Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = impinging jet flows

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9064 KiB  
Article
A Computational Thermo-Fluid Dynamics Simulation of Slot Jet Impingement Using a Generalized Two-Equation Turbulence Model
by Antonio Mezzacapo, Rossella D’Addio and Giuliano De Stefano
Energies 2025, 18(14), 3862; https://doi.org/10.3390/en18143862 - 20 Jul 2025
Viewed by 961
Abstract
In this study, a computational thermo-fluid dynamics simulation of a wide-slot jet impingement heating process is performed. The present configuration consists of a turbulent incompressible air jet impinging orthogonally on an isothermal cold plate at a Reynolds number of around 11,000. The two-dimensional [...] Read more.
In this study, a computational thermo-fluid dynamics simulation of a wide-slot jet impingement heating process is performed. The present configuration consists of a turbulent incompressible air jet impinging orthogonally on an isothermal cold plate at a Reynolds number of around 11,000. The two-dimensional mean turbulent flow field is numerically predicted by solving Reynolds-averaged Navier–Stokes (RANS) equations, where the two-equation eddy viscosity k-ω model is utilized for turbulence closure. As the commonly used shear stress transport variant overpredicts heat transfer at the plate due to excessive turbulent diffusion, the recently developed generalized k-ω (GEKO) model is considered for the present analysis, where the primary model coefficients are suitably tuned. Through a comparative analysis of the various solutions against one another, in addition to reference experimental and numerical data, the effectiveness of the generalized procedure in predicting both the jet flow characteristics and the heat transfer at the plate is thoroughly evaluated, while determining the optimal set of model parameters. By improving accuracy within the RANS framework, the importance of model adaptability and parameter tuning for this specific fluid engineering application is demonstrated. This study offers valuable insights for improving predictive capability in turbulent jet simulations with broad engineering implications, particularly for industrial heating or cooling systems relying on wide-slot jet impingement. Full article
(This article belongs to the Special Issue Computational Fluids Dynamics in Energy Conversion and Heat Transfer)
Show Figures

Figure 1

17 pages, 4572 KiB  
Article
Numerical Analysis of Impingement Jet Combined Cooling with Film Cooling Holes and Thermal Barrier Coatings Using the Decoupling Method
by Siqi Liao, Li Shi, Xiao Tan, Changce Wang, Yue Luo, Rongli Deng, Haoyu Zhang, Chenwei Zheng and Jinfeng Peng
Coatings 2025, 15(7), 832; https://doi.org/10.3390/coatings15070832 - 16 Jul 2025
Viewed by 285
Abstract
This study investigates the impact of thermal barrier coatings (TBCs) on the individual contributions of cooling components in impingement-jet combined cooling under low Reynolds number conditions. Using decoupled methods, numerical simulations were conducted for cylindrical, fan-shaped, and conical hole geometries. The results show [...] Read more.
This study investigates the impact of thermal barrier coatings (TBCs) on the individual contributions of cooling components in impingement-jet combined cooling under low Reynolds number conditions. Using decoupled methods, numerical simulations were conducted for cylindrical, fan-shaped, and conical hole geometries. The results show that without TBCs, the conical hole provides the best cooling performance, while the fan-shaped hole performs the worst. After applying TBCs, the cooling effectiveness of the cylindrical and conical holes remains largely unchanged, but the fan-shaped hole shows significant improvement, with performance comparable to the conical hole. The cylindrical hole keeps a uniform shape, leading to increased velocity and preventing stable film formation. In contrast, the expanding flow passages of the fan-shaped and conical holes promote a gradual decrease in flow velocity, supporting stable film formation and effective thermal protection. Impingement cooling accounts for more than 75% of the overall cooling effectiveness for across hole types. For cylindrical and conical holes, the TBCs primarily enhance in-hole cooling, while for the fan-shaped hole, it increases in-hole cooling effectiveness and shifts film cooling effectiveness from negative to positive, significantly improving its overall contribution. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

15 pages, 3033 KiB  
Article
Particle Image Velocimetry Flow Characterisation of High-Convection Slot Nozzle Systems for Impingement Heat Transfer
by Eileen Trampe, Ida Daube, Dominik Büschgens, Herbert Pfeifer and Christian Wuppermann
Energies 2025, 18(6), 1363; https://doi.org/10.3390/en18061363 - 10 Mar 2025
Viewed by 737
Abstract
Impingement jets are used in many applications for high convective heat transfer. In order to optimise specialised nozzle systems, a comprehensive understanding of the gas flow is essential. The aim of this work is to investigate high-convective flows at Re = 10,000 to [...] Read more.
Impingement jets are used in many applications for high convective heat transfer. In order to optimise specialised nozzle systems, a comprehensive understanding of the gas flow is essential. The aim of this work is to investigate high-convective flows at Re = 10,000 to Re = 50,000 for a single slot nozzle (slot width W = 5 mm) and a slot nozzle array (distance between nozzle slots s = 70 mm) consisting of five nozzles. Particle image velocimetry measurements are taken for a distance between strip and nozzle exit of H = 50 mm and are compared to verify if the results from a single slot nozzle are transferable to a nozzle array. The presence of an array of nozzles not only creates a distinct zone where the individual jets interact but also changes the flow characteristics of the respective free jets. The potential core length in the nozzle field is significantly reduced compared to the single nozzle. It is therefore not possible to make a direct transfer of the results. Direct transferability of the results is therefore not possible. This means that further studies on whole arrays are needed to optimise nozzle arrays. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

19 pages, 4329 KiB  
Article
Experimental Analysis of Heat and Flow Characteristics on Inclined and Multiple Impingement Jet Heat Transfer Using Optimized Heat Sink
by Altug Karabey and Dogan Yorulmaz
Appl. Sci. 2025, 15(5), 2657; https://doi.org/10.3390/app15052657 - 1 Mar 2025
Viewed by 982
Abstract
Thermal management at a high heat flux is crucial for electronic devices, and jet impingement cooling is a promising solution. The heat transfer properties of a rectangular-finned heat sink are investigated under angled and multi-impingement jet configurations in this study. Experiments were conducted [...] Read more.
Thermal management at a high heat flux is crucial for electronic devices, and jet impingement cooling is a promising solution. The heat transfer properties of a rectangular-finned heat sink are investigated under angled and multi-impingement jet configurations in this study. Experiments were conducted with three different nozzle diameters, three different heat sink angles, three dimensionless nozzle-to-heat sink distance ratios, and five different velocity values. As a result, the obtained data are presented as Nu-Re graphs, and the impacts of the parameters on heat transfer (HT) are analyzed. It is concluded that the Nusselt number increases with the increasing nozzle diameter and Reynolds number, whereas it decreases with increasing distance between the nozzle and the heat sink. When comparing the angle values under an identical flow velocity, nozzle diameter, and dimensionless h/d distance experimental conditions, it was found that the Nusselt numbers were very close to each other. Under constant heat flux and for all investigated angles, the highest Nusselt number for the rectangular-finned inclined heat sink was observed at a 10° heat sink inclination, a nozzle diameter of D = 40 mm, a dimensionless distance of h/d = 6, and a flow velocity of 9 m/s. This study deepens the understanding of the heat transfer mechanism of impinging jets and provides an efficient method framework for practical applications. Full article
Show Figures

Figure 1

24 pages, 13687 KiB  
Article
Nanofluids as Coolants to Improve the Thermal Management System of a High-Power Aircraft Electric Motor
by Giuseppe Di Lorenzo, Diego Giuseppe Romano, Antonio Carozza and Antonio Pagano
Electronics 2025, 14(5), 911; https://doi.org/10.3390/electronics14050911 - 25 Feb 2025
Cited by 1 | Viewed by 934
Abstract
Electrification has become increasingly common in aerospace due to climate change concerns. After successful applications in general aviation aircraft, electrification is now addressing subregional (up to 19 passengers) and regional aircraft (around 80 passengers). Megawatt-class electric motors are needed both to drive propellers [...] Read more.
Electrification has become increasingly common in aerospace due to climate change concerns. After successful applications in general aviation aircraft, electrification is now addressing subregional (up to 19 passengers) and regional aircraft (around 80 passengers). Megawatt-class electric motors are needed both to drive propellers and to act as high-power generators in hybrid–electric propulsion systems. Power levels for this class of aircraft require a proper design of heat management systems capable of dissipating a much higher quantity of heat than that dissipated by traditional cooling systems. The technical solution here explored is based on the addition into a diathermic base liquid of nanoparticles, which can increase (by up to 30%) the thermal conductivity of the refrigerant, also providing large surface area enhancing the heat transfer capacity of base liquids. The Italian Aerospace Research Centre (CIRA), as part of the European research initiative Optimised Electric Network Architectures and Systems for More-Electric Aircraft (ORCHESTRA), developed a thermal management system (TMS) based on impinging jets technology for a 1 MW electric motor. In this work, a numerical verification of the possibility for nanofluids to improve the heat exchange efficiency of a submerged oil impinging jets TMS designed to directly cool the inner components of a 1 MW motor is conducted. Investigations aimed to analyse two nanoparticle types (alumina and graphite) added to diathermic oil with concentrations between 1% and 5% by volume. The application of nanofluids significantly increases final thermal conductivity with respect to conventional coolants, a 60% improvement in heat transfer at a fixed mass flow rate is achieved. Electric motor maximum temperatures are approximately 10% lower than those achieved with solely diathermic oil. This result is significant as a safety margin is needed in all cases where a sudden increase in power occurs. Full article
(This article belongs to the Special Issue Advanced Design in Electrical Machines)
Show Figures

Graphical abstract

23 pages, 8016 KiB  
Article
Flow Characteristics of a Dual Sweeping Jet Impinging on a Flat Surface
by Muhammad Zubair and Xin Wen
Actuators 2025, 14(2), 101; https://doi.org/10.3390/act14020101 - 19 Feb 2025
Cited by 1 | Viewed by 618
Abstract
The dual sweeping jet (DSJ)-producing fluidic oscillator is a novel device developed by sharing a feedback channel between two standard fluidic oscillators. This device produces a pair of sweeping jets in the outer domain and has the potential to be used for the [...] Read more.
The dual sweeping jet (DSJ)-producing fluidic oscillator is a novel device developed by sharing a feedback channel between two standard fluidic oscillators. This device produces a pair of sweeping jets in the outer domain and has the potential to be used for the better and uniform treatment of impinged surfaces. Therefore, it is important to investigate the extent of the synchronicity of these jets at different Re numbers and various aspect ratios in outer domains, and to comprehend their internal switching mechanism simultaneously. The time-averaged flow fields demonstrated that, at lower Re numbers, both sweeping jets were symmetric about their centerlines and the cores were strong. The strength of the cores deteriorated at higher Re numbers, and the flare regions became wider and stronger. Moreover, the transverse velocities pulled the sweeping jets away from the origin and a high upwash flow formed in-between the jets. The phase-averaged flow fields vividly illustrated the sharing mechanism between the two power nozzles through the formation of left- and right-loops consecutively in the shared feedback channel. These primary loops generated an auxiliary mechanism on both sides of a fluidic oscillator, which actually controlled the synchronicity of the two sweeping jets in the outer domain. Additionally, they also showed that both jets are properly synchronized and have strong cores at lower Re numbers. However, at higher Re numbers, greater velocities were found in the switching and sweeping mechanisms which caused asynchrony between the sweeping jets but nonetheless impinged a larger area and covered the region in-between the jets properly. The power nozzles were also found to self-feed themselves due to the hindrance at the ‘outer shoulders’ of this fluidic oscillator and hence caused the premature formation of a recirculation bubble of vorticity between the power nozzle and its respective outer island. Lastly, the aspect ratio analysis revealed that the asynchrony of DSJ at higher Re numbers can be mitigated by reducing the aspect ratio. Full article
Show Figures

Graphical abstract

21 pages, 3124 KiB  
Review
Recent Advances in Cooling Technology for the Leading Edge of Gas Turbine Blades
by Shixing Zhu, Yan Li, Junyang Yan and Chao Zhang
Energies 2025, 18(3), 540; https://doi.org/10.3390/en18030540 - 24 Jan 2025
Cited by 2 | Viewed by 3529
Abstract
As the inlet temperature of the gas turbine exceeds the high temperature limit of the blade materials, efficient leading edge cooling technologies are crucial for the further development of gas turbines. Therefore, this paper reviews the research progress on external cooling technology, internal [...] Read more.
As the inlet temperature of the gas turbine exceeds the high temperature limit of the blade materials, efficient leading edge cooling technologies are crucial for the further development of gas turbines. Therefore, this paper reviews the research progress on external cooling technology, internal cooling technology, and composite cooling technology for gas turbine rotating blade leading edge cooling. It focuses on the impact of the geometric shape, arrangement, and flow parameters of film cooling holes on external cooling performance, the influence of jet hole design, configuration, crossflow, ribs on internal cooling efficiency, and the characteristics and influencing factors of composite cooling technologies are also discussed. Among the most promising composite cooling techniques, the impingement jet film composite cooling technology and swirl film composite cooling technology stand out. For impingement jet film composite cooling technology, this paper explores the effects of blowing ratio, nozzle parameters, jet hole characteristics, and flow field parameters on the overall cooling performance of the rotating blade leading edge. Impingement jet film composite cooling technology has been shown to significantly improve the cooling performance of the leading edge compared to traditional single cooling techniques. For applications requiring large area cooling or maintaining film integrity, swirl film composite cooling technology not only enhances heat transfer efficiency but also improves the uniformity of heat transfer. The design of swirl nozzles, coolant flow rate, Reynolds number, and jet temperature all have significant effects on the heat transfer efficiency of swirl film composite cooling. To further advance the development of gas turbine rotating blade leading edge cooling technologies, it is recommended to focus on the study of film composite cooling techniques, particularly investigating the effects of various parameters of impingement, swirl on composite cooling performance. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

26 pages, 7027 KiB  
Article
Parametric CFD Study of Spray Drying Chamber Geometry: Part I—Effects on Airflow Dynamics
by Jairo Andrés Gutiérrez Suárez, Carlos Humberto Galeano Urueña and Alexánder Gómez Mejía
ChemEngineering 2025, 9(1), 5; https://doi.org/10.3390/chemengineering9010005 - 4 Jan 2025
Cited by 1 | Viewed by 1907
Abstract
Internal airflow dynamics play a crucial role in spray drying engineering by governing particle transport and, consequently, the quality of dried products. For this application, airflow dynamics represent short- and long-timescale behaviors across the main jet and recirculation regions and have been related, [...] Read more.
Internal airflow dynamics play a crucial role in spray drying engineering by governing particle transport and, consequently, the quality of dried products. For this application, airflow dynamics represent short- and long-timescale behaviors across the main jet and recirculation regions and have been related, among other factors, to spray chamber design. This study examines the parametric effects of key geometrical design parameters on internal airflow dynamics using Design of Experiments (DOE) methodologies and 3D Computational Fluid Dynamics (CFD) simulations. The CFD model adopts a cost-efficient approach, including adaptive mesh refinement (AMR) methods, enabling running multiple simulation cases while retaining turbulence-resolving capabilities. The results provide quantitative parameter–response relationships, offering insights into the impact of chamber geometry on complex airflow behaviors. Among the parameters studied, the chamber aspect ratio strongly influences the strength of external recirculation flows. The inlet swirl primarily governs the stability of central and recirculating flows, while the conical–cylindrical section topology, in conjunction with the jet Reynolds number, affects flow impingement on walls, predominantly caused by the precession and reversal of the central jet. This methodology demonstrates significant potential for future studies on particle drying, equipment, process scale-up, and alternative chamber configurations in spray drying systems. Full article
Show Figures

Figure 1

25 pages, 3148 KiB  
Review
A Review of Flow Field and Heat Transfer Characteristics of Jet Impingement from Special-Shaped Holes
by Liang Xu, Naiyuan Hu, Hongwei Lin, Lei Xi, Yunlong Li and Jianmin Gao
Energies 2024, 17(17), 4510; https://doi.org/10.3390/en17174510 - 9 Sep 2024
Cited by 1 | Viewed by 2754
Abstract
The jet impingement cooling technique is regarded as one of the most effective enhanced heat transfer techniques with a single-phase medium. However, in order to facilitate manufacturing, impingement with a large number of smooth circular hole jets is used in engineering. With the [...] Read more.
The jet impingement cooling technique is regarded as one of the most effective enhanced heat transfer techniques with a single-phase medium. However, in order to facilitate manufacturing, impingement with a large number of smooth circular hole jets is used in engineering. With the increasing maturity of additive technology, some new special-shaped holes (SSHs) may be used to further improve the cooling efficiency of jet impingement. Secondly, the heat transfer coefficient of the whole jet varies greatly on the impact target surface. The experiments with a large number of single smooth circular hole jets show that the heat transfer coefficient of the impact target surface will form a bell distribution—that is, the Nusselt number has a maximum value near the stagnation region, and then rapidly decreases exponentially in the radial direction away from the stagnation region. The overall surface temperature distribution is very uneven, and the target surface will form an array of cold spots, resulting in a high level of thermal stress, which will greatly weaken the structural strength and life of the equipment. Establishing how to ensure the uniformity of jet impingement cooling has become a new problem to be solved. In order to achieve uniform cooling, special-shaped holes that generate a swirling flow may be a solution. This paper presents a summary of the effects of holes with different geometrical features on the flow field and heat transfer characteristics of jet impingement cooling. In addition, the effect of jet impingement cooling with SSHs in different array methods is compared. The current challenges of jet impingement cooling technology with SSHs are discussed, as well as the prospects for possible future advances. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

17 pages, 68513 KiB  
Article
Computational Evaluation of Turbulent Supersonic Jet Impinging on Inclined Plate
by Antonio Mezzacapo and Giuliano De Stefano
Appl. Sci. 2024, 14(17), 7910; https://doi.org/10.3390/app14177910 - 5 Sep 2024
Cited by 2 | Viewed by 1841
Abstract
A computational fluid dynamics investigation of a turbulent supersonic jet impacting a solid flat plate is conducted utilizing the OpenFOAM software. The research focuses on simulating the three-dimensional mean compressible flow for jet impingement on an inclined plate by analyzing the complex flow [...] Read more.
A computational fluid dynamics investigation of a turbulent supersonic jet impacting a solid flat plate is conducted utilizing the OpenFOAM software. The research focuses on simulating the three-dimensional mean compressible flow for jet impingement on an inclined plate by analyzing the complex flow field and the surface distribution of pressure. Various simulations are carried out at a jet Mach number of 2.2 maintaining a constant nozzle-to-plate distance while varying the angle of inclination of the plate. In contrast to earlier numerical studies, this work employs a modern turbulence modeling technique known as detached eddy simulation (DES), along with a traditional unsteady Reynolds-averaged Navier–Stokes model. Making a comparison with experimental findings, the current analysis reveals that both turbulence modeling techniques effectively predict the mean pressure distribution on the plate. However, the DES approach offers deeper insights into the turbulent flow field, showing notable consistency with the experiments. The complex compressible flow patterns are simulated with higher accuracy compared to the traditional approach. Enhanced turbulence resolution is attained by utilizing the same computational grid with a limited increase in computational complexity. Full article
(This article belongs to the Special Issue Applied Computational Fluid Dynamics and Thermodynamics)
Show Figures

Figure 1

18 pages, 10942 KiB  
Article
A Study on the Impact Erosion Effect of a Two-Phase Jet Field on a Wall at Different Impact Distances by Numerical Simulation
by Ying Li, Mingzhu Dang and Yawei Wang
Fire 2024, 7(9), 312; https://doi.org/10.3390/fire7090312 - 4 Sep 2024
Viewed by 1011
Abstract
When a motor is accidentally started, the solid particles produced by fuel combustion have impact and erosion effects on the surrounding structure via gas ejection, and the structure of the bulkhead is damaged. Therefore, in this paper, the effect of solid particle phase [...] Read more.
When a motor is accidentally started, the solid particles produced by fuel combustion have impact and erosion effects on the surrounding structure via gas ejection, and the structure of the bulkhead is damaged. Therefore, in this paper, the effect of solid particle phase motion on a bulkhead was investigated. A two-dimensional SST k-ω model was used for the analysis. The grid size of the core area of a supersonic jet was selected as RN/24 by the calculation accuracy, and the resources and time consumption of the calculation were comprehensively considered. Based on the simulation of supersonic impact jets, the influence of the phase motion of solid particles was introduced, and the impact of a two-phase jet field on a wall was investigated. The addition of a particle phase created a hysteresis effect on the airflow, changing the shock structure of the pure gas-phase flow field. The rebound of the particle phase at the wall caused the waves in front of the wall to move forward and the stagnation bubble structures to disappear in some cases. The particle aggregation degree and collision angle would affect the particle erosion rate of solid bulkheads. The increase in particle jet impingement distance would change the distribution of particle aggregation and would influence the distribution of wall particle erosion rate and deposition rate. This paper would provide theoretical and engineering guidance for the safety protection design of magazines, which is of great significance for the safety assurance of ship magazines. Full article
(This article belongs to the Special Issue Protection of Ships against Fire and Personnel Evacuation)
Show Figures

Figure 1

13 pages, 16801 KiB  
Article
Experimental Erosion Flow Pattern Study of Pelton Runner Buckets Using a Non-Recirculating Test Rig
by Baig Mirza Umar, Zhengwei Wang, Sailesh Chitrakar, Bhola Thapa, Xingxing Huang, Ravi Poudel and Aaditya Karna
Energies 2024, 17(16), 4006; https://doi.org/10.3390/en17164006 - 13 Aug 2024
Cited by 2 | Viewed by 2404
Abstract
Sediment erosion of hydraulic turbines is a significant challenge in hydropower plants in mountainous regions like the European Alps, the Andes, and the Himalayan region. The erosive wear of Pelton runner buckets is influenced by a variety of factors, including the size, hardness, [...] Read more.
Sediment erosion of hydraulic turbines is a significant challenge in hydropower plants in mountainous regions like the European Alps, the Andes, and the Himalayan region. The erosive wear of Pelton runner buckets is influenced by a variety of factors, including the size, hardness, and concentration of silt particles; the velocity of the flow and impingement angle of the jet; the properties of the base material; and the operating hours of the turbine. This research aims to identify the locations most susceptible to erosion and to elucidate the mechanisms of erosion propagation in two distinct designs of Pelton runner buckets. The Pelton runner buckets were subjected to static condition tests with particle sizes of 500 microns and a concentration of 14,000 mg/L. The buckets were coated with four layers of paint, sequentially applied in red, yellow, green, and blue. The two Pelton buckets, D1 and D2, were evaluated for their erosion resistance properties. D2 demonstrated superior erosion resistance, attributed to its geometrical features and material composition, lower erosion rates, less material loss, and improved surface integrity compared with D1. This difference is primarily attributed to factors such as the splitter’s thickness, the jet’s impact angle, the velocity at which particles strike, and the concentration of sand. D2 exhibits a great performance in terms of erosion resistance among the two designs. This study reveals that the angle of jet impingement influences erosion progression and material loss, which is important to consider during a Pelton turbine’s design and operating conditions. Full article
Show Figures

Figure 1

18 pages, 2766 KiB  
Article
Flowfield and Noise Dynamics of Supersonic Rectangular Impinging Jets: Major versus Minor Axis Orientations
by Yogesh Mehta, Vikas N. Bhargav and Rajan Kumar
Fluids 2024, 9(8), 169; https://doi.org/10.3390/fluids9080169 - 24 Jul 2024
Cited by 1 | Viewed by 1441
Abstract
The current study explores the flowfield and noise characteristics of an ideally expanded supersonic (Mach 1.44) rectangular jet impinging on a flat surface. The existing literature is primarily concentrated on axisymmetric jets, known for their resonance dominance, pronounced unsteadiness, and acoustic signatures. In [...] Read more.
The current study explores the flowfield and noise characteristics of an ideally expanded supersonic (Mach 1.44) rectangular jet impinging on a flat surface. The existing literature is primarily concentrated on axisymmetric jets, known for their resonance dominance, pronounced unsteadiness, and acoustic signatures. In contrast, non-axisymmetric jets remain relatively less understood, particularly those impinging on a ground surface. By employing Schlieren imaging, high-frequency pressure measurements using high-bandwidth transducers, and particle image velocimetry (PIV), this research comprehensively examines the flow-acoustic phenomena. Schlieren imaging revealed distinct, coherent structures and strong acoustic waves, while pressure measurements at the impingement surface exhibited high-amplitude fluctuations, peaking at approximately 186 dB. Acoustic analysis identified multiple high-amplitude tones with unique directional characteristics, suggesting the potential for multiple simultaneous modes in rectangular jets. Furthermore, the PIV data elucidated differences in the jet shear layer and wall jet development attributed to the nozzle orientation. These findings contribute to a deeper understanding of non-axisymmetric jet behavior, offering insights relevant to fundamental flow physics and practical applications such as vertical takeoff and landing aircraft. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques)
Show Figures

Figure 1

16 pages, 8590 KiB  
Article
Large-Eddy Simulations of a Supersonic Impinging Jet Using OpenFOAM
by Rion Guang Yi You, Tze How New and Wai Lee Chan
Computation 2024, 12(6), 124; https://doi.org/10.3390/computation12060124 - 15 Jun 2024
Cited by 2 | Viewed by 2473
Abstract
Supersonic impinging jets are a versatile configuration that can model the compressible flows of cold-spray manufacturing and vertical take-off-and landing strategy. In this work, rhoCentralFoam, solver of the OpenFOAM framework, and a large-eddy simulation formulation were used to simulate an underexpanded supersonic [...] Read more.
Supersonic impinging jets are a versatile configuration that can model the compressible flows of cold-spray manufacturing and vertical take-off-and landing strategy. In this work, rhoCentralFoam, solver of the OpenFOAM framework, and a large-eddy simulation formulation were used to simulate an underexpanded supersonic jet of Mach 1.45 and nozzle pressure ratio of 4, impinging on a flat wall situated at 1.5 nozzle diameters away from the jet outlet. Care was taken in the mesh construction to properly capture the characteristic standoff shock and vortical structures. The grid convergence index was evaluated with three meshes of increasing spatial resolution. All meshes can generally be considered as sufficient in terms of results focused on time-averaged values and mean physical properties such as centerline Mach number profile. However, the highest resolution mesh was found to capture fine shear vortical structures and behaviors that are absent in the coarser cases. Therefore, the notion of adequate grid convergence may differ between analyses of time-averaged and transient information, and so should be determined by the user’s intention for conducting the simulations. To guide the selection of mesh resolution, scaling analyses were performed, for which the current rhoCentralFoam solver displays a good weak scaling performance and maintains a linear strong scaling up to 4096 cores (32 nodes) for an approximately 40 million-cell mesh. Due to the internode communication bottlenecks of OpenFOAM and improvements in central processing units, this work recommends, for future scaling analyses, adopting a “cells-per-node” basis over the conventional “cells-per-core” basis, with particular attention to the interconnect speed and architecture used. Full article
(This article belongs to the Special Issue Recent Advances in Numerical Simulation of Compressible Flows)
Show Figures

Graphical abstract

16 pages, 8680 KiB  
Article
Jet Electroforming of High-Aspect-Ratio Microcomponents by Periodically Lifting a Necked-Entrance Through-Mask
by Yasai Zhang, Pingmei Ming, Xinmin Zhang, Xinchao Li, Lunxu Li and Zheng Yang
Micromachines 2024, 15(6), 753; https://doi.org/10.3390/mi15060753 - 3 Jun 2024
Cited by 3 | Viewed by 1311
Abstract
High-aspect-ratio micro- and mesoscale metallic components (HAR-MMMCs) can play some unique roles in quite a few application fields, but their cost-efficient fabrication is significantly difficult to accomplish. To address this issue, this study proposes a necked-entrance through-mask (NTM) periodically lifting electroforming technology with [...] Read more.
High-aspect-ratio micro- and mesoscale metallic components (HAR-MMMCs) can play some unique roles in quite a few application fields, but their cost-efficient fabrication is significantly difficult to accomplish. To address this issue, this study proposes a necked-entrance through-mask (NTM) periodically lifting electroforming technology with an impinging jet electrolyte supply. The effects of the size of the necked entrance of the through-mask and the jet speed of the electrolyte on electrodeposition behaviors, including the thickness distribution of the growing top surface, deposition defect formation, geometrical accuracy, and electrodeposition rate, are investigated numerically and experimentally. Ensuring an appropriate size of the necked entrance can effectively improve the uniformity of deposition thickness, while higher electrolyte flow velocities help enhance the density of the components under higher current densities, reducing the formation of deposition defects. It was shown that several precision HAR-MMMCs with an AR of 3.65 and a surface roughness (Ra) of down to 36 nm can be achieved simultaneously with a relatively high deposition rate of 3.6 μm/min and thickness variation as low as 1.4%. Due to the high current density and excellent mass transfer effects in the electroforming conditions, the successful electroforming of components with a Vickers microhardness of up to 520.5 HV was achieved. Mesoscale precision columns with circular and Y-shaped cross-sections were fabricated by using this modified through-mask movable electroforming process. The proposed NTM periodic lifting electroforming method is promisingly advantageous in fabricating precision HAR-MMMCs cost-efficiently. Full article
Show Figures

Figure 1

Back to TopTop