membranes in Separation Processes of Gaseous and Liquid Mixtures—A Review
by Łukasz Jakubski, Gabriela Dudek and Roman Turczyn
Membranes 2023, 13(4), 384; https://doi.org/10.3390/membranes13040384 - 28 Mar 2023
Cited by 9 | Viewed by 2902
Abstract
Recent years have shown a growing interest in the application of membranes exhibiting magnetic properties in various separation processes. The aim of this review is to provide an in-depth overview of magnetic membranes that can be successfully applied for gas separation, pervaporation, ultrafiltration, [...] Read more.
Recent years have shown a growing interest in the application of membranes exhibiting magnetic properties in various separation processes. The aim of this review is to provide an in-depth overview of magnetic membranes that can be successfully applied for gas separation, pervaporation, ultrafiltration, nanofiltration, adsorption, electrodialysis, and reverse osmosis. Based on the comparison of the efficiency of these separation processes using magnetic and non-magnetic membranes, it has been shown that magnetic particles used as fillers in polymer composite membranes can significantly improve the efficiency of separation of both gaseous and liquid mixtures. This observed separation enhancement is due to the variation of magnetic susceptibility of different molecules and distinct interactions with dispersed magnetic fillers. For gas separation, the most effective magnetic membrane consists of polyimide filled with MQFP-B particles, for which the separation factor (αrat O2/N2) increased by 211% when compared to the non-magnetic membrane. The same MQFP powder used as a filler in alginate membranes significantly improves water/ethanol separation via pervaporation, reaching a separation factor of 12,271.0. For other separation methods, poly(ethersulfone) nanofiltration membranes filled with ZnFe2O4@SiO2 demonstrated a more than four times increase in water flux when compared to the non-magnetic membranes for water desalination. The information gathered in this article can be used to further improve the separation efficiency of individual processes and to expand the application of magnetic membranes to other branches of industry. Furthermore, this review also highlights the need for further development and theoretical explanation of the role of magnetic forces in separation processes, as well as the potential for extending the concept of magnetic channels to other separation methods, such as pervaporation and ultrafiltration. This article provides valuable insights into the application of magnetic membranes and lays the groundwork for future research and development in this area. Full article
Show Figures

Figure 1

17 pages, 2670 KiB  
Article
Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack
by Yu Sugimoto, Ryo Ujike, Minato Higa, Yuriko Kakihana and Mitsuru Higa
Membranes 2022, 12(11), 1141; https://doi.org/10.3390/membranes12111141 - 13 Nov 2022
Cited by 4 | Viewed by 3826
Abstract
Reverse electrodialysis (RED) power generation using seawater (SW) and river water is expected to be a promising environmentally friendly power generation system. Experiments with large RED stacks are needed for the practical application of RED power generation, but only a few experimental results [...] Read more.
Reverse electrodialysis (RED) power generation using seawater (SW) and river water is expected to be a promising environmentally friendly power generation system. Experiments with large RED stacks are needed for the practical application of RED power generation, but only a few experimental results exist because of the need for large facilities and a large area of ion-exchange membranes (IEMs). In this study, to predict the power output of a large RED stack, the power generation performances of a lab-scale RED stack (40 membrane pairs and 7040 cm2 total effective membrane area) with several IEMs were evaluated. The results were converted to the power output of a pilot-scale RED stack (299 membrane pairs and 179.4 m2 total effective membrane area) via the reference IEMs. The use of low-area-resistance IEMs resulted in lower internal resistance and higher power density. The power density was 2.3 times higher than that of the reference IEMs when natural SW was used. The net power output was expected to be approximately 230 W with a pilot-scale RED stack using low-area-resistance IEMs and natural SW. This value is one of the indicators of the output of a large RED stack and is a target to be exceeded with further improvements in the RED system. Full article
(This article belongs to the Special Issue State-of-the-Art Membrane Science and Technology in Japan 2021, 2022)
Show Figures

Figure 1

29 pages, 7175 KiB  
Article
Profiled Ion-Exchange Membranes for Reverse and Conventional Electrodialysis
by Sergey Loza, Natalia Loza, Natalia Kutenko and Nikita Smyshlyaev
Membranes 2022, 12(10), 985; https://doi.org/10.3390/membranes12100985 - 11 Oct 2022
Cited by 15 | Viewed by 2600
Abstract
Profiled ion-exchange membranes are promising for improving the parameters of reverse electrodialysis due to the reduction of pumping power and electrical resistance. The smooth commercial heterogeneous cation-exchange MK-40 and anion-exchange MA-41 membranes were chosen as the initial membranes. Profiled membranes with three different [...] Read more.
Profiled ion-exchange membranes are promising for improving the parameters of reverse electrodialysis due to the reduction of pumping power and electrical resistance. The smooth commercial heterogeneous cation-exchange MK-40 and anion-exchange MA-41 membranes were chosen as the initial membranes. Profiled membranes with three different types of surface profiles were obtained by hot pressing the initial membranes. The bilayer membranes were made on the basis of single-layer profiled membranes by casting MF-4SK film on the profiled surfaces. The diffusion permeability of all types of single-layer and bilayer profiled membranes was higher than of the initial ones due to the appearance of large defects on their surface during pressing. The conductivity of the profiled membrane was lower in the diluted solution and higher in the concentrated solution than of the initial one for all samples except for the bilayer anion-exchange membrane. The conductivity of that sample was lower than that of the initial anion-exchange MA-41 membrane over the entire range of studied concentrations. The counter-ion transport numbers for all studied membranes were calculated based on the concentration dependences of conductivity and diffusion permeability of the membrane by the microheterogeneous model. The selectivity of single layer and bilayer profiled membranes became lower after their profiling due to the increase of the solution phases of membranes. The asymmetry of the current-voltage curves for all single-layer and bilayer profiled membranes was found. The application of the single layer and bilayer profiled membranes in reverse electrodialysis did not lead to an increase in power density. Full article
(This article belongs to the Special Issue Modeling and Simulation of Polymeric Membrane)
Show Figures

Figure 1

15 pages, 4452 KiB  
Article
A Study on Biofouling and Cleaning of Anion Exchange Membranes for Reverse Electrodialysis
by Gonçalo Tiago, Maria Beatriz Cristóvão, Ana Paula Marques, Rosa Huertas, Ivan Merino-Garcia, Vanessa Jorge Pereira, João Goulão Crespo and Svetlozar Velizarov
Membranes 2022, 12(7), 697; https://doi.org/10.3390/membranes12070697 - 8 Jul 2022
Cited by 11 | Viewed by 3857
Abstract
This study covers the modification, (bio)fouling characterization, use, and cleaning of commercial heterogeneous anion exchange membranes (AEMs) to evaluate their feasibility for reverse electrodialysis (RED) applications. A surface modification with poly (acrylic) acid resulted in an improved monovalent perm-selectivity (decreased sulfate membrane transport [...] Read more.
This study covers the modification, (bio)fouling characterization, use, and cleaning of commercial heterogeneous anion exchange membranes (AEMs) to evaluate their feasibility for reverse electrodialysis (RED) applications. A surface modification with poly (acrylic) acid resulted in an improved monovalent perm-selectivity (decreased sulfate membrane transport rate). Moreover, we evaluated the (bio)fouling potential of the membrane using sodium dodecyl sulfate (SDS), sodium dodecyl benzenesulfonate (SDBS), and Aeromonas hydrophila as model organic foulants and a biofoulant, respectively. A detailed characterization of the AEMs (water contact angle, ion exchange capacity (IEC), scanning electron microscopy (SEM), cyclic voltammetry (CV), and Fourier Transform Infrared (FTIR) spectra) was carried out, verifying that the presence of such foulants reduces IEC and the maximum current obtained by CV. However, only SDS and SDBS affected the contact angle values. Cleaning of the biofouled membranes using a sodium hypochlorite aqueous solution allows for (partially) recovering their initial properties. Furthermore, this work includes a fouling characterization using real surface and sea water matrixes, confirming the presence of several types of fouling microorganisms in natural streams. A lower adhesion of microorganisms (measured in terms of total bacteria counts) was observed for the modified membranes compared to the unmodified ones. Finally, we propose a cleaning strategy to mitigate biofouling in AEMs that could be easily applied in RED systems for an enhanced long-term process performance. Full article
Show Figures

Graphical abstract

14 pages, 2663 KiB  
Article
Strategically Altered Fluorinated Polymer at Nanoscale for Enhancing Proton Conduction and Power Generation from Salinity Gradient
by Prem P. Sharma, Rahul Singh, Syed Abdullah Shah, Cheol Hun Yoo, Albert S. Lee, Daejoong Kim, Jeong-Geol Na and Jong Suk Lee
Membranes 2022, 12(4), 395; https://doi.org/10.3390/membranes12040395 - 1 Apr 2022
Cited by 3 | Viewed by 3686
Abstract
Reverse electrodialysis (RED) generates power directly by transforming salinity gradient into electrical energy. The ion transport properties of the ion-exchange membranes need to be investigated deeply to improve the limiting efficiencies of the RED. The interaction between “counterions” and “ionic species” in the [...] Read more.
Reverse electrodialysis (RED) generates power directly by transforming salinity gradient into electrical energy. The ion transport properties of the ion-exchange membranes need to be investigated deeply to improve the limiting efficiencies of the RED. The interaction between “counterions” and “ionic species” in the membrane requires a fundamental understanding of the phase separation process. Here, we report on sulfonated poly(vinylidene fluoride-co-hexafluoropropylene)/graphitic carbon nitride nanocomposites for RED application. We demonstrate that the rearrangement of the hydrophilic and hydrophobic domains in the semicrystalline polymer at a nanoscale level improves ion conduction. The rearrangement of the ionic species in polymer and “the functionalized nanosheet with ionic species” enhances the proton conduction in the hybrid membrane without a change in the structural integrity of the membrane. A detailed discussion has been provided on the membrane nanostructure, chemical configuration, structural robustness, surface morphology, and ion transport properties of the prepared hybrid membrane. Furthermore, the RED device was fabricated by combining synthesized cation exchange membrane with commercially available anion exchange membrane, NEOSEPTA, and a maximum power density of 0.2 W m−2 was successfully achieved under varying flow rates at the ambient condition. Full article
(This article belongs to the Special Issue Recent Membrane Research and Development in Korea)
Show Figures

Graphical abstract

17 pages, 3153 KiB  
Article
Comparison of Pretreatment Methods for Salinity Gradient Power Generation Using Reverse Electrodialysis (RED) Systems
by Jaehyun Ju, Yongjun Choi, Sangho Lee, Chan-gyu Park, Taemun Hwang and Namjo Jung
Membranes 2022, 12(4), 372; https://doi.org/10.3390/membranes12040372 - 29 Mar 2022
Cited by 15 | Viewed by 3562
Abstract
With the increasing concern about climate change and the energy crisis, the use of reverse electrodialysis (RED) to utilize salinity gradient power (SGP) has drawn attention as one of the promising renewable energy sources. However, one of the critical issues in RED processes [...] Read more.
With the increasing concern about climate change and the energy crisis, the use of reverse electrodialysis (RED) to utilize salinity gradient power (SGP) has drawn attention as one of the promising renewable energy sources. However, one of the critical issues in RED processes is membrane fouling and channel blockage, which lead to a decrease in the power density. Thus, this study aims to improve our understanding of SGP generation by using RED by investigating the effect of pretreatment on the RED performance. Experiments were conducted by using a laboratory-scale experimental setup for RED. The low-salinity and high-salinity feed solutions were brackish water reverse osmosis (BWRO) brine from a wastewater reclamation plant, and a NaCl solution simulating seawater desalination brine. Several pretreatments were applied to the RED process, such as cartridge filter (CF), microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), activated filter media (AFM), and granular activated carbon (GAC). The results indicate that the open-circuit voltage (OCV) and the power density were similar, except for in the NF pretreatment, which removed the dissolved ions to increase the net SGP. However, the pressure in the RED stack was significantly affected by the pretreatment types. The excitation–emission matrix (EEM) fluorescence spectroscopy and the parallel factor analysis (PARAFAC) quantified the organic compounds that are related to the stack pressure. These results suggest that the removal of both colloidal and organic matters by pretreatments is crucial for improving the RED performance by reducing the pressure that is increased in the RED stack. Full article
(This article belongs to the Special Issue Advances in Electromembrane Processes for Resource Recovery)
Show Figures

Figure 1

15 pages, 5259 KiB  
Article
MOF-Derived Nanoporous Carbon Incorporated in the Cation Exchange Membrane for Gradient Power Generation
by Xia Sun, Ying Liu, Ruibo Xu and Yongsheng Chen
Membranes 2022, 12(3), 322; https://doi.org/10.3390/membranes12030322 - 14 Mar 2022
Cited by 11 | Viewed by 4495
Abstract
Ion exchange membranes (IEMs), as a part of the reverse electrodialysis (RED) system, play an important role in salinity gradient power (SGP) generation. Structure optimization of IEMs is critical to increase the power production by RED. In this work, metal organic framework (MOF)-derived [...] Read more.
Ion exchange membranes (IEMs), as a part of the reverse electrodialysis (RED) system, play an important role in salinity gradient power (SGP) generation. Structure optimization of IEMs is critical to increase the power production by RED. In this work, metal organic framework (MOF)-derived nanoporous carbons (hollow zeolitic imidazolate framework (ZIF)-derived nanoporous carbons, HZCs) were incorporated in a sulfonated poly (2, 6-dimethyl-1,4-phenylene oxide) (sPPO) membrane to prepare an organic−inorganic nanocomposite cation exchange membrane (CEM). Physicochemical properties, electrochemical properties, and power generation of the synthesized nanocomposite membranes with different HZCs loading were characterized. The results show that the incorporated HZCs could tailor the microstructure of the membrane matrix, providing a superior performance of the nanocomposite membrane. With a HZCs loading of 1.0 wt.%, the nanocomposite membrane possessed the highest permselectivity of 77.61% and the lowest area resistance of 0.42 Ω·cm2, along with a super gross power density of 0.45 W/m2, which was 87.5% (about 1.87 times) higher than that of the blank sPPO membrane. Therefore, incorporating of an appropriate amount of HZCs in the ion-exchange membrane can improve the performance of the membrane, providing a promising method to increase the power generation of the RED system. Full article
Show Figures

Figure 1

14 pages, 3810 KiB  
Article
Electrospinning of Polyepychlorhydrin and Polyacrylonitrile Anionic Exchange Membranes for Reverse Electrodialysis
by José A. Reyes-Aguilera, Liliana Villafaña-López, Elva C. Rentería-Martínez, Sean M. Anderson and Jesús S. Jaime-Ferrer
Membranes 2021, 11(9), 717; https://doi.org/10.3390/membranes11090717 - 18 Sep 2021
Cited by 12 | Viewed by 2907
Abstract
The saline gradient present in river mouths can be exploited using ion-exchange membranes in reverse electrodialysis (RED) for energy generation. However, significant improvements in the fabrication processes of these IEMs are necessary to increase the overall performance of the RED technology. This work [...] Read more.
The saline gradient present in river mouths can be exploited using ion-exchange membranes in reverse electrodialysis (RED) for energy generation. However, significant improvements in the fabrication processes of these IEMs are necessary to increase the overall performance of the RED technology. This work proposes an innovative technique for synthesizing anion exchange membranes (AEMs) via electrospinning. The AEM synthesis was carried out by applying a high voltage while ejecting a mixture of polyepichlorohydrin (PECH), 1,4-diazabicyclo [2.2.2] octane (DABCO® 33-LV) and polyacrylonitrile (PAN) at room temperature. Different ejection parameters were used, and the effects of various thermal treatments were tested on the resulting membranes. The AEMs presented crosslinking between the polymers and significant fiber homogeneity with diameters between 1400 and 1510 nm, with and without thermal treatment. Good chemical resistance was measured, and all synthesized membranes were of hydrophobic character. The thickness, roughness, swelling degree, specific fixed-charge density and ion-exchange capacity were improved over equivalent membranes produced by casting, and also when compared with commercial membranes. Finally, the results of the study of the electrospinning parameters indicate that a better performance in electrochemical properties was produced from fibers generated at ambient humidity conditions, with low flow velocity and voltage, and high collector rotation velocity. Full article
Show Figures

Graphical abstract

Back to TopTop