Mechanical Properties of Additively Manufactured Composite Resin vs. Subtractively Manufactured Hybrid Ceramic Implant-Supported Permanent Crowns Before and After Thermal Aging
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Preparation of Crown Samples
2.2. Surface Roughness Measurements
2.3. Thermal Aging Process
2.4. Fracture Resistance Measurements
2.5. Statistical Analysis
3. Results
3.1. Surface Roughness
3.2. Fracture Resistance
4. Discussion
5. Conclusions
- The implant-supported permanent crowns produced by additive manufacturing techniques using composite resin meet the clinical requirements regarding surface roughness and fracture resistance.
- Although the wall thickness of implant-supported crowns does not affect surface roughness, fracture resistance increases proportionally with wall thickness. Based on these results, it can be concluded that a wall thickness of 1.5 mm or greater is sufficient for implant-supported crowns in the molar region for all three materials, whereas a wall thickness of 1.0 mm may be considered for use only in incisors when necessary.
- One year of thermal aging has no effect on the fracture resistance and surface roughness of implant-supported permanent crown materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 3D | Three-dimensional |
| CAD/CAM | Computer-Aided Design/Computer-Aided Manufacturing |
| CT | Saremco Crowntec |
| PMMA | Polymethyl methacrylate |
| PTFE | Polytetrafluoroethylene |
| VE | Vita Enamic |
| VS | VarseoSmile Crown Plus |
References
- Jain, S.; Hemavardhini, A.; Ranjan, M.; Pasrich, N.; Thakar, S.S.; Soni, K.J.; Hassan, S.; Goyal, K.; Singh, D. Evaluation of Survival Rates of Dental Implants and the Risk Factors: A Retrospective Follow-Up Study. Cureus 2024, 16, e55360. [Google Scholar] [CrossRef]
- Rabel, K.; Spies, B.C.; Pieralli, S.; Vach, K.; Kohal, R.J. The clinical performance of all-ceramic implant-supported single crowns: A systematic review and meta-analysis. Clin. Oral Implants Res. 2018, 29, 196–223. [Google Scholar]
- Pot, G.J.; Van Overschelde, P.A.; Keulemans, F.; Kleverlaan, C.J.; Tribst, J.P.M. Mechanical properties of additive-manufactured composite-based resins for permanent indirect restorations: A scoping review. Materials 2024, 17, 3951. [Google Scholar]
- Kessler, A.; Hickel, R.; Reymus, M. 3D printing in dentistry-state of the art. Oper. Dent. 2020, 45, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Suksuphan, P.; Krajangta, N.; Didron, P.P.; Wasanapiarnpong, T.; Rakmanee, T. Marginal adaptation and fracture resistance of milled and 3D-printed CAD/CAM hybrid dental crown materials with various occlusal thicknesses. J. Prosthodont. Res. 2024, 68, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Nouh, I.; Kern, M.; Sabet, A.E.; Aboelfadl, A.K.; Hamdy, A.M.; Chaar, M.S. Mechanical behavior of posterior all-ceramic hybrid-abutment-crowns versus hybrid-abutments with separate crowns-a laboratory study. Clin. Oral Implants Res. 2019, 30, 90–98. [Google Scholar] [PubMed]
- Pjetursson, B.E.; Valente, N.A.; Strasding, M.; Zwahlen, M.; Liu, S.; Sailer, I. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic single crowns. Clin. Oral Implants Res. 2018, 16, 199–214. [Google Scholar]
- Borella, P.S.; Alvares, L.A.S.; Ribeiro, M.T.H.; Moura, G.F.; Soares, C.J.; Zancopé, K.; Mendonça, G.; Rodrigues, F.P.; Neves, F.D.D. Physical and mechanical properties of four 3D-printed resins at two different thick layers: An in vitro comparative study. Dent. Mater. 2023, 39, 686. [Google Scholar] [CrossRef]
- Çakmak, G.; Donmez, M.B.; Molinero-Mourelle, P.; Kahveci, Ç.; Abou-Ayash, S.; Peutzfeldt, A.; Yilmaz, B. Fracture resistance of additively or subtractively manufactured resin-based definitive crowns: Effect of restorative material, resin cement, and cyclic loading. Dent. Mater. 2024, 40, 1072–1077. [Google Scholar] [CrossRef]
- Tokar, E.; Nezir, M.; Polat, S.; Özcan, S. Evaluation of optical and mechanical properties of crown materials produced by 3D printing. Adv. Clin. Exp. Med. 2025, 5, 813–820. [Google Scholar]
- Zimmermann, M.; Ender, A.; Egli, G.; Özcan, M.; Mehl, A. Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clin. Oral Investig. 2019, 23, 2777–2784. [Google Scholar]
- Balestra, D.; Lowther, M.; Goracci, C.; Mandurino, M.; Cortili, S.; Paolone, G.; Louca, C.; Vichi, A. 3D printed materials for permanent restorations in indirect restorative and prosthetic dentistry: A critical review of the literature. Materials 2024, 17, 1380. [Google Scholar] [CrossRef] [PubMed]
- Bozoğulları, H.N.; Temizci, T. Evaluation of the color stability, stainability, and surface roughness of permanent composite-based milled and 3D printed CAD/CAM restorative materials after thermocycling. Appl. Sci. 2023, 13, 11895. [Google Scholar] [CrossRef]
- Donmez, M.B.; Okutan, Y. Marginal gap and fracture resistance of implant-supported 3D-printed definitive composite crowns: An in vitro study. J. Dent. 2022, 124, 104216. [Google Scholar] [PubMed]
- Diken Türksayar, A.A.; Demirel, M.; Donmez, M.B.; Olcay, E.O.; Eyüboğlu, T.F.; Özcan, M. Comparison of wear and fracture resistance of additively and subtractively manufactured screw-retained, implant-supported crowns. J. Prosthet. Dent. 2024, 132, 154–164. [Google Scholar]
- Farag, E.; Sabet, A.; Ebeid, K.; El Sergany, O. Build angle effect on 3D-printed dental crowns marginal fit using digital light-processing and stereo-lithography technology: An in vitro study. BMC Oral Health 2024, 24, 73. [Google Scholar]
- Maluly-Proni, A.T.; Anchieta, R.B.; Suzuki, T.Y.; Garcia de Oliveira, F.; Guedes, A.P.; Rocha, E.P.; Assunção, W.G.; Santos, P.H.D. Sealing the screw access channel with polytetrafluoroethylene tape: Advantages of the technique. Int. J. Oral Maxillofac. Implants 2017, 32, 1132–1134. [Google Scholar]
- Yildiz, C.; Vanlioğlu, B.A.; Evren, B.; Uludamar, A.; Özkan, Y.K. Marginal-internal adaptation and fracture resistance of CAD/CAM crown restorations. Dent. Mater. J. 2013, 32, 42–47. [Google Scholar][Green Version]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Al-Dwairi, Z.N.; Tahboub, K.Y.; Baba, N.Z.; Goodacre, C.J.; Özcan, M. A comparison of the surface properties of CAD/CAM and conventional polymethylmethacrylate (PMMA). J. Prosthodont. 2019, 28, 452–457. [Google Scholar] [CrossRef]
- Bollen, C.M.; Papaioanno, W.; Van Eldere, J.; Schepers, E.; Quirynen, M.; van Steenberghe, D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin. Oral Implants Res. 1996, 7, 201–211. [Google Scholar] [CrossRef]
- Bollen, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef]
- Baytur, S.; Diken Turksayar, A.A. Effects of post-polymerization conditions on color properties, surface roughness, and flexural strength of 3D-printed permanent resin material after thermal aging. J. Prosthodont. 2025, 3, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Acar, B.; Egilmez, F. Effects of various polishing techniques and thermal cycling on the surface roughness and color change of polymer-based CAD/CAM materials. Am. J. Dent. 2018, 31, 91–96. [Google Scholar] [PubMed]
- Floystrand, F.; Kleven, E.; Gudbrand, O. A novel miniature bite force recorder and its application. Acta Odontol. Scand. 1982, 40, 209–214. [Google Scholar] [CrossRef]
- Apostolov, N.; Chakalov, I.; Drajev, T. Measurement of the maximum bite force in the natural dentition with a gnathodynamometer. J. Med. Dent. Pract. 2014, 1, 70–75. [Google Scholar] [CrossRef]
- Helkimo, E.; Carlsson, G.; Carmell, Y. Bite force in patients with functional disturbances of masticatory system. J. Oral Rehabil. 1975, 2, 397. [Google Scholar] [CrossRef]
- Bakke, M.; Holm, B.; Jensen, B.L.; Michler, L.; Möller, E. Unilateral, isometric bite force in 8-68-year-old women and men related to occlusal factors. Scand. J. Dent. Res. 1990, 98, 149–158. [Google Scholar] [CrossRef]
- Osborn, J.W.; Mao, J. A thin bite-force transducer with three-dimensional capabilities reveals a consistent change in bite-force direction during human jaw-muscle endurance tests. Arch. Oral Biol. 1993, 38, 139–144. [Google Scholar] [CrossRef]
- Al-Omiri, M.K.; Sghaireen, M.G.; Alhijawi, M.M.; Alzoubi, I.A.; Lynch, C.D.; Lynch, E. Maximum bite force following unilateral implant-supported prosthetic treatment: Within-subject comparison to opposite dentate side. J. Oral Rehabil. 2014, 41, 624–629. [Google Scholar] [CrossRef]
- Al-Zarea, B.K. Maximum bite force following unilateral fixed prosthetic treatment: A within-subject comparison to the dentate side. Med. Princ. Pract. 2015, 24, 142–146. [Google Scholar] [CrossRef]
- Singhal, M.; Budakoti, V.; Pratap, H.; Chourasiya, P.; Waghmare, A. A comparative evaluation of bite pressure between single implant prosthesis and natural teeth: An in-vivo study. J. Dent. Implants 2022, 12, 86–94. [Google Scholar] [CrossRef]
- Coldea, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef]
- Keßler, A.; Dosch, M.; Reymus, M.; Folwaczny, M. Influence of 3D-printing method, resin material, and sterilization on the accuracy of virtually designed surgical implant guides. J. Prosthet. Dent. 2022, 128, 196–204. [Google Scholar] [CrossRef]
- Revilla-León, M.; Özcan, M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J. Prosthodont. 2019, 28, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Rekow, E.D.; Harsono, M.; Janal, M.; Thompson, V.P.; Zhang, G. Factorial analysis of variables influencing stress in all-ceramic crowns. Dent. Mater. 2006, 22, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, S.S.; de Rijk, W.G. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int. J. Prosthodont. 1993, 6, 462–467. [Google Scholar] [PubMed]
- Thompson, V.P.; Rekow, D.E. Dental ceramics and the molar crown testing ground. J. Appl. Oral Sci. 2004, 12, 26–36. [Google Scholar] [CrossRef]





| Material | Material Name | Material Composition | Manufacturer |
|---|---|---|---|
| Composite resin for additive manufacturing | VarseoSmile CrownPlus A2 | Esterification products of ethoxylated 4,4′-isopropylidenediphenol and 2-methylprop-2-enoic acid; silanized dental glass, methyl benzoylformate, and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide. The inorganic filler content (particle size: 0.7 µm) is 30–50% by weight. | Bego Gmbh, Bremen, Germany |
| Composite resin for additive manufacturing | Crowntec A2 | Esterification products of ethoxylated 4,4′-isopropylidenediphenol and 2-methylprop-2-enoic acid, silanized dental glass, pyrogenic silica, and initiators. The inorganic filler content (particle size: 0.7 µm) is 30–50% by weight. | Saremco Dental AG, Rebstein, Switzerland |
| Polymer-infiltrated ceramic network (PICN) material for subtractive manufacturing | Vita Enamic M2 HT | Polymer-Infiltrated Ceramic Network (PICN) material, composed of two interlocking networks. Ceramic Network (approx. 86 wt%/75 vol%): Fine-structure feldspathic ceramic (aluminum oxide enriched) with the following oxide components: Silica, Alumina, Sodium oxide, Potassium oxide, Boron trioxide, Zirconia, Calcium oxide Polymer Network (approx. 14 wt%/25 vol%): Cross-linked polymer structure infiltrated into the ceramic pores: UDMA (Urethane Dimethacrylate) TEGDMA (Triethylene Glycol Dimethacrylate) | Vita Zahnfabrick, Bad Säckingen, Germany |
| Before Thermal Aging | After Thermal Aging | p Value | ||||
|---|---|---|---|---|---|---|
| Group | mm | Mean ± SD | Median (Min–Max) | Mean ± SD | Median (Min–Max) | |
| CT | 1.0 | 0.141 ± 0.038 | 0.126 (0.098–0.214) | 0.138 ± 0.036 | 0.138 (0.090–0.199) | 0.699 |
| 1.5 | 0.146 ± 0.031 | 0.144 (0.102–0.198) | 0.142 ± 0.036 | 0.136 (0.090–0.207) | 0.579 | |
| 2.0 | 0.136 ± 0.026 | 0.136 (0.089–0.183) | 0.137 ± 0.023 | 0.141 (0.101–0.179) | 0.736 | |
| VS | 1.0 | 0.147 ± 0.038 | 0.138 (0.105–0.225) | 0.148 ± 0.039 | 0.145 (0.085–0.222) | 0.879 |
| 1.5 | 0.137 ± 0.028 | 0.137 (0.098–0.175) | 0.142 ± 0.028 | 0.144 (0.103–0.189) | 0.111 | |
| 2.0 | 0.135 ± 0.027 | 0.133 (0.092–0.177) | 0.127 ± 0.029 | 0.117 (0.093–0.169) | 0.116 | |
| VE | 1.0 | 0.166 ± 0.015 | 0.167 (0.144–0.191) | 0.168 ± 0.014 | 0.170 (0.145–0.195) | 0.324 |
| 1.5 | 0.178 ± 0.018 | 0.171 (0.155–0.214) | 0.182 ± 0.022 | 0.178 (0.156–0.216) | 0.375 | |
| 2.0 | 0.176 ± 0.021 | 0.175 (0.144–0.210) | 0.173 ± 0.021 | 0.168 (0.146–0.211) | 0.226 | |
| Control Group | Experimental Group | ||||
|---|---|---|---|---|---|
| Group | mm | Mean ± SD | Median (Min–Max) | Mean ± SD | Median (Min–Max) |
| 1.0 | 425.2 ± 66.3 | 444.1 (326.1–542.6) | 413.8 ± 76.7 | 395.6 (321.3–553.5) | |
| CT | 1.5 | 670.7 ± 74.8 | 676.7 (563.0–791.8) | 657.1 ± 70.8 | 665.9 (513.3–736.9) |
| 2.0 | 909.7 ± 97.4 | 892.5 (781.6–1063.2) | 902.4 ± 100.3 | 912.0 (756.5–1051.8) | |
| 1.0 | 444.1 ± 82.9 | 420.5 (349.8–622.8) | 434.3 ± 72 | 423.1 (328.5–592.2) | |
| VS | 1.5 | 688.3 ± 70.8 | 687.3 (584.0–841.7) | 676.4 ± 69.4 | 679.4 (578.8–794.3) |
| 2.0 | 953.1 ± 89.8 | 939.5 (824.5–1109.1) | 935.2 ± 92.9 | 939.2 (782.3–1059.2) | |
| 1.0 | 503.4 ± 51.5 | 506.0 (425.6–613.4) | 480.5 ± 65.1 | 459.3 (413.6–574.7) | |
| VE | 1.5 | 930.7 ± 83.6 | 937.6 (806.1–1063.1) | 898.4 ± 92.5 | 914.0 (782.8–1012.7) |
| 2.0 | 1291.3 ± 127.8 | 1296.4 (1042.7–1503.2) | 1245.2 ± 144.9 | 1229.2 (968.5–1447.1) | |
| mm | CT | VS | VE |
|---|---|---|---|
| 1.00 mm | 419.50 ± 70.00 d | 439.20 ± 75.76 d | 491.90 ± 58.29 d |
| 1.50 mm | 663.90 ± 71.21 c | 682.30 ± 68.51 c | 914.50 ± 87.37 b |
| 2.00 mm | 906.00 ± 96.30 b | 944.10 ± 89.40 b | 1268.00 ± 135.07 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sahin, N.I.; Tokar, E. Mechanical Properties of Additively Manufactured Composite Resin vs. Subtractively Manufactured Hybrid Ceramic Implant-Supported Permanent Crowns Before and After Thermal Aging. Micromachines 2026, 17, 116. https://doi.org/10.3390/mi17010116
Sahin NI, Tokar E. Mechanical Properties of Additively Manufactured Composite Resin vs. Subtractively Manufactured Hybrid Ceramic Implant-Supported Permanent Crowns Before and After Thermal Aging. Micromachines. 2026; 17(1):116. https://doi.org/10.3390/mi17010116
Chicago/Turabian StyleSahin, Nilufer Ipek, and Emre Tokar. 2026. "Mechanical Properties of Additively Manufactured Composite Resin vs. Subtractively Manufactured Hybrid Ceramic Implant-Supported Permanent Crowns Before and After Thermal Aging" Micromachines 17, no. 1: 116. https://doi.org/10.3390/mi17010116
APA StyleSahin, N. I., & Tokar, E. (2026). Mechanical Properties of Additively Manufactured Composite Resin vs. Subtractively Manufactured Hybrid Ceramic Implant-Supported Permanent Crowns Before and After Thermal Aging. Micromachines, 17(1), 116. https://doi.org/10.3390/mi17010116

