Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = implantation of cobalt particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6345 KB  
Article
Enhancing the Tribological Properties of Bearing Surfaces in Hip Arthroplasty by Shot-Peening the Metal Surface
by Chavarat Jarungvittayakon, Anak Khantachawana and Paphon Sa-ngasoongsong
Lubricants 2024, 12(8), 278; https://doi.org/10.3390/lubricants12080278 - 3 Aug 2024
Cited by 2 | Viewed by 1899
Abstract
Total hip arthroplasty (THA) is a surgical procedure for patients with pain and difficulty walking due to hip osteoarthritis. In primary THA, the acetabulum and femoral head are replaced by a prosthesis where the modular femoral head and inner liner of the acetabulum [...] Read more.
Total hip arthroplasty (THA) is a surgical procedure for patients with pain and difficulty walking due to hip osteoarthritis. In primary THA, the acetabulum and femoral head are replaced by a prosthesis where the modular femoral head and inner liner of the acetabulum form the bearing surface. The most popular bearing surface used in the United States, metal-on-polyethylene, consists of a cobalt–chromium molybdenum (CoCrMo) alloy femoral head that articulates with a polyethylene acetabular liner, typically made of highly cross-linked polyethylene. While successful in most cases, THA sometimes fails, commonly from aseptic loosening due to the wear debris of polyethylene. Fine-particle shot peening (FPSP) is a simple method for enhancing the mechanical properties and surface properties of metal, including reducing friction and enhancing the lubrication properties of the metal surface. In this study, we applied FPSP to the CoCr in the femoral head of a hip prosthesis to improve its surface properties and conducted experiments with pin-on-disc tribometers using CoCr as a pin and highly cross-linked polyethylene as a disc to mimic the THA implant. The results show that FPSP significantly enhances the tribological properties of the CoCr surface, including lubrication; decreases the friction coefficient; and decreases the polyethylene wear volume. Full article
(This article belongs to the Special Issue Biomechanics and Tribology)
Show Figures

Figure 1

12 pages, 3569 KB  
Article
Analysis of Early-Retrieved Dual-Mobility Polyethylene Liners for Total Hip Replacement
by Mackenzie Smeeton, Graham Isaac, Ruth Wilcox, James Anderson, Tim Board, Douglas W. Van Citters and Sophie Williams
Prosthesis 2024, 6(4), 841-852; https://doi.org/10.3390/prosthesis6040060 - 25 Jul 2024
Viewed by 2412
Abstract
Despite their emerging use, the in vivo behaviour of dual-mobility (DM) total hip replacements (THRs) is not well understood. Therefore, the purpose of this study was to assess the articulating surfaces of 20 early-retrieved DM polyethylene liners (mean length of implantation 20.0 ± [...] Read more.
Despite their emerging use, the in vivo behaviour of dual-mobility (DM) total hip replacements (THRs) is not well understood. Therefore, the purpose of this study was to assess the articulating surfaces of 20 early-retrieved DM polyethylene liners (mean length of implantation 20.0 ± 18.8 months) for damage to improve the current understanding of their in vivo functional mechanisms. The internal and external surfaces of each liner were visually and geometrically assessed, and the material composition of embedded debris particles were further characterized. Scratching and pitting were the most common modes of damage identified on either surface, and a high incidence of burnishing (50%) and embedded debris (65%) were observed on the internal and external surfaces, respectively. Embedded debris particles were commonly titanium- or iron-based, although other materials such as cobalt-chrome and tantalum were also identified. The geometric assessment demonstrated highly variable damage patterns across the liners, with the internal surfaces commonly presenting with crescent-shaped, circumferential, or circular regions of penetration whilst the external surfaces commonly presented with regions of deep pitting or gouging. This study demonstrates that DM-THRs primarily articulate at the head/liner junction, and that polyethylene liners are capable of rotating about the femoral neck axis, although the extent of this may be limited in some cases. Additionally, this study suggests that intra-prosthetic dislocation and edge loading may remain pertinent failure mechanisms of DM implants despite the advent of highly crosslinked polyethylene and design features, thus highlighting the need for enhanced monitoring of these devices. Full article
(This article belongs to the Special Issue State of Art in Hip, Knee and Shoulder Replacement (Volume 2))
Show Figures

Figure 1

14 pages, 9412 KB  
Article
The Effect of Particle Type and Size on CoCr Surface Properties by Fine-Particle Shot Peening
by Chavarat Jarungvittayakon, Anak Khantachawana and Paphon Sa-ngasoongsong
Appl. Sci. 2023, 13(9), 5814; https://doi.org/10.3390/app13095814 - 8 May 2023
Cited by 3 | Viewed by 2365
Abstract
Cobalt–chromium (CoCr) alloy is widely used for medical implants such as for dental or joint replacements because of its strength and high corrosion resistance. By throwing a spherical media against a material surface, fine-particle shot peening can modify surface properties and, as a [...] Read more.
Cobalt–chromium (CoCr) alloy is widely used for medical implants such as for dental or joint replacements because of its strength and high corrosion resistance. By throwing a spherical media against a material surface, fine-particle shot peening can modify surface properties and, as a result, has been widely used as a low-cost and simple method to increase a metal’s wear resistance. However, no recent literature has reported the effect of particle type and size on the surface properties of CoCr alloys. This study examined two different particle types (ceramic (alumina–zirconia composites) and silica (SiO2)) and three different particle sizes to determine their effects on CoCr’s surface properties after fine-particle shot peening. The surface properties, including morphology, roughness, hardness, residual stress, and cytotoxicity, were tested to evaluate the effect of the process. The larger size and higher hardness of the particle (ceramic) changed the surface microstructure more than particles with smaller sizes and lower hardness (silica). The results of the cytotoxicity test showed that the fine-particle shot peening on the CoCr material did not affect cell viability, an important fact when considering its potential use as a surface material for medical implants. The results showed that fine-particle shot peening on CoCr material can improve several surface properties and that the larger ceramic particle offers the best results. Full article
Show Figures

Figure 1

12 pages, 1935 KB  
Article
Zirconia-Toughened Alumina Ceramic Wear Particles Do Not Elicit Inflammatory Responses in Human Macrophages
by Alessandro Alan Porporati, Yvonne Mödinger, Sarah Fischer, Sara Polajžer, Melanie Mettang, Ulrike Deisinger, Matejka Podlogar, Rihard Trebše and Nika Lovšin
Int. J. Mol. Sci. 2023, 24(7), 6482; https://doi.org/10.3390/ijms24076482 - 30 Mar 2023
Viewed by 2641
Abstract
Ten percent of patients undergoing total hip arthroplasty (THA) require revision surgery. One of the reasons for THA are wear particles released from the implants that can activate the immune defense and cause osteolysis and failure of the joint implant. The discrepancies between [...] Read more.
Ten percent of patients undergoing total hip arthroplasty (THA) require revision surgery. One of the reasons for THA are wear particles released from the implants that can activate the immune defense and cause osteolysis and failure of the joint implant. The discrepancies between reports on toxicity and immunogenicity of the implant materials led us to this study in which we compared toxicity and immunogenicity of well-defined nanoparticles from Al2O3, zirconia-toughened alumina (ZTA), and cobalt chrome (CoCr), a human THP-1 macrophage cell line, human PBMCs, and therefrom-derived primary macrophages. None of the tested materials decreased the viability of THP-1 macrophages nor human primary macrophages at the 24 h time point, indicating that at concentrations from 0.05 to 50 µm3/cell the tested materials are non-toxic. Forty-eight hours of treatment of THP-1 macrophages with 5 µm3/cell of CoCr and Al2O3 caused 8.3-fold and 4.6-fold increases in TNF-α excretion, respectively, which was not observed for ZTA. The comparison between THP-1 macrophages and human primary macrophages revealed that THP-1 macrophages show higher activation of cytokine expression in the presence of CoCr and Al2O3 particles than primary macrophages. Our results indicate that ZTA is a non-toxic implant material with no immunogenic effects in vitro. Full article
(This article belongs to the Special Issue Musculoskeletal Disorders (MSDs) and Osteoimmunology)
Show Figures

Figure 1

36 pages, 1408 KB  
Review
An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility
by Ryszard Maciejewski, Elżbieta Radzikowska-Büchner, Wojciech Flieger, Kinga Kulczycka, Jacek Baj, Alicja Forma and Jolanta Flieger
Int. J. Environ. Res. Public Health 2022, 19(17), 11066; https://doi.org/10.3390/ijerph191711066 - 4 Sep 2022
Cited by 28 | Viewed by 6997
Abstract
Numerous factors affect reproduction, including stress, diet, obesity, the use of stimulants, or exposure to toxins, along with heavy elements (lead, silver, cadmium, uranium, vanadium, mercury, arsenic). Metals, like other xenotoxins, can cause infertility through, e.g., impairment of endocrine function and gametogenesis or [...] Read more.
Numerous factors affect reproduction, including stress, diet, obesity, the use of stimulants, or exposure to toxins, along with heavy elements (lead, silver, cadmium, uranium, vanadium, mercury, arsenic). Metals, like other xenotoxins, can cause infertility through, e.g., impairment of endocrine function and gametogenesis or excess production of reactive oxygen species (ROS). The advancement of nanotechnology has created another hazard to human safety through exposure to metals in the form of nanomaterials (NMs). Nanoparticles (NPs) exhibit a specific ability to penetrate cell membranes and biological barriers in the human body. These ultra-fine particles (<100 nm) can enter the human body through the respiratory tract, food, skin, injection, or implantation. Once absorbed, NPs are transported to various organs through the blood or lymph. Absorbed NPs, thanks to ultrahigh reactivity compared to bulk materials in microscale size, disrupt the homeostasis of the body as a result of interaction with biological molecules such as DNA, lipids, and proteins; interfering with the functioning of cells, organs, and physiological systems; and leading to severe pathological dysfunctions. Over the past decades, much research has been performed on the reproductive effects of essential trace elements. The research hypothesis that disturbances in the metabolism of trace elements are one of the many causes of infertility has been unquestionably confirmed. This review examines the complex reproductive risks for men regarding the exposure to potentially harmless xenobiotics based on a series of 298 articles over the past 30 years. The research was conducted using PubMed, Web of Science, and Scopus databases searching for papers devoted to in vivo and in vitro studies related to the influence of essential elements (iron, selenium, manganese, cobalt, zinc, copper, and molybdenum) and widely used metallic NPs on male reproduction potential. Full article
Show Figures

Figure 1

16 pages, 6391 KB  
Article
Highlighting the Implantation of Metal Particles into Hollow Cavity Yeast-Based Carbon for Improved Electrochemical Performance of Lithium–Sulfur Batteries
by Yan Zhuang, Jing-Lin Ma and Wang-Jun Feng
Catalysts 2022, 12(9), 951; https://doi.org/10.3390/catal12090951 - 26 Aug 2022
Cited by 3 | Viewed by 2053
Abstract
The introduction of metal particles into microbe-based carbon materials for application to lithium–sulfur (Li–S) batteries has the three major advantages of pore formation, chemisorption for polysulfides, and catalysis of electrochemical reactions. Metal particles and high specific surface area are often considered to enhance [...] Read more.
The introduction of metal particles into microbe-based carbon materials for application to lithium–sulfur (Li–S) batteries has the three major advantages of pore formation, chemisorption for polysulfides, and catalysis of electrochemical reactions. Metal particles and high specific surface area are often considered to enhance the properties of Li–S batteries. However, there are few data to support the claim that metal particles implanted in microbe-based carbon hosts can improve Li–S battery performance without interfering with the specific surface area. In this work, hollow-cavity cobalt-embedded yeast-based carbon (HC–Co–YC) with low specific surface area was successfully produced by impregnating yeast cells with a solution containing 0.075 M CoCl2 (designated as HC–Co–YC–0.075M). Cobalt particles implanted in yeast carbon (YC) could improve the conductive properties, lithium-ion diffusion, and cycling stability of the sulfur cathode. Compared to previously reported counterpart electrodes without metal particles, the HC–Co–YC–0.075M/S electrode in this study had a high initial specific capacity of 1061.9 mAh g−1 at 0.2 C, maintained a reversible specific capacity of 504.9 mAh g−1 after 500 cycles, and showed a capacity fading rate of 0.1049% per cycle. In conclusion, the combination of cobalt particles and YC with low specific surface area exhibited better cycle stability, emphasizing the importance of implantation of metal particles into carbon hosts for improving the electrochemical properties of Li–S batteries. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

25 pages, 7001 KB  
Article
Amorphous Carbon Coatings for Total Knee Replacements—Part II: Tribological Behavior
by Benedict Rothammer, Max Marian, Kevin Neusser, Marcel Bartz, Thomas Böhm, Sebastian Krauß, Stefan Schroeder, Maximilian Uhler, Simon Thiele, Benoit Merle, Jan Philippe Kretzer and Sandro Wartzack
Polymers 2021, 13(11), 1880; https://doi.org/10.3390/polym13111880 - 5 Jun 2021
Cited by 43 | Viewed by 10866
Abstract
Diamond-like carbon coatings may decrease implant wear, therefore, they are helping to reduce aseptic loosening and increase service life of total knee arthroplasties (TKAs). This two-part study addresses the development of such coatings for ultrahigh molecular weight polyethylene (UHMWPE) tibial inlays as well [...] Read more.
Diamond-like carbon coatings may decrease implant wear, therefore, they are helping to reduce aseptic loosening and increase service life of total knee arthroplasties (TKAs). This two-part study addresses the development of such coatings for ultrahigh molecular weight polyethylene (UHMWPE) tibial inlays as well as cobalt-chromium-molybdenum (CoCr) and titanium (Ti64) alloy femoral components. While the deposition of a pure (a-C:H) and tungsten-doped hydrogen-containing amorphous carbon coating (a-C:H:W) as well as the detailed characterization of mechanical and adhesion properties were the subject of Part I, the tribological behavior is studied in Part II. Pin-on-disk tests are performed under artificial synovial fluid lubrication. Numerical elastohydrodynamic lubrication modeling is used to show the representability of contact conditions for TKAs and to assess the influence of coatings on lubrication conditions. The wear behavior is characterized by means of light and laser scanning microscopy, Raman spectroscopy, scanning electron microscopy and particle analyses. Although the coating leads to an increase in friction due to the considerably higher roughness, especially the UHMWPE wear is significantly reduced up to a factor of 49% (CoCr) and 77% (Ti64). Thereby, the coating shows continuous wear and no sudden failure or spallation of larger wear particles. This demonstrated the great potential of amorphous carbon coatings for knee replacements. Full article
(This article belongs to the Special Issue Polymer-Based Biocompatible System)
Show Figures

Graphical abstract

16 pages, 5136 KB  
Article
Effect of Nitrogen Ion Implantation on the Cavitation Erosion Resistance and Cobalt-Based Solid Solution Phase Transformations of HIPed Stellite 6
by Mirosław Szala, Dariusz Chocyk, Anna Skic, Mariusz Kamiński, Wojciech Macek and Marcin Turek
Materials 2021, 14(9), 2324; https://doi.org/10.3390/ma14092324 - 29 Apr 2021
Cited by 35 | Viewed by 3951
Abstract
From the wide range of engineering materials traditional Stellite 6 (cobalt alloy) exhibits excellent resistance to cavitation erosion (CE). Nonetheless, the influence of ion implantation of cobalt alloys on the CE behaviour has not been completely clarified by the literature. Thus, this work [...] Read more.
From the wide range of engineering materials traditional Stellite 6 (cobalt alloy) exhibits excellent resistance to cavitation erosion (CE). Nonetheless, the influence of ion implantation of cobalt alloys on the CE behaviour has not been completely clarified by the literature. Thus, this work investigates the effect of nitrogen ion implantation (NII) of HIPed Stellite 6 on the improvement of resistance to CE. Finally, the cobalt-rich matrix phase transformations due to both NII and cavitation load were studied. The CE resistance of stellites ion-implanted by 120 keV N+ ions two fluences: 5 × 1016 cm−2 and 1 × 1017 cm−2 were comparatively analysed with the unimplanted stellite and AISI 304 stainless steel. CE tests were conducted according to ASTM G32 with stationary specimen method. Erosion rate curves and mean depth of erosion confirm that the nitrogen-implanted HIPed Stellite 6 two times exceeds the resistance to CE than unimplanted stellite, and has almost ten times higher CE reference than stainless steel. The X-ray diffraction (XRD) confirms that NII of HIPed Stellite 6 favours transformation of the ε(hcp) to γ(fcc) structure. Unimplanted stellite ε-rich matrix is less prone to plastic deformation than γ and consequently, increase of γ phase effectively holds carbides in cobalt matrix and prevents Cr7C3 debonding. This phenomenon elongates three times the CE incubation stage, slows erosion rate and mitigates the material loss. Metastable γ structure formed by ion implantation consumes the cavitation load for work-hardening and γ → ε martensitic transformation. In further CE stages, phases transform as for unimplanted alloy namely, the cavitation-inducted recovery process, removal of strain, dislocations resulting in increase of γ phase. The CE mechanism was investigated using a surface profilometer, atomic force microscopy, SEM-EDS and XRD. HIPed Stellite 6 wear behaviour relies on the plastic deformation of cobalt matrix, starting at Cr7C3/matrix interfaces. Once the Cr7C3 particles lose from the matrix restrain, they debond from matrix and are removed from the material. Carbides detachment creates cavitation pits which initiate cracks propagation through cobalt matrix, that leads to loss of matrix phase and as a result the CE proceeds with a detachment of massive chunk of materials. Full article
(This article belongs to the Special Issue Erosion Resistance of Materials)
Show Figures

Graphical abstract

14 pages, 3687 KB  
Article
Analysis of Friction in Total Knee Prosthesis during a Standard Gait Cycle
by Matúš Ranuša, Markus A. Wimmer, Spencer Fullam, Martin Vrbka and Ivan Křupka
Lubricants 2021, 9(4), 36; https://doi.org/10.3390/lubricants9040036 - 3 Apr 2021
Cited by 10 | Viewed by 5215
Abstract
Total knee arthroplasty is on the rise worldwide. Despite its success, revision surgeries are also increasing. According to the American Joint Replacement Registry 2020, 3.3% of revision surgeries are due to wear, and 24.2% are due to mechanical loosening. The combination of shear [...] Read more.
Total knee arthroplasty is on the rise worldwide. Despite its success, revision surgeries are also increasing. According to the American Joint Replacement Registry 2020, 3.3% of revision surgeries are due to wear, and 24.2% are due to mechanical loosening. The combination of shear stresses and wear particles occurring at the bone/implant interface can lead to local osteolysis. Although the shear stresses are partially driven by joint friction, relatively little is known about the evolution of the coefficient of friction (CoF) during a gait cycle in total knee replacement. Here we describe the CoF during a gait cycle and investigate its association with kinematics (slide–roll-ratio), applied load, and relative velocity. The artificial knee was simulated by cobalt–chromium condyle on a flat ultra-high-molecular-weight polyethylene (UHMWPE) tibial plateau, lubricated by either water or proteinaceous solution. We found that the CoF is not a constant but fluctuates between the values close to 0 and 0.15. Cross-correlation suggested that this is primarily an effect of the slide–roll ratio and the contact pressure. There was no difference in the CoF between water and proteinaceous solution. Knowledge about the CoF behavior during a gait cycle will help to increase the accuracy of future computational models of total knee replacement. Full article
Show Figures

Figure 1

15 pages, 3359 KB  
Article
Third Body Wear of UHMWPE-on-PEEK-OPTIMA™
by Raelene M. Cowie, Naveen Manikya Pallem, Adam Briscoe and Louise M. Jennings
Materials 2020, 13(6), 1264; https://doi.org/10.3390/ma13061264 - 11 Mar 2020
Cited by 19 | Viewed by 4472
Abstract
PEEK-OPTIMA™ is being considered as an alternative to cobalt chrome (CoCr) in the femoral component of total knee replacements. To date, investigations of ultra-high molecular weight polyethylene (UHMWPE)-on-PEEK have shown an equivalent wear rate to conventional implant materials under standard conditions. In this [...] Read more.
PEEK-OPTIMA™ is being considered as an alternative to cobalt chrome (CoCr) in the femoral component of total knee replacements. To date, investigations of ultra-high molecular weight polyethylene (UHMWPE)-on-PEEK have shown an equivalent wear rate to conventional implant materials under standard conditions. In this study, the third body wear performance of UHMWPE-on-PEEK was directly compared to UHMWPE-on-CoCr in a series of pin-on-plate studies using two approaches for third body damage. Damage simulation with particles of bone cement showed a significant (p < 0.001), four-fold increase in the mean surface roughness of PEEK plates compared to CoCr. However, wear simulation against the damaged plates showed no significant difference in the wear of UHMWPE pins against the different materials (p = 0.59), and a polishing effect by the pin against the PEEK plates was observed. Scratching PEEK and CoCr counterfaces with a diamond stylus to create scratches representative of severe third body damage (4 µm lip height) resulted in a significantly higher (p = 0.01) wear of UHMWPE against CoCr compared to PEEK and again, against PEEK plates, polishing by the UHMWPE pin led to a reduction in scratch lip height. This study shows that in terms of its wear performance under third body wear/damage conditions, UHMWPE-on-PEEK differs from conventional knee replacement materials. Full article
Show Figures

Figure 1

10 pages, 250 KB  
Review
Immunological Responses to Total Hip Arthroplasty
by Kenny Man, Lin-Hua Jiang, Richard Foster and Xuebin B Yang
J. Funct. Biomater. 2017, 8(3), 33; https://doi.org/10.3390/jfb8030033 - 1 Aug 2017
Cited by 40 | Viewed by 8752
Abstract
The use of total hip arthroplasties (THA) has been continuously rising to meet the demands of the increasingly ageing population. To date, this procedure has been highly successful in relieving pain and restoring the functionality of patients’ joints, and has significantly improved their [...] Read more.
The use of total hip arthroplasties (THA) has been continuously rising to meet the demands of the increasingly ageing population. To date, this procedure has been highly successful in relieving pain and restoring the functionality of patients’ joints, and has significantly improved their quality of life. However, these implants are expected to eventually fail after 15–25 years in situ due to slow progressive inflammatory responses at the bone-implant interface. Such inflammatory responses are primarily mediated by immune cells such as macrophages, triggered by implant wear particles. As a result, aseptic loosening is the main cause for revision surgery over the mid and long-term and is responsible for more than 70% of hip revisions. In some patients with a metal-on-metal (MoM) implant, metallic implant wear particles can give rise to metal sensitivity. Therefore, engineering biomaterials, which are immunologically inert or support the healing process, require an in-depth understanding of the host inflammatory and wound-healing response to implanted materials. This review discusses the immunological response initiated by biomaterials extensively used in THA, ultra-high-molecular-weight polyethylene (UHMWPE), cobalt chromium (CoCr), and alumina ceramics. The biological responses of these biomaterials in bulk and particulate forms are also discussed. In conclusion, the immunological responses to bulk and particulate biomaterials vary greatly depending on the implant material types, the size of particulate and its volume, and where the response to bulk forms of differing biomaterials are relatively acute and similar, while wear particles can initiate a variety of responses such as osteolysis, metal sensitivity, and so on. Full article
(This article belongs to the Special Issue Orthopaedic Biomaterials, Implants and Devices)
Show Figures

Graphical abstract

30 pages, 346 KB  
Review
In Vitro Analyses of the Toxicity, Immunological, and Gene Expression Effects of Cobalt-Chromium Alloy Wear Debris and Co Ions Derived from Metal-on-Metal Hip Implants
by Olga M. Posada, Rothwelle J. Tate, R.M. Dominic Meek and M. Helen Grant
Lubricants 2015, 3(3), 539-568; https://doi.org/10.3390/lubricants3030539 - 14 Jul 2015
Cited by 40 | Viewed by 11956
Abstract
Joint replacement has proven to be an extremely successful and cost-effective means of relieving arthritic pain and improving quality of life for recipients. Wear debris-induced osteolysis is, however, a major limitation and causes orthopaedic implant aseptic loosening, and various cell types including macrophages, [...] Read more.
Joint replacement has proven to be an extremely successful and cost-effective means of relieving arthritic pain and improving quality of life for recipients. Wear debris-induced osteolysis is, however, a major limitation and causes orthopaedic implant aseptic loosening, and various cell types including macrophages, monocytes, osteoblasts, and osteoclasts, are involved. During the last few years, there has been increasing concern about metal-on-metal (MoM) hip replacements regarding adverse reactions to metal debris associated with the MoM articulation. Even though MoM-bearing technology was initially aimed to extend the durability of hip replacements and to reduce the requirement for revision, they have been reported to release at least three times more cobalt and chromium ions than metal-on-polyethylene (MoP) hip replacements. As a result, the toxicity of metal particles and ions produced by bearing surfaces, both locally in the periprosthetic space and systemically, became a concern. Several investigations have been carried out to understand the mechanisms responsible for the adverse response to metal wear debris. This review aims at summarising in vitro analyses of the toxicity, immunological, and gene expression effects of cobalt ions and wear debris derived from MoM hip implants. Full article
(This article belongs to the Special Issue Tribological Performance of Artificial Joints)
Show Figures

Figure 1

Back to TopTop