Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = imprinted gene network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1840 KiB  
Article
Epigenomic Interactions Between Chronic Pain and Recurrent Pressure Injuries After Spinal Cord Injury
by Letitia Y. Graves, Melissa R. Alcorn, E. Ricky Chan, Katelyn Schwartz, M. Kristi Henzel, Marinella Galea, Anna M. Toth, Christine M. Olney and Kath M. Bogie
Epigenomes 2025, 9(3), 26; https://doi.org/10.3390/epigenomes9030026 - 23 Jul 2025
Viewed by 335
Abstract
Background/Objectives: This study investigated variations in DNA methylation patterns associated with chronic pain and propensity for recurrent pressure injuries (PrI) in persons with spinal cord injury (SCI). Methods: Whole blood was collected from 81 individuals with SCI. DNA methylation was quantified using Illumina [...] Read more.
Background/Objectives: This study investigated variations in DNA methylation patterns associated with chronic pain and propensity for recurrent pressure injuries (PrI) in persons with spinal cord injury (SCI). Methods: Whole blood was collected from 81 individuals with SCI. DNA methylation was quantified using Illumina genome-wide arrays (EPIC and EPICv2). Comprehensive clinical profiles collected included secondary health complications, in particular current PrI and chronic pain. Relationships between recurrent PrI and chronic pain and whether the co-occurrence of both traits was mediated by changes in DNA methylation were investigated using R packages limma, DMRcate and mCSEA. Results: Three differentially methylated positions (DMPs) (cg09867095, cg26559694, cg24890286) and one region in the micro-imprinted locus for BLCAP/NNAT are associated with chronic pain in persons with SCI. The study cohort was stratified by PrI status to identify any sites associated with chronic pain and while the same three sites and region were replicated in the group with no recurrent PrI, two novel, hypermethylated (cg21756558, cg26217441) sites and one region in the protein-coding gene FDFT1 were identified in the group with recurrent PrI. Gene enrichment and genes associated with specific promoters using MetaScape identified several shared disorders and ontology terms between independent phenotypes of pain and recurrent PrI and interactive sub-groups. Conclusions: DMR analysis using mCSEA identified several shared genes, promoter-associated regions and CGI associated with overall pain and PrI history, as well as sub-groups based on recurrent PrI history. These findings suggest that a much larger gene regulatory network is associated with each phenotype. These findings require further validation. Full article
(This article belongs to the Special Issue Features Papers in Epigenomes 2025)
Show Figures

Figure 1

35 pages, 2526 KiB  
Review
UBE3A: The Role in Autism Spectrum Disorders (ASDs) and a Potential Candidate for Biomarker Studies and Designing Therapeutic Strategies
by Bidisha Roy, Enyonam Amemasor, Suhail Hussain and Kimberly Castro
Diseases 2024, 12(1), 7; https://doi.org/10.3390/diseases12010007 - 27 Dec 2023
Cited by 8 | Viewed by 4522
Abstract
Published reports from the CDC’s Autism and Development Disabilities Monitoring Networks have shown that an average of 1 in every 44 (2.3%) 8-year-old children were estimated to have ASD in 2018. Many of the ASDs exhibiting varying degrees of autism-like phenotypes have chromosomal [...] Read more.
Published reports from the CDC’s Autism and Development Disabilities Monitoring Networks have shown that an average of 1 in every 44 (2.3%) 8-year-old children were estimated to have ASD in 2018. Many of the ASDs exhibiting varying degrees of autism-like phenotypes have chromosomal anomalies in the Chr15q11–q13 region. Numerous potential candidate genes linked with ASD reside in this chromosomal segment. However, several clinical, in vivo, and in vitro studies selected one gene more frequently than others randomly and unbiasedly. This gene codes for UBE3A or Ubiquitin protein ligase E3A [also known as E6AP ubiquitin-protein ligase (E6AP)], an enzyme involved in the cellular degradation of proteins. This gene has been listed as one of the several genes with a high potential of causing ASD in the Autism Database. The gain of function mutations, triplication, or duplication in the UBE3A gene is also associated with ASDs like Angelman Syndrome (AS) and Dup15q Syndrome. The genetic imprinting of UBE3A in the brain and a preference for neuronal maternal-specific expression are the key features of various ASDs. Since the UBE3A gene is involved in two main important diseases associated with autism-like symptoms, there has been widespread research going on in understanding the link between this gene and autism. Additionally, since no universal methodology or mechanism exists for identifying UBE3A-mediated ASD, it continues to be challenging for neurobiologists, neuroscientists, and clinicians to design therapies or diagnostic tools. In this review, we focus on the structure and functional aspects of the UBE3A protein, discuss the primary relevance of the 15q11–q13 region in the cause of ASDs, and highlight the link between UBE3A and ASD. We try to broaden the knowledge of our readers by elaborating on the possible mechanisms underlying UBE3A-mediated ASDs, emphasizing the usage of UBE3A as a prospective biomarker in the preclinical diagnosis of ASDs and discuss the positive outcomes, advanced developments, and the hurdles in the field of therapeutic strategies against UBE3A-mediated ASDs. This review is novel as it lays a very detailed and comprehensive platform for one of the most important genes associated with diseases showing autistic-like symptoms. Additionally, this review also attempts to lay optimistic feedback on the possible steps for the diagnosis, prevention, and therapy of these UBE3A-mediated ASDs in the upcoming years. Full article
Show Figures

Figure 1

19 pages, 2275 KiB  
Article
A Grid Search-Based Multilayer Dynamic Ensemble System to Identify DNA N4—Methylcytosine Using Deep Learning Approach
by Rajib Kumar Halder, Mohammed Nasir Uddin, Md. Ashraf Uddin, Sunil Aryal, Md. Aminul Islam, Fahima Hossain, Nusrat Jahan, Ansam Khraisat and Ammar Alazab
Genes 2023, 14(3), 582; https://doi.org/10.3390/genes14030582 - 25 Feb 2023
Cited by 4 | Viewed by 2917
Abstract
DNA (Deoxyribonucleic Acid) N4-methylcytosine (4mC), a kind of epigenetic modification of DNA, is important for modifying gene functions, such as protein interactions, conformation, and stability in DNA, as well as for the control of gene expression throughout cell development and genomic imprinting. This [...] Read more.
DNA (Deoxyribonucleic Acid) N4-methylcytosine (4mC), a kind of epigenetic modification of DNA, is important for modifying gene functions, such as protein interactions, conformation, and stability in DNA, as well as for the control of gene expression throughout cell development and genomic imprinting. This simply plays a crucial role in the restriction–modification system. To further understand the function and regulation mechanism of 4mC, it is essential to precisely locate the 4mC site and detect its chromosomal distribution. This research aims to design an efficient and high-throughput discriminative intelligent computational system using the natural language processing method “word2vec” and a multi-configured 1D convolution neural network (1D CNN) to predict 4mC sites. In this article, we propose a grid search-based multi-layer dynamic ensemble system (GS-MLDS) that can enhance existing knowledge of each level. Each layer uses a grid search-based weight searching approach to find the optimal accuracy while minimizing computation time and additional layers. We have used eight publicly available benchmark datasets collected from different sources to test the proposed model’s efficiency. Accuracy results in test operations were obtained as follows: 0.978, 0.954, 0.944, 0.961, 0.950, 0.973, 0.948, 0.952, 0.961, and 0.980. The proposed model has also been compared to 16 distinct models, indicating that it can accurately predict 4mC. Full article
(This article belongs to the Topic Complex Systems and Artificial Intelligence)
Show Figures

Figure 1

23 pages, 5643 KiB  
Article
Aberrant Methylation of the Imprinted C19MC and MIR371-3 Clusters in Patients with Non-Small Cell Lung Cancer
by Laura Boyero, José Francisco Noguera-Uclés, Alejandro Castillo-Peña, Ana Salinas, Amparo Sánchez-Gastaldo, Miriam Alonso, Johana Cristina Benedetti, Reyes Bernabé-Caro, Luis Paz-Ares and Sonia Molina-Pinelo
Cancers 2023, 15(5), 1466; https://doi.org/10.3390/cancers15051466 - 25 Feb 2023
Cited by 6 | Viewed by 2994
Abstract
Epigenetic mechanisms have emerged as an important contributor to tumor development through the modulation of gene expression. Our objective was to identify the methylation profile of the imprinted C19MC and MIR371-3 clusters in patients with non-small cell lung cancer (NSCLC) and to find [...] Read more.
Epigenetic mechanisms have emerged as an important contributor to tumor development through the modulation of gene expression. Our objective was to identify the methylation profile of the imprinted C19MC and MIR371-3 clusters in patients with non-small cell lung cancer (NSCLC) and to find their potential target genes, as well as to study their prognostic role. DNA methylation status was analyzed in a NSCLC patient cohort (n = 47) and compared with a control cohort including COPD patients and non-COPD subjects (n = 23) using the Illumina Infinium Human Methylation 450 BeadChip. Hypomethylation of miRNAs located on chromosome 19q13.42 was found to be specific for tumor tissue. We then identified the target mRNA–miRNA regulatory network for the components of the C19MC and MIR371-3 clusters using the miRTargetLink 2.0 Human tool. The correlations of miRNA-target mRNA expression from primary lung tumors were analyzed using the CancerMIRNome tool. From those negative correlations identified, we found that a lower expression of 5 of the target genes (FOXF2, KLF13, MICA, TCEAL1 and TGFBR2) was significantly associated with poor overall survival. Taken together, this study demonstrates that the imprinted C19MC and MIR371-3 miRNA clusters undergo polycistronic epigenetic regulation leading to deregulation of important and common target genes with potential prognostic value in lung cancer. Full article
(This article belongs to the Special Issue Lung Cancer - Molecular Insights and Targeted Therapies)
Show Figures

Figure 1

17 pages, 783 KiB  
Review
Progress in Brain Magnetic Resonance Imaging of Individuals with Prader–Willi Syndrome
by Zhongxin Huang and Jinhua Cai
J. Clin. Med. 2023, 12(3), 1054; https://doi.org/10.3390/jcm12031054 - 29 Jan 2023
Cited by 8 | Viewed by 3097
Abstract
Prader–Willi syndrome (PWS), a rare epigenetic disease mapping the imprinted chromosomal domain of 15q11.2-q13.3, manifests a regular neurodevelopmental trajectory in different phases. The current multimodal magnetic resonance imaging (MRI) approach for PWS focues on morphological MRI (mMRI), diffusion MRI (dMRI) and functional MRI [...] Read more.
Prader–Willi syndrome (PWS), a rare epigenetic disease mapping the imprinted chromosomal domain of 15q11.2-q13.3, manifests a regular neurodevelopmental trajectory in different phases. The current multimodal magnetic resonance imaging (MRI) approach for PWS focues on morphological MRI (mMRI), diffusion MRI (dMRI) and functional MRI (fMRI) to uncover brain alterations. This technique offers another perspective to understand potential neurodevelopmental and neuropathological processes of PWS, in addition to specific molecular gene expression patterns, various clinical manifestations and metabolic phenotypes. Multimodal MRI studies of PWS patients demonstrated common brain changes in the volume of gray matter, the integrity of the fiber tracts and the activation and connectivity of some networks. These findings mainly showed that brain alterations in the frontal reward circuit and limbic system were related to molecular genetics and clinical manifestations (e.g., overwhelming eating, obsessive compulsive behaviors and skin picking). Further exploration using a large sample size and advanced MRI technologies, combined with artificial intelligence algorithms, will be the main research direction to study the structural and functional changes and potential pathogenesis of PWS. Full article
(This article belongs to the Special Issue Recent Advances in Clinical Neuroimaging)
Show Figures

Figure 1

20 pages, 4002 KiB  
Article
Meta-Analysis Identifies BDNF and Novel Common Genes Differently Altered in Cross-Species Models of Rett Syndrome
by Florencia Haase, Rachna Singh, Brian Gloss, Patrick Tam and Wendy Gold
Int. J. Mol. Sci. 2022, 23(19), 11125; https://doi.org/10.3390/ijms231911125 - 22 Sep 2022
Cited by 11 | Viewed by 4016
Abstract
Rett syndrome (RTT) is a rare disorder and one of the most abundant causes of intellectual disabilities in females. Single mutations in the gene coding for methyl-CpG-binding protein 2 (MeCP2) are responsible for the disorder. MeCP2 regulates gene expression as a transcriptional regulator [...] Read more.
Rett syndrome (RTT) is a rare disorder and one of the most abundant causes of intellectual disabilities in females. Single mutations in the gene coding for methyl-CpG-binding protein 2 (MeCP2) are responsible for the disorder. MeCP2 regulates gene expression as a transcriptional regulator as well as through epigenetic imprinting and chromatin condensation. Consequently, numerous biological pathways on multiple levels are influenced. However, the exact molecular pathways from genotype to phenotype are currently not fully elucidated. Treatment of RTT is purely symptomatic as no curative options for RTT have yet to reach the clinic. The paucity of this is mainly due to an incomplete understanding of the underlying pathophysiology of the disorder with no clinically useful common disease drivers, biomarkers, or therapeutic targets being identified. With the premise of identifying universal and robust disease drivers and therapeutic targets, here, we interrogated a range of RTT transcriptomic studies spanning different species, models, and MECP2 mutations. A meta-analysis using RNA sequencing data from brains of RTT mouse models, human post-mortem brain tissue, and patient-derived induced pluripotent stem cell (iPSC) neurons was performed using weighted gene correlation network analysis (WGCNA). This study identified a module of genes common to all datasets with the following ten hub genes driving the expression: ATRX, ADCY7, ADCY9, SOD1, CACNA1A, PLCG1, CCT5, RPS9, BDNF, and MECP2. Here, we discuss the potential benefits of these genes as therapeutic targets. Full article
(This article belongs to the Special Issue Molecular Research on Rett Syndrome and Related Disorders 2.0)
Show Figures

Figure 1

14 pages, 18270 KiB  
Article
Effects of Cryopreservation on Sperm with Cryodiluent in Viviparous Black Rockfish (Sebastes schlegelii)
by Jingjing Niu, Xuliang Wang, Pingping Liu, Huaxiang Liu, Rui Li, Ziyi Li, Yan He and Jie Qi
Int. J. Mol. Sci. 2022, 23(6), 3392; https://doi.org/10.3390/ijms23063392 - 21 Mar 2022
Cited by 25 | Viewed by 3451
Abstract
Black rockfish is an economically important fish in East Asia. Little mention has been paid to the sperm cryopreservation in black rockfish. In this study, the optimal cryodiluent was selected from 48 combinations by detecting various sperm parameters. Transcriptome and methylome analysis were [...] Read more.
Black rockfish is an economically important fish in East Asia. Little mention has been paid to the sperm cryopreservation in black rockfish. In this study, the optimal cryodiluent was selected from 48 combinations by detecting various sperm parameters. Transcriptome and methylome analysis were further performed to explore the molecular mechanism of inevitable cryoinjuries. The results showed that cryopreservation had negative effects on the viability, DNA integrity, mitochondrial activity, total ATPase and LDH of sperm even with optimal cryodiluent (FBS + 15% Gly). Transcriptome and methylome analysis revealed that the expression of 179 genes and methylation of 1266 genes were affected by cryopreservation. These genes were enriched in GO terms of death, G-protein coupled receptor signaling pathway, response to external stimulus and KEGG pathways of phospholipase D signaling pathway and xenobiotic and carbohydrate metabolism pathways. The role of PIK3CA and CCNA2 were highlighted in the protein-protein interaction network, and the sperm quality-related imprinted gene mest was identified among the 7 overlapping genes between transcriptome and methylome. Overall, the cryodiluent for black rockfish sperm was optimized, providing a feasible method for cryopreservation. The transcriptome and methylome data further demonstrated the underlying molecular mechanisms of cryoinjuries, proving clues for improvement of cryopreservation method of black rockfish. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 2288 KiB  
Article
DNA Barcoding versus Morphological Variability of Pterostichus brevicornis brevicornis (Kirby, 1837) (Coleoptera, Carabidae) in the Arctic and Subarctic
by Natalia Andreevna Zubrii, Boris Yurevich Filippov, Alexander Vasilevich Kondakov, Olga Arturovna Khruleva, Leonid Borisovich Rybalov and Darya Vitalievna Vikhreva
Insects 2022, 13(2), 204; https://doi.org/10.3390/insects13020204 - 16 Feb 2022
Cited by 5 | Viewed by 3500
Abstract
The geographic patterns of genetic and morphological variability in ground beetles were examined throughout Northern Eurasia and North America using the most abundant circumpolar tundra subspecies, Pterostichus (Cryobius) brevicornis brevicornis (Kirby, 1837), as a model. Phylogenetic structure was assessed on the basis of [...] Read more.
The geographic patterns of genetic and morphological variability in ground beetles were examined throughout Northern Eurasia and North America using the most abundant circumpolar tundra subspecies, Pterostichus (Cryobius) brevicornis brevicornis (Kirby, 1837), as a model. Phylogenetic structure was assessed on the basis of a Bayesian approach using two DNA markers (partial sequences of the COI and 28S rRNA genes), while phylogeographic patterns and population genetic diversity were estimated using the COI gene only. Morphological patterns were analysed using elliptical Fourier coefficients that were calculated based on the pronotum and male genitalia shape outlines. The subspecies shares 23 COI haplotypes throughout its entire circumpolar range, while eight haplotypes of 28S rRNA were detected in Northern Eurasia. Phylogenetic analysis did not reveal subdivided species lineages with strict geographical imprint. The network, FST and uncorrected pairwise divergence analyses showed that the genetic distances between populations increase by longitude from Northeastern Asia to Europe. The genetic variability among the five studied geographical population groups of P. b. brevicornis was relatively high. The MANOVA showed significant regional divergence between local populations in Northern Eurasia based on both morphological markers, but only male genitalia variability was geographically structured. Neither the pronotum shape nor the male genitalia shape aligned with the phylogeographic patterns discovered on the basis of COI sequences. The genetic (COI) marker had more variation within, rather than among, population groups in addition to morphology of pronotum but not male genitalia. Full article
Show Figures

Figure 1

20 pages, 3093 KiB  
Article
Cohesin Mutations Induce Chromatin Conformation Perturbation of the H19/IGF2 Imprinted Region and Gene Expression Dysregulation in Cornelia de Lange Syndrome Cell Lines
by Silvana Pileggi, Marta La Vecchia, Elisa Adele Colombo, Laura Fontana, Patrizia Colapietro, Davide Rovina, Annamaria Morotti, Silvia Tabano, Giovanni Porta, Myriam Alcalay, Cristina Gervasini, Monica Miozzo and Silvia Maria Sirchia
Biomolecules 2021, 11(11), 1622; https://doi.org/10.3390/biom11111622 - 2 Nov 2021
Cited by 4 | Viewed by 2687
Abstract
Traditionally, Cornelia de Lange Syndrome (CdLS) is considered a cohesinopathy caused by constitutive mutations in cohesin complex genes. Cohesin is a major regulator of chromatin architecture, including the formation of chromatin loops at the imprinted IGF2/H19 domain. We used 3C analysis [...] Read more.
Traditionally, Cornelia de Lange Syndrome (CdLS) is considered a cohesinopathy caused by constitutive mutations in cohesin complex genes. Cohesin is a major regulator of chromatin architecture, including the formation of chromatin loops at the imprinted IGF2/H19 domain. We used 3C analysis on lymphoblastoid cells from CdLS patients carrying mutations in NIPBL and SMC1A genes to explore 3D chromatin structure of the IGF2/H19 locus and evaluate the influence of cohesin alterations in chromatin architecture. We also assessed quantitative expression of imprinted loci and WNT pathway genes, together with DMR methylation status of the imprinted genes. A general impairment of chromatin architecture and the emergence of new interactions were found. Moreover, imprinting alterations also involved the expression and methylation levels of imprinted genes, suggesting an association among cohesin genetic defects, chromatin architecture impairment, and imprinting network alteration. The WNT pathway resulted dysregulated: canonical WNT, cell cycle, and WNT signal negative regulation were the most significantly affected subpathways. Among the deregulated pathway nodes, the key node of the frizzled receptors was repressed. Our study provides new evidence that mutations in genes of the cohesin complex have effects on the chromatin architecture and epigenetic stability of genes commonly regulated by high order chromatin structure. Full article
(This article belongs to the Collection DNA Methylation Dynamics in Health and Disease)
Show Figures

Figure 1

19 pages, 3247 KiB  
Article
Artificial Rearing of Atlantic Salmon Juveniles for Supportive Breeding Programs Induces Long-Term Effects on Gut Microbiota after Stocking
by Camille Lavoie, Kyle Wellband, Alysse Perreault, Louis Bernatchez and Nicolas Derome
Microorganisms 2021, 9(9), 1932; https://doi.org/10.3390/microorganisms9091932 - 11 Sep 2021
Cited by 14 | Viewed by 3842
Abstract
In supportive breeding programs for wild salmon populations, stocked parr experience higher mortality rates than wild ones. Among other aspects of phenotype, the gut microbiota of artificially raised parr differs from that of wild parr before stocking. Early steps of microbiota ontogeny are [...] Read more.
In supportive breeding programs for wild salmon populations, stocked parr experience higher mortality rates than wild ones. Among other aspects of phenotype, the gut microbiota of artificially raised parr differs from that of wild parr before stocking. Early steps of microbiota ontogeny are tightly dependent upon environmental conditions, both of which exert long-term effects on host physiology. Therefore, our objective was to assess to what extent the resilience capacity of the microbiota of stocked salmon may prevent taxonomic convergence with that of their wild congeners after two months in the same natural environment. Using the 16S SSU rRNA marker gene, we tested the general hypothesis that environmental conditions during the very first steps of microbiota ontogeny imprint a permanent effect on later stages of microbiota recruitment. Our results first showed that gut microbiota composition of stocked and wild parr from the same genetic population, and sharing the same environment, was dependent on the early rearing environment. In contrast, skin microbiota in stocked individuals converged to that of wild individuals. Taxonomic composition and co-occurrence network analyses suggest an impairment of wild bacteria recruitment and a higher instability for the gut microbiota of stocked parr. This study is the first to demonstrate the long-term effect of early microbiota ontogeny in artificial rearing for natural population conservation programs, raising the need to implement microbial ecology. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

16 pages, 9573 KiB  
Review
Growth Restriction and Genomic Imprinting-Overlapping Phenotypes Support the Concept of an Imprinting Network
by Thomas Eggermann, Justin H. Davies, Maithé Tauber, Erica van den Akker, Anita Hokken-Koelega, Gudmundur Johansson and Irène Netchine
Genes 2021, 12(4), 585; https://doi.org/10.3390/genes12040585 - 17 Apr 2021
Cited by 26 | Viewed by 6210
Abstract
Intrauterine and postnatal growth disturbances are major clinical features of imprinting disorders, a molecularly defined group of congenital syndromes caused by molecular alterations affecting parentally imprinted genes. These genes are expressed monoallelically and in a parent-of-origin manner, and they have an impact on [...] Read more.
Intrauterine and postnatal growth disturbances are major clinical features of imprinting disorders, a molecularly defined group of congenital syndromes caused by molecular alterations affecting parentally imprinted genes. These genes are expressed monoallelically and in a parent-of-origin manner, and they have an impact on human growth and development. In fact, several genes with an exclusive expression from the paternal allele have been shown to promote foetal growth, whereas maternally expressed genes suppress it. The evolution of this correlation might be explained by the different interests of the maternal and paternal genomes, aiming for the conservation of maternal resources for multiple offspring versus extracting maximal maternal resources. Since not all imprinted genes in higher mammals show the same imprinting pattern in different species, the findings from animal models are not always transferable to human. Therefore, human imprinting disorders might serve as models to understand the complex regulation and interaction of imprinted loci. This knowledge is a prerequisite for the development of precise diagnostic tools and therapeutic strategies for patients affected by imprinting disorders. In this review we will specifically overview the current knowledge on imprinting disorders associated with growth retardation, and its increasing relevance in a personalised medicine direction and the need for a multidisciplinary therapeutic approach. Full article
(This article belongs to the Special Issue Genomic Imprinting and the Regulation of Growth and Metabolism)
Show Figures

Figure 1

31 pages, 3418 KiB  
Article
Dynamic Expression of Imprinted Genes in the Developing and Postnatal Pituitary Gland
by Valeria Scagliotti, Ruben Esse, Thea L. Willis, Mark Howard, Isabella Carrus, Emily Lodge, Cynthia L. Andoniadou and Marika Charalambous
Genes 2021, 12(4), 509; https://doi.org/10.3390/genes12040509 - 30 Mar 2021
Cited by 10 | Viewed by 5978
Abstract
In mammals, imprinted genes regulate many critical endocrine processes such as growth, the onset of puberty and maternal reproductive behaviour. Human imprinting disorders (IDs) are caused by genetic and epigenetic mechanisms that alter the expression dosage of imprinted genes. Due to improvements in [...] Read more.
In mammals, imprinted genes regulate many critical endocrine processes such as growth, the onset of puberty and maternal reproductive behaviour. Human imprinting disorders (IDs) are caused by genetic and epigenetic mechanisms that alter the expression dosage of imprinted genes. Due to improvements in diagnosis, increasing numbers of patients with IDs are now identified and monitored across their lifetimes. Seminal work has revealed that IDs have a strong endocrine component, yet the contribution of imprinted gene products in the development and function of the hypothalamo-pituitary axis are not well defined. Postnatal endocrine processes are dependent upon the production of hormones from the pituitary gland. While the actions of a few imprinted genes in pituitary development and function have been described, to date there has been no attempt to link the expression of these genes as a class to the formation and function of this essential organ. This is important because IDs show considerable overlap, and imprinted genes are known to define a transcriptional network related to organ growth. This knowledge deficit is partly due to technical difficulties in obtaining useful transcriptomic data from the pituitary gland, namely, its small size during development and cellular complexity in maturity. Here we utilise high-sensitivity RNA sequencing at the embryonic stages, and single-cell RNA sequencing data to describe the imprinted transcriptome of the pituitary gland. In concert, we provide a comprehensive literature review of the current knowledge of the role of imprinted genes in pituitary hormonal pathways and how these relate to IDs. We present new data that implicate imprinted gene networks in the development of the gland and in the stem cell compartment. Furthermore, we suggest novel roles for individual imprinted genes in the aetiology of IDs. Finally, we describe the dynamic regulation of imprinted genes in the pituitary gland of the pregnant mother, with implications for the regulation of maternal metabolic adaptations to pregnancy. Full article
(This article belongs to the Special Issue Genomic Imprinting and the Regulation of Growth and Metabolism)
Show Figures

Figure 1

11 pages, 654 KiB  
Article
Early Diagnosis in Prader–Willi Syndrome Reduces Obesity and Associated Co-Morbidities
by Virginia E. Kimonis, Roy Tamura, June-Anne Gold, Nidhi Patel, Abhilasha Surampalli, Javeria Manazir, Jennifer L. Miller, Elizabeth Roof, Elisabeth Dykens, Merlin G. Butler and Daniel J. Driscoll
Genes 2019, 10(11), 898; https://doi.org/10.3390/genes10110898 - 6 Nov 2019
Cited by 30 | Viewed by 6214
Abstract
Prader–Willi syndrome (PWS) is an imprinting genetic disorder characterized by lack of expression of genes on the paternal chromosome 15q11–q13 region. Growth hormone (GH) replacement positively influences stature and body composition in PWS. Our hypothesis was that early diagnosis delays onset of obesity [...] Read more.
Prader–Willi syndrome (PWS) is an imprinting genetic disorder characterized by lack of expression of genes on the paternal chromosome 15q11–q13 region. Growth hormone (GH) replacement positively influences stature and body composition in PWS. Our hypothesis was that early diagnosis delays onset of obesity in PWS. We studied 352 subjects with PWS, recruited from the NIH Rare Disease Clinical Research Network, to determine if age at diagnosis, ethnicity, gender, and PWS molecular class influenced the age they first become heavy, as determined by their primary care providers, and the age they first developed an increased appetite and began seeking food. The median ages that children with PWS became heavy were 10 years, 6 years and 4 years for age at diagnosis < 1 year, between 1 and 3 years, and greater than 3 years of age, respectively. The age of diagnosis and ethnicity were significant factors influencing when PWS children first became heavy (p < 0.01), however gender and the PWS molecular class had no influence. Early diagnosis delayed the onset of becoming heavy in individuals with PWS, permitting early GH and other treatment, thus reducing the risk of obesity-associated co-morbidities. Non-white individuals had an earlier onset of becoming heavy. Full article
(This article belongs to the Special Issue Genetics of Prader-Willi syndrome)
Show Figures

Figure 1

14 pages, 1863 KiB  
Article
MiRNAs from DLK1-DIO3 Imprinted Locus at 14q32 are Associated with Multiple Sclerosis: Gender-Specific Expression and Regulation of Receptor Tyrosine Kinases Signaling
by Natalia Baulina, German Osmak, Ivan Kiselev, Ekaterina Popova, Alexey Boyko, Olga Kulakova and Olga Favorova
Cells 2019, 8(2), 133; https://doi.org/10.3390/cells8020133 - 8 Feb 2019
Cited by 26 | Viewed by 5766
Abstract
Relapsing-remitting multiple sclerosis (RRMS) is the most prevalent course of multiple sclerosis. It is an autoimmune inflammatory disease of the central nervous system. To investigate the gender-specific involvement of microRNAs (miRNAs) in RRMS pathogenesis, we compared miRNA profiles in peripheral blood mononuclear cells [...] Read more.
Relapsing-remitting multiple sclerosis (RRMS) is the most prevalent course of multiple sclerosis. It is an autoimmune inflammatory disease of the central nervous system. To investigate the gender-specific involvement of microRNAs (miRNAs) in RRMS pathogenesis, we compared miRNA profiles in peripheral blood mononuclear cells separately in men and women (eight RRMS patients versus four healthy controls of each gender) using high-throughput sequencing. In contrast to women, six downregulated and 26 upregulated miRNAs (padj < 0.05) were identified in men with RRMS. Genes encoding upregulated miRNAs are co-localized in DLK1-DIO3 imprinted locus on human chromosome 14q32. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis was performed in independent groups of men (16 RRMS patients and 10 healthy controls) and women (20 RRMS patients and 10 healthy controls). Increased expression of miR-431, miR-127-3p, miR-379, miR-376c, miR-381, miR-410 and miR-656 was again demonstrated in male (padj < 0.05), but not in female RRMS patients. At the same time, the expression levels of these miRNAs were lower in healthy men than in healthy women, whereas in RRMS men they increased and reached or exceeded levels in RRMS women. In general, we demonstrated that expression levels of these miRNAs depend both on “health–disease” status and gender. Network-based enrichment analysis identified that receptor tyrosine kinases-activated pathways were enriched with products of genes targeted by miRNAs from DLK1-DIO3 locus. These results suggest the male-specific involvement of these miRNAs in RRMS pathogenesis via regulation of PI3K/Akt signaling. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Multiple Sclerosis)
Show Figures

Figure 1

19 pages, 1107 KiB  
Review
Targeting H19, an Imprinted Long Non-Coding RNA, in Hepatic Functions and Liver Diseases
by Chad Pope, Shashank Mishra, Joshua Russell, Qingqing Zhou and Xiao-Bo Zhong
Diseases 2017, 5(1), 11; https://doi.org/10.3390/diseases5010011 - 8 Mar 2017
Cited by 42 | Viewed by 8459
Abstract
H19 is a long non-coding RNA regulated by genomic imprinting through methylation at the locus between H19 and IGF2. H19 is important in normal liver development, controlling proliferation and impacting genes involved in an important network controlling fetal development. H19 also plays a [...] Read more.
H19 is a long non-coding RNA regulated by genomic imprinting through methylation at the locus between H19 and IGF2. H19 is important in normal liver development, controlling proliferation and impacting genes involved in an important network controlling fetal development. H19 also plays a major role in disease progression, particularly in hepatocellular carcinoma. H19 participates in the epigenetic regulation of many processes impacting diseases, such as activating the miR-200 pathway by histone acetylation to inhibit the epithelial-mesenchymal transition to suppress tumor metastasis. Furthermore, H19’s normal regulation is disturbed in diseases, such as hepatocellular carcinoma. In this disease, aberrant epigenetic maintenance results in biallelic expression of IGF2, leading to uncontrolled cellular proliferation. This review aims to further research utilizing H19 for drug discovery and the treatment of liver diseases by focusing on both the epigenetic regulation of H19 and how H19 regulates normal liver functions and diseases, particularly by epigenetic mechanisms. Full article
Show Figures

Figure 1

Back to TopTop