Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,276)

Search Parameters:
Keywords = implant titanium surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1530 KB  
Article
Anodization and Its Role in Peri-Implant Tissue Adhesion: A Novel 3D Bioprinting Approach
by Béla Kolarovszki, Alexandra Steinerbrunner-Nagy, Dorottya Frank, Gábor Decsi, Attila Mühl, Beáta Polgár, Péter Maróti, Ákos Nagy, Judit E. Pongrácz and Kinga Turzó
J. Funct. Biomater. 2026, 17(2), 61; https://doi.org/10.3390/jfb17020061 - 26 Jan 2026
Viewed by 35
Abstract
Background: Soft tissue stability around dental implant abutments is critical for maintaining a functional peri-implant seal. Yellow anodization is used to improve the aesthetic and surface characteristics of titanium abutments, yet its epithelial effects under more physiologically relevant 3D conditions remain insufficiently explored. [...] Read more.
Background: Soft tissue stability around dental implant abutments is critical for maintaining a functional peri-implant seal. Yellow anodization is used to improve the aesthetic and surface characteristics of titanium abutments, yet its epithelial effects under more physiologically relevant 3D conditions remain insufficiently explored. Objective: To develop a 3D bioprinted in vitro peri-implant mucosa model and to compare epithelial cell responses on yellow anodized versus turned titanium abutment surfaces. Methods: Commercial Grade 5 (Ti6Al4V) titanium abutments were anodized and compared with turned controls. A collagen-based 3D bioprinted “collar-like” construct incorporating YD-38 epithelial cells was fabricated using a custom holder system to simulate peri-implant mucosal contact. Samples were cultured for 14 and 21 days. Cell distribution and morphology were assessed by optical microscopy and HE staining, while cytoskeletal organization was evaluated by TRITC-phalloidin/Hoechst staining and confocal microscopy. Quantitative fluorescence analysis was performed at 21 days. Results: Both surfaces supported epithelial coverage in the 3D environment. Anodized specimens showed more pronounced actin cytoskeletal organization and the presence of actin-rich, filamentous cellular extensions compared with turned controls. Quantitative image analysis demonstrated significantly higher TRITC-phalloidin signal intensity at 21 days on anodized samples (p < 0.001). Conclusions: Within the limitations of a 3D epithelial in vitro model using YD-38 cells, yellow anodization was associated with enhanced epithelial cytoskeletal organization compared with turned titanium. The presented 3D bioprinted platform may serve as a practical in vitro tool for screening abutment surface modifications relevant to peri-implant soft tissue integration. Full article
Show Figures

Figure 1

18 pages, 8849 KB  
Article
Innovative Titanium Implants Coated with miR-21-Loaded Nanoparticle for Peri-Implantitis Prevention
by Anna Valentino, Raffaele Conte, Pierfrancesco Cerruti, Roberta Condò, Gianfranco Peluso and Anna Calarco
Pharmaceutics 2026, 18(1), 142; https://doi.org/10.3390/pharmaceutics18010142 - 22 Jan 2026
Viewed by 90
Abstract
Background/Objectives: Peri-implantitis is a chronic inflammatory condition affecting tissues surrounding dental implants and is characterized by progressive marginal bone loss that can ultimately lead to implant failure. Reduced vascularization and impaired immune clearance in peri-implant tissues contribute to persistent inflammation and limited therapeutic [...] Read more.
Background/Objectives: Peri-implantitis is a chronic inflammatory condition affecting tissues surrounding dental implants and is characterized by progressive marginal bone loss that can ultimately lead to implant failure. Reduced vascularization and impaired immune clearance in peri-implant tissues contribute to persistent inflammation and limited therapeutic efficacy. MicroRNAs (miRNAs), particularly miR-21, have emerged as key regulators of inflammatory responses and bone remodeling. The objective of this study was to develop a bioactive dental implant coating capable of locally delivering miR-21 to modulate inflammation and promote peri-implant tissue regeneration, thereby preventing peri-implantitis. Methods: Cationic nanoparticles were synthesized using lecithin and low-molecular-weight polyethylenimine (PEI) as a non-viral delivery system for miR-21. Lecithin was employed to enhance biocompatibility, while PEI functionalization provided a positive surface charge to improve miRNA complexation and cellular uptake. The resulting lecithin–PEI nanoparticles (LEC–PEI NPs) were incorporated into a chitosan-based coating and applied to titanium implant surfaces to obtain a sustained miR-21–releasing system (miR21-implant). Transfection efficiency and biological activity were evaluated in human periodontal ligament fibroblasts (hPDLFs) and compared with a commercial transfection reagent (Lipofectamine). Release kinetics and long-term activity of miR-21 from the coating were also assessed. Results: MiR-21-loaded LEC–PEI nanoparticles demonstrated significantly higher transfection efficiency than Lipofectamine and retained marked biological activity in hPDLFs relevant to peri-implantitis prevention. The chitosan-based nanoparticle coating enabled controlled and sustained miR-21 release over time, supporting prolonged modulation of inflammatory and osteogenic signaling pathways involved in peri-implant tissue homeostasis. Conclusions: The miR21-implant system, based on lecithin–PEI nanoparticles incorporated into a chitosan coating, represents a promising therapeutic strategy for peri-implantitis prevention. By enabling sustained local delivery of miR-21, this approach has the potential to preserve peri-implant bone architecture, modulate chronic inflammation, and enhance the osseointegration of titanium dental implants. Full article
Show Figures

Graphical abstract

22 pages, 5019 KB  
Article
Enhanced Bioactivity and Antibacterial Properties of Ti-6Al-4V Alloy Surfaces Modified by Electrical Discharge Machining
by Bárbara A. B. dos Santos, Rafael E. G. Leal, Ana P. G. Gomes, Liszt Y. C. Madruga, Ketul C. Popat, Hermes de Souza Costa and Roberta M. Sabino
Colloids Interfaces 2026, 10(1), 12; https://doi.org/10.3390/colloids10010012 - 22 Jan 2026
Viewed by 53
Abstract
Bacterial infections and the lack of bioactivity of titanium implants and their alloys remain critical challenges for the long-term performance and clinical success of these devices. These issues arise from the undesirable combination of early microbial adhesion and the limited ability of metallic [...] Read more.
Bacterial infections and the lack of bioactivity of titanium implants and their alloys remain critical challenges for the long-term performance and clinical success of these devices. These issues arise from the undesirable combination of early microbial adhesion and the limited ability of metallic surfaces to form a bioactive interface capable of supporting osseointegration. To address these limitations simultaneously, this study employed electrical discharge machining (EDM), which enables surface topography modification and in situ incorporation of bioactive ions from the dielectric fluid. Ti-6Al-4V ELI surfaces were modified using two dielectric fluids, a fluorine/phosphorus-based solution (DF1-F) and a calcium/phosphorus-based solution (DF2-Ca), under positive and negative polarities. The recast layer was characterized by SEM and EDS, while bioactivity was evaluated through immersion in simulated body fluid (SBF) for up to 21 days. Antibacterial performance was assessed against Staphylococcus aureus at 6 h and 24 h of incubation. The results demonstrated that dielectric composition and polarity strongly influenced ionic incorporation and the structural stability of the modified layers. The DF2-Ca(+) condition exhibited the most favorable bioactive response, with Ca/P ratios closer to hydroxyapatite and surface morphologies typical of mineralized coatings. In antibacterial assays, Ca/P-containing surfaces significantly decreased S. aureus attachment (>80–90%). Overall, EDM with Ca/P-containing dielectrics enables the fabrication of Ti-6Al-4V surfaces with enhanced mineralization capacity and anti-adhesive effects against Gram-positive bacteria, reinforcing their potential for multifunctional biomedical applications. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 3rd Edition)
Show Figures

Figure 1

21 pages, 3425 KB  
Article
Enhanced Cell Adhesion on Biofunctionalized Ti6Al4V Alloy: Immobilization of Proteins and Biomass from Spirulina platensis Microalgae
by Maria Fernanda Hart Orozco, Rosalia Seña, Lily Margareth Arrieta Payares, Alex A. Saez, Arturo Gonzalez-Quiroga and Virginia Paredes
Int. J. Mol. Sci. 2026, 27(2), 1041; https://doi.org/10.3390/ijms27021041 - 20 Jan 2026
Viewed by 278
Abstract
Titanium (Ti) and its alloys are widely used in biomedical applications due to their biocompatibility and corrosion resistance; however, surface modifications are required to enhance biological functionality. Surface functionalization using natural biomolecules has emerged as a promising strategy to improve early cell–surface interactions [...] Read more.
Titanium (Ti) and its alloys are widely used in biomedical applications due to their biocompatibility and corrosion resistance; however, surface modifications are required to enhance biological functionality. Surface functionalization using natural biomolecules has emerged as a promising strategy to improve early cell–surface interactions and biocompatibility of implant materials. In this study, Ti6Al4V alloy surfaces were biofunctionalized using Spirulina platensis (S. platensis) biomass and protein extract to evaluate morphological, chemical, and biological effects. The functionalization process involved activation with piranha solution, silanization with 3-aminopropyltriethoxysilane (APTES), and subsequent biomolecule immobilization. Surface characterization by scanning electron microscopy (SEM), inductively coupled plasma mass spectrometry (ICP-MS), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) confirmed the successful incorporation of microalgal components, including nitrogen-, phosphorus-, and oxygen-rich organic groups. Biomass-functionalized surfaces exhibited higher phosphorus and oxygen content, while protein-coated surfaces showed nitrogen-enrich chemical signatures, reflecting the distinct molecular compositions of the immobilized biomolecules. Cell adhesion assays demonstrated enhanced early cell attachment on biofunctionalized surfaces, particularly in samples functionalized with 5 g/L biomass for three hours, which showed significantly greater cell attachment than both the control and protein-treated samples. These findings highlight the complementary yet distinct roles of S. platensis biomass and protein extract in modulating surface chemistry and cell–material interactions, emphasizing the importance of tailoring biofunctionalization strategies to optimize early biological responses on titanium-based implants. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

15 pages, 4361 KB  
Article
Surface Modification of Zirconia with Thick Hydroxyapatite Film Using RF Magnetron Sputtering Technique
by Ihab Nabeel Safi, Hasanain K. A. Alalwan, Mustafa S. Tukmachi, Dhuha H. Mohammed and Maryam Sinan Abdulaali Al-Yasari
Prosthesis 2026, 8(1), 11; https://doi.org/10.3390/prosthesis8010011 - 19 Jan 2026
Viewed by 134
Abstract
Background/Objectives: The use of zirconia implants is gaining traction as a potential alternative to titanium. Although having excellent properties, the zirconia surface has limited osteogenic potential. The purpose of this study was to produce, for the first time, mechanically stable, thick micron-scale [...] Read more.
Background/Objectives: The use of zirconia implants is gaining traction as a potential alternative to titanium. Although having excellent properties, the zirconia surface has limited osteogenic potential. The purpose of this study was to produce, for the first time, mechanically stable, thick micron-scale hydroxyapatite coatings on zirconia implant material using radiofrequency (RF) magnetron sputtering. Methods: Zirconia samples were coated with HA using an RF magnetron sputtering device at a temperature of 125 °C for 20 h with 155 W of power. The procedure included rotating the substrate at a speed of 10 rpm while an argon gas flow was maintained continuously. Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) analysis, atomic force microscopy, and Vickers hardness measurements were used to evaluate the coat’s characteristics. Results: A smooth hydroxyapatite coating layer that was consistent and free of cracks was observed in all FESEM pictures. The EDX study revealed that the substrate surface contains HA particles, and the ratio of calcium (Ca) to phosphorus (P) was 16.58 to 11.31, which is very close to the ratio in original HA. FESEM cross-section pictures showed good adhesion between the coating and substrate without any gaps, and the coating thickness was 5 µm on average. A statistically significant difference was found in the roughness analysis between the samples of uncoated Zr and HA-coated Zr (p-value < 0.05). Conclusions: Zirconia implant material can be coated with a uniform layer of HA, displaying good adhesion and a thickness of a few micrometers when using magnetron sputtering for an extended period of time. Full article
(This article belongs to the Collection Oral Implantology: Current Aspects and Future Perspectives)
Show Figures

Figure 1

13 pages, 1385 KB  
Article
Mechanical Properties of Additively Manufactured Composite Resin vs. Subtractively Manufactured Hybrid Ceramic Implant-Supported Permanent Crowns Before and After Thermal Aging
by Nilufer Ipek Sahin and Emre Tokar
Micromachines 2026, 17(1), 116; https://doi.org/10.3390/mi17010116 - 16 Jan 2026
Viewed by 156
Abstract
This study aims to compare the surface roughness and fracture resistance of implant-supported permanent crowns additively manufactured using composite resins (Crowntec, VarseoSmile) versus subtractively manufactured polymer-infiltrated hybrid ceramic (VITA Enamic) at various wall thicknesses using an experimental setup as close to clinical as [...] Read more.
This study aims to compare the surface roughness and fracture resistance of implant-supported permanent crowns additively manufactured using composite resins (Crowntec, VarseoSmile) versus subtractively manufactured polymer-infiltrated hybrid ceramic (VITA Enamic) at various wall thicknesses using an experimental setup as close to clinical as possible. 180 crowns were fabricated in three thicknesses (1.0, 1.5, and 2.0 mm) and cemented onto titanium abutments. Experimental groups underwent thermal aging (10,000 cycles) to simulate one year of clinical service. Surface roughness was measured via profilometry, and fracture resistance was assessed using a universal testing machine. Composite resin crowns exhibited lower surface roughness and lower fracture resistance than subtractively manufactured crowns. No significant difference in fracture resistance was found between materials at 1.0 mm (p > 0.05). However, at 1.5 and 2.0 mm, hybrid ceramic network crowns showed significantly higher resistance (p < 0.01). It was concluded that, within the limitations of this 1-year simulated study, both material-method combinations met the biological threshold for surface roughness. Regarding fracture resistance, composite resins and hybrid ceramics satisfied clinical requirements for molar bite forces only at thicknesses of 1.5 mm and above. 1.0 mm thickness may pose a risk under high occlusal loads. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

21 pages, 7417 KB  
Article
Enhancement of Antibacterial and Cytocompatibility Characteristics of Hydrophobic and Hydrophilic Titanium Surfaces Fabricated by Femtosecond Laser Processing
by Hun-Kook Choi, Young-Jun Jung, Ik-Bu Sohn, Harim Song, Hyeongdo Jeong, Seungpyo Kim, Daeseon Moon and Md. Shamim Ahsan
Appl. Sci. 2026, 16(2), 766; https://doi.org/10.3390/app16020766 - 12 Jan 2026
Viewed by 119
Abstract
We demonstrate the enhancement of antibacterial and cytocompatibility characteristics of femtosecond laser-treated pure titanium and Ti-6Al-4V titanium alloy samples suitable for orthopedic implant applications. We controlled the wettability of the titanium samples by tailoring the surface geometry using a femtosecond laser. To increase [...] Read more.
We demonstrate the enhancement of antibacterial and cytocompatibility characteristics of femtosecond laser-treated pure titanium and Ti-6Al-4V titanium alloy samples suitable for orthopedic implant applications. We controlled the wettability of the titanium samples by tailoring the surface geometry using a femtosecond laser. To increase the hydrophobicity, laser-assisted micro-grids patterning was performed on the titanium samples, where we achieved a highest contact angle of 144.6° for a 1 µL de-ionized water droplet. In contrast, the hydrophobic Ti-6Al-4V titanium alloy surfaces were converted to hydrophilic surfaces by fabricating periodic micro-gratings on the samples’ surface, where a lowest contact angle of 19.84° was achieved. Furthermore, we assessed the biocompatibility of the micro-patterned titanium samples by investigating the antibacterial activity against Staphylococcus Aureus bacteria. Moreover, the cytocompatibility of the micro-patterned titanium samples was examined using NCTC Clone 929 (L-929) mouse fibroblasts. The laser-treated titanium samples exhibited enhanced antibacterial performance while maintaining excellent cell compatibility. The experimental results confirmed excellent correlation with the wettability of the laser-patterned samples and their antibacterial characteristics and cytocompatibility. Overall, the findings highlight femtosecond laser surface structuring as a highly effective strategy to simultaneously improve antibacterial behavior and the biocompatibility of implant materials, offering a promising way for the advanced functionalization of orthopedic implants. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

12 pages, 1200 KB  
Article
In Vitro Evaluation of the Antimicrobial Properties of Chitosan–Vancomycin Coatings on Grade 4 Titanium Discs: A Preliminary Study
by João M. Pinto, Liliana Grenho, Susana J. Oliveira, Manuel A. Sampaio-Fernandes, Maria Helena Fernandes, Maria Helena Figueiral and Maria Margarida Sampaio-Fernandes
Coatings 2026, 16(1), 75; https://doi.org/10.3390/coatings16010075 - 8 Jan 2026
Viewed by 385
Abstract
Peri-implant infections pose a significant challenge in dental implantology. This study aimed to develop and characterize a chitosan–vancomycin coating for titanium surfaces, focusing on drug loading, release kinetics, antimicrobial performance, and cytocompatibility. Grade 4 titanium discs were coated with a chitosan film using [...] Read more.
Peri-implant infections pose a significant challenge in dental implantology. This study aimed to develop and characterize a chitosan–vancomycin coating for titanium surfaces, focusing on drug loading, release kinetics, antimicrobial performance, and cytocompatibility. Grade 4 titanium discs were coated with a chitosan film using the dip-coating technique and subsequently loaded with vancomycin through immersion in an aqueous solution. Coating morphology was examined by scanning electron microscopy (SEM). Vancomycin loading was quantified by spectrophotometry, and release kinetics were monitored over 144 h (6-day). Antimicrobial activity was assessed through agar diffusion assays against Staphylococcus aureus. Cytocompatibility was evaluated using human mesenchymal stem cells (hMSCs), whose metabolic activity, adhesion, and morphology were assessed over a 19-day culture period by resazurin assay and SEM. SEM analysis revealed a uniformly distributed, smooth, and crack-free chitosan film, which remained stable after drug loading. The coating exhibited a biphasic release profile, characterized by an initial burst followed by sustained release over six days, which maintained antimicrobial activity, as confirmed by inhibition zones. hMSCs adhered and proliferated on the coated surfaces, displaying normal morphology despite a transient reduction in metabolic activity on vancomycin-containing films. These findings support the potential of chitosan–vancomycin coatings as localized antimicrobial strategies for implant applications, warranting further in vivo and mechanical evaluations. Full article
(This article belongs to the Special Issue Films and Coatings with Biomedical Applications)
Show Figures

Figure 1

26 pages, 4558 KB  
Review
Integrating Additive Manufacturing into Dental Production: Innovations, Applications and Challenges
by Maryna Yeromina, Jan Duplak, Jozef Torok, Darina Duplakova and Monika Torokova
Inventions 2026, 11(1), 7; https://doi.org/10.3390/inventions11010007 - 7 Jan 2026
Viewed by 321
Abstract
Additive manufacturing (AM) has emerged as a key enabling technology in contemporary dental manufacturing, driven by its capacity for customization, geometric complexity, and seamless integration with digital design workflows. This article presents a technology-oriented narrative review of additive manufacturing in dental implant production, [...] Read more.
Additive manufacturing (AM) has emerged as a key enabling technology in contemporary dental manufacturing, driven by its capacity for customization, geometric complexity, and seamless integration with digital design workflows. This article presents a technology-oriented narrative review of additive manufacturing in dental implant production, focusing on dominant processing routes, material systems, and emerging research trends rather than a systematic or critical appraisal of the literature. An indicative descriptive analysis of publications indexed in the Web of Science and Scopus databases between 2014 and 2024 was used to contextualize the technological development of the field and identify major research directions. Emphasis was placed on metal powder bed fusion technologies, specifically Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS), which enable the fabrication of titanium implants with controlled porosity and enhanced osseointegration. Ceramic AM approaches, including SLA, DLP, and PBF, are discussed in relation to their potential for aesthetic dental restorations and customized prosthetic components. The publication trend overview indicates a growing interest in ceramic AM after 2020, an increasing focus on hybrid and functionally graded materials, and persistent challenges related to standardization and the availability of long-term clinical evidence. Key technological limitations—including manufacturing accuracy, material stability, validated metrology, and process reproducibility—are highlighted alongside emerging directions such as artificial intelligence-assisted workflows, nanostructured surface modifications, and concepts enabling accelerated or immediate clinical use of additively manufactured dental restorations. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

15 pages, 2660 KB  
Article
Accelerated H2O2 Scavenging on a Nano-MnO2/Ti/PVTF Sandwich
by Lanxue Ma, Weiming Lin, Xin Jiang, Xin Xin, Yaoting He, Chengwei Wu and Kui Cheng
J. Compos. Sci. 2026, 10(1), 27; https://doi.org/10.3390/jcs10010027 - 7 Jan 2026
Viewed by 185
Abstract
Early oxidative stress caused by titanium implants can impair osseointegration. Manganese dioxide (MnO2) nanozyme coatings have the potential to scavenge H2O2 and simultaneously generate O2 to alleviate hypoxia, but their activity is mostly static, and the ion [...] Read more.
Early oxidative stress caused by titanium implants can impair osseointegration. Manganese dioxide (MnO2) nanozyme coatings have the potential to scavenge H2O2 and simultaneously generate O2 to alleviate hypoxia, but their activity is mostly static, and the ion release is detrimental. A nano-MnO2/Ti/P(VDF-TrFE) sandwich-structured composite was fabricated, and ferroelectric polarization was applied to preset a tunable surface potential. Kelvin probe force microscopy (KPFM) verified a presettable potential within ±500 mV. Steady-state kinetics confirmed an enhancement in overall catalytic efficiency (higher Vmax and lower Km). This translated to a faster initial decomposition rate at a low, physiologically relevant H2O2 concentration (300 μM). Correspondingly, under these oxidative stress conditions, cell survival in the polarized group was higher than that in the unpolarized group, indicating that the enhanced initial rate can have a positive effect in such conditions. Overall, this study demonstrates a proof-of-concept strategy to tune MnO2 nanozyme catalysis using a polarization-preset surface potential, targeting implantation-relevant ROS-rich conditions. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

9 pages, 1736 KB  
Article
Tin–Lead Liquid Metal Alloy Source for Focused Ion Beams
by Bryan Flores, Shei Sia Su, Coleman Cariker, Ricardo A. Dacosta, Aaron M. Katzenmeyer, Alex A. Belianinov and Michael Titze
Micromachines 2026, 17(1), 76; https://doi.org/10.3390/mi17010076 - 6 Jan 2026
Viewed by 494
Abstract
Focused Ion Beam (FIB) systems are increasingly utilized in nanotechnology for nanostructuring, surface modification, doping, and rapid prototyping. Recently, their potential for quantum applications has been explored, leveraging FIB’s direct-write capabilities for in situ single ion implantation, which is crucial for fabricating single [...] Read more.
Focused Ion Beam (FIB) systems are increasingly utilized in nanotechnology for nanostructuring, surface modification, doping, and rapid prototyping. Recently, their potential for quantum applications has been explored, leveraging FIB’s direct-write capabilities for in situ single ion implantation, which is crucial for fabricating single photon emitters. Color centers in diamond can function as qubits and are of particular interest due to their capacity to store and transmit quantum information. While Group-IV color centers exhibit high brightness, they require low temperatures to retain coherence. However, lead-vacancy in diamond (PbV) operates at the higher end (4 K) of this temperature spectrum due to larger ground-state splitting, making them particularly interesting. In this context, our study presents results for lead (Pb)-containing alloys with eutectic points below 600 °C and results on using tantalum (Ta) and titanium (Ti) as emitter materials for a Pb liquid metal alloy ion source. We show that a standard FIB system is able to resolve the different Pb isotopes and achieve nanoscale spot sizes, as required for quantum information science applications. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 3rd Edition)
Show Figures

Figure 1

14 pages, 1597 KB  
Article
Impact of Zirconia and Titanium Implant Surfaces of Different Roughness on Oral Epithelial Cells
by Marco Aoqi Rausch, Zhiwei Tian, Vera Maierhofer, Christian Behm, Christian Ulm, Erwin Jonke, Raphael S. Wagner, Benjamin E. Pippenger, Bin Shi, Xiaohui Rausch-Fan and Oleh Andrukhov
Dent. J. 2026, 14(1), 30; https://doi.org/10.3390/dj14010030 - 4 Jan 2026
Viewed by 365
Abstract
Background/Objectives: Formation of tight contacts between oral soft tissue and dental implants is a significant challenge in contemporary implantology. An essential role in this process is played by oral epithelial cells. In the present study, we investigated how titanium and zirconia surfaces [...] Read more.
Background/Objectives: Formation of tight contacts between oral soft tissue and dental implants is a significant challenge in contemporary implantology. An essential role in this process is played by oral epithelial cells. In the present study, we investigated how titanium and zirconia surfaces with different roughness influence various parameters of oral epithelial cells in vitro. Methods: We used the human oral squamous carcinoma Ca9-22 cell line and cultured them on the following surfaces: machined smooth titanium (TiM) and zirconia (ZrM) surfaces, as well as sandblasted and acid-etched titanium moderately rough (SLA) and zirconia (ZLA) surfaces. Cell proliferation/viability was measured by CCK-8 assay, and cell morphology was analyzed by fluorescent microscopy. The gene expression of interleukin (IL)-8, intercellular adhesion molecule (ICAM)-1, E-cadherin, integrin (ITG)-α6, and ITG-β4 was measured by qPCR, and the content of IL-8 in conditioned media by ELISA. Results: At the initial culture phase, cell proliferation was promoted by rougher surfaces. Differences in cell attachment were observed between machined and moderately rough surfaces. Machined surfaces were associated with slightly higher IL-8 levels (p < 0.05). Furthermore, both ZLA and SLA surfaces promoted the expression of (ITG)-α, ITG-β4, and ICAM-1 in Ca9-22 cells (p < 0.05). Surface material had no impact on the investigated parameters. Conclusions: Under the limitations of this in vitro study, some properties of oral epithelial cells, particularly the immunological and barrier function, are moderately modified by roughness but not by material. Hence, the roughness of the implant surface might play a role in the quality of the peri-implant epithelium. Full article
(This article belongs to the Special Issue New Perspectives in Periodontology and Implant Dentistry)
Show Figures

Figure 1

31 pages, 7726 KB  
Review
Titanium Alloys at the Interface of Electronics and Biomedicine: A Review of Functional Properties and Applications
by Alex-Barna Kacsó, Ladislau Matekovits and Ildiko Peter
Electron. Mater. 2026, 7(1), 1; https://doi.org/10.3390/electronicmat7010001 - 1 Jan 2026
Viewed by 292
Abstract
Recent studies show that titanium (Ti)-based alloys combine established mechanical strength, corrosion resistance, and biocompatibility with emerging electrical and electrochemical properties relevant to bioelectronics. The main goal of the present manuscript is to give a wide-ranging overview on the use of Ti-alloys in [...] Read more.
Recent studies show that titanium (Ti)-based alloys combine established mechanical strength, corrosion resistance, and biocompatibility with emerging electrical and electrochemical properties relevant to bioelectronics. The main goal of the present manuscript is to give a wide-ranging overview on the use of Ti-alloys in electronics and biomedicine, focusing on a comprehensive analysis and synthesis of the existing literature to identify gaps and future directions. Concurrently, the identification of possible correlations between the effects of the manufacturing process, alloying elements, and other degrees of freedom influencing the material characteristics are put in evidence, aiming to establish a global view on efficient interdisciplinary efforts to realize high-added-value smart devices useful in the field of biomedicine, such as, for example, implantable apparatuses. This review mostly summarizes advances in surface modification approaches—including anodization, conductive coatings, and nanostructuring that improve conductivity while maintaining biological compatibility. Trends in applications demonstrate how these alloys support smart implants, biosensors, and neural interfaces by enabling reliable signal transmission and long-term integration with tissue. Key challenges remain in balancing electrical performance with biological response and in scaling laboratory modifications for clinical use. Perspectives for future work include optimizing alloy composition, refining surface treatments, and developing multifunctional designs that integrate mechanical, biological, and electronic requirements. Together, these directions highlight the potential of titanium alloys to serve as foundational materials for next-generation bioelectronic medical technologies. Full article
Show Figures

Figure 1

26 pages, 9155 KB  
Article
Silicon Nitride Bioceramics with TiC Additives: Excellent Mechanical Properties, Cytocompatibility, and Antibacterial Properties
by Zhebin Lou, Jiayu He, Yuandong Liu, Hanxu Zhu, Xiaofeng Zeng and Zulaikha Abid
J. Funct. Biomater. 2026, 17(1), 20; https://doi.org/10.3390/jfb17010020 - 26 Dec 2025
Viewed by 517
Abstract
Silicon nitride is a type of bioceramic with great application potential. However, the brittleness of silicon nitride can be addressed through toughening. In this study, various proportions of TiC were incorporated into the sintering additive system to explore the effects of different amounts [...] Read more.
Silicon nitride is a type of bioceramic with great application potential. However, the brittleness of silicon nitride can be addressed through toughening. In this study, various proportions of TiC were incorporated into the sintering additive system to explore the effects of different amounts of TiC on the mechanical properties, cell compatibility, and antibacterial properties of silicon nitride. Silicon nitride was prepared by gas pressure sintering, with TiC addition amounts of 3%, 5%, 8%, and 13% wt. Among the four types of silicon nitride, the mechanical properties of silicon nitride with 3% and 5% wt TiC addition were improved, with the flexural strength and fracture toughness of the former being 571 MPa and 8.35 MPa·m1/2, respectively, and the flexural strength and fracture toughness of the latter being 532 MPa and 8.53 MPa·m1/2, respectively. The surface of all four types of silicon nitride was enriched with Ti as the amount of TiC added increased, and the surface properties of the four silicon nitrides were the same. All four types of silicon nitride could continuously release Si ions in liquid. In vitro cell experiments showed that all four types of silicon nitride could enable normal cell proliferation and adhesion. Silicon nitride with different TiC addition amounts all exhibited good cell compatibility. Compared with the control material, each of the four types of silicon nitride demonstrated robust antibacterial efficacy against Staphylococcus aureus and Escherichia coli, with comparable potency across all types. These findings indicate that the incorporation of titanium carbide (TiC) within the silicon nitride matrix, particularly within the 3–5% weight ratio range, not only enhances mechanical integrity and cellular compatibility, but also confers notable antibacterial attributes. Consequently, these results demonstrate the promising viability of TiC-modified silicon nitride as a prospective material for the fabrication of bone implants. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Figure 1

26 pages, 6160 KB  
Review
Plasma Cleaning of Metal Surfaces: From Contaminant Removal to Surface Functionalization
by Ran Yang, Jing Kang, Zhiqiang Tian, Longfei Qie and Ruixue Wang
Surfaces 2026, 9(1), 4; https://doi.org/10.3390/surfaces9010004 - 26 Dec 2025
Viewed by 500
Abstract
The cleanliness and functionalization of metal surfaces are critical factors to determining their performance in high-performance microelectronic packaging, reliable biomedical implants, advanced composite bonding, and other fields. Compared to traditional wet cleaning methods, plasma cleaning technology has emerged as a research hotspot in [...] Read more.
The cleanliness and functionalization of metal surfaces are critical factors to determining their performance in high-performance microelectronic packaging, reliable biomedical implants, advanced composite bonding, and other fields. Compared to traditional wet cleaning methods, plasma cleaning technology has emerged as a research hotspot in surface engineering due to its unique advantages, such as high efficiency and environmental friendliness. It operates under versatile conditions (e.g., power: tens of watts to several kilowatts; pressure: atmospheric to low vacuum; treatment time: seconds to minutes), enabling not only efficient contaminant removal but also targeted surface functionalization, including dramatically enhanced hydrophilicity (e.g., contact angles from >80° to <10°), significantly improved adhesion (e.g., up to 40% increase in bond strength), and modifications in surface roughness, corrosion resistance, and biocompatibility. This review systematically elaborates on the physical, chemical, and synergistic mechanisms of plasma cleaning technology as it acts on metal surfaces. It focuses on plasma cleaning applied to copper, aluminum, titanium and their respective alloys, as well as alloy steels, providing a detailed analysis of contaminant types, plasma cleaning methodologies, common challenges, surface functionalization responses, and subsequent functional applications. Furthermore, this review discusses the current challenges faced by plasma cleaning technology and offers perspectives on its future development directions. It aims to systematize the research progress in plasma cleaning of metal surfaces, thereby facilitating the transition of this technology towards large-scale industrial applications for metal surface functionalization. Full article
(This article belongs to the Special Issue Plasmonics Technology in Surface Science)
Show Figures

Figure 1

Back to TopTop