Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = idelalisib

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1460 KiB  
Article
Induction of Sustained Remissions Associated with Immune Activation by Idelalisib in Patients with Follicular Lymphoma
by Anna-Carina Hund, Jörg Larsen and Gerald G. Wulf
Lymphatics 2025, 3(3), 22; https://doi.org/10.3390/lymphatics3030022 - 1 Aug 2025
Viewed by 122
Abstract
Phosphatidylinositol-3-kinase (PI3K) inhibition has emerged as a therapeutic option against indolent lymphoma, including relapsed follicular lymphoma (FL). While inhibition of active signaling in the lymphoma cell represents the primary mode of action, PI3K inhibition also exerts immunomodulatory effects. Here we have analyzed 17 [...] Read more.
Phosphatidylinositol-3-kinase (PI3K) inhibition has emerged as a therapeutic option against indolent lymphoma, including relapsed follicular lymphoma (FL). While inhibition of active signaling in the lymphoma cell represents the primary mode of action, PI3K inhibition also exerts immunomodulatory effects. Here we have analyzed 17 consecutive advanced treatment line FL patients treated with the delta-selective PI3K inhibitor idelalisib in a retrospective single-center observational study, with a specific focus on response and immune effects. Eleven patients achieved complete remission (CR) or partial remission (PR) with median response duration of 22 (11–88) months following a median idelalisib exposure of 15 (4–88) months. Disease response persisted in three patients for a median of 37 (21–63) months following cessation of idelalisib without another therapy being initiated. Autoimmune side effects occurred in eight of the eleven patients who responded, compared to none in six patients whose disease did not respond. In conclusion, a time-limited exposure to idelalisib may induce sustained remissions in a portion of patients with recurrent and/or refractory (r/r) FL, suggesting immunomodulatory effects of PI3K inhibition to be involved in the control of the disease. Full article
(This article belongs to the Collection Lymphomas)
Show Figures

Figure 1

27 pages, 1361 KiB  
Review
The Importance of Phosphoinositide 3-Kinase in Neuroinflammation
by Brock Wright, Samuel King and Cenk Suphioglu
Int. J. Mol. Sci. 2024, 25(21), 11638; https://doi.org/10.3390/ijms252111638 - 30 Oct 2024
Cited by 16 | Viewed by 2950
Abstract
Neuroinflammation, characterised by the activation of immune cells in the central nervous system (CNS), plays a dual role in both protecting against and contributing to the progression of neurodegenerative diseases, such as Alzheimer’s disease (AD) and multiple sclerosis (MS). This review explores the [...] Read more.
Neuroinflammation, characterised by the activation of immune cells in the central nervous system (CNS), plays a dual role in both protecting against and contributing to the progression of neurodegenerative diseases, such as Alzheimer’s disease (AD) and multiple sclerosis (MS). This review explores the role of phosphoinositide 3-kinase (PI3K), a key enzyme involved in cellular survival, proliferation, and inflammatory responses, within the context of neuroinflammation. Two PI3K isoforms of interest, PI3Kγ and PI3Kδ, are specific to the regulation of CNS cells, such as microglia, astrocytes, neurons, and oligodendrocytes, influencing pathways, such as Akt, mTOR, and NF-κB, that control cytokine production, immune cell activation, and neuroprotection. The dysregulation of PI3K signalling is implicated in chronic neuroinflammation, contributing to the exacerbation of neurodegenerative diseases. Preclinical studies show promise in targeting neuronal disorders using PI3K inhibitors, such as AS605240 (PI3Kγ) and idelalisib (PI3Kδ), which have reduced inflammation, microglial activation, and neuronal death in in vivo models of AD. However, the clinical translation of these inhibitors faces challenges, including blood–brain barrier (BBB) permeability, isoform specificity, and long-term safety concerns. This review highlights the therapeutic potential of PI3K modulation in neuroinflammatory diseases, identifying key gaps in the current research, particularly in the need for brain-penetrating and isoform-specific inhibitors. These findings underscore the importance of future research to develop targeted therapies that can effectively modulate PI3K activity and provide neuroprotection in chronic neurodegenerative disorders. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Immunology 2024)
Show Figures

Figure 1

27 pages, 8937 KiB  
Article
Using Multiscale Molecular Modeling to Analyze Possible NS2b-NS3 Protease Inhibitors from Philippine Medicinal Plants
by Allen Mathew Fortuno Cordero and Arthur A. Gonzales
Curr. Issues Mol. Biol. 2024, 46(7), 7592-7618; https://doi.org/10.3390/cimb46070451 - 18 Jul 2024
Viewed by 1996
Abstract
Within the field of Philippine folkloric medicine, the utilization of indigenous plants like Euphorbia hirta (tawa-tawa), Carica papaya (papaya), and Psidium guajava (guava) as potential dengue remedies has gained attention. Yet, limited research exists on their comprehensive [...] Read more.
Within the field of Philippine folkloric medicine, the utilization of indigenous plants like Euphorbia hirta (tawa-tawa), Carica papaya (papaya), and Psidium guajava (guava) as potential dengue remedies has gained attention. Yet, limited research exists on their comprehensive effects, particularly their anti-dengue activity. This study screened 2944 phytochemicals from various Philippine plants for anti-dengue activity. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling provided 1265 compounds demonstrating pharmacokinetic profiles suitable for human use. Molecular docking targeting the dengue virus NS2b-NS3 protease’s catalytic triad (Asp 75, Ser 135, and His 51) identified ten ligands with higher docking scores than reference compounds idelalisib and nintedanib. Molecular dynamics simulations confirmed the stability of eight of these ligand–protease complexes. Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) analysis highlighted six ligands, including veramiline (−80.682 kJ/mol), cyclobranol (−70.943 kJ/mol), chlorogenin (−63.279 kJ/mol), 25beta-Hydroxyverazine (−61.951 kJ/mol), etiolin (−59.923 kJ/mol), and ecliptalbine (−56.932 kJ/mol) with favorable binding energies, high oral bioavailability, and drug-like properties. This integration of traditional medical knowledge with advanced computational drug discovery methods paves new pathways for the development of treatments for dengue. Full article
(This article belongs to the Special Issue New Insight: Enzymes as Targets for Drug Development, 2nd Edition)
Show Figures

Figure 1

16 pages, 2688 KiB  
Article
PI3Kδ Inhibition Potentiates Glucocorticoids in B-lymphoblastic Leukemia by Decreasing Receptor Phosphorylation and Enhancing Gene Regulation
by Jessica A. O. Zimmerman, Mimi Fang and Miles A. Pufall
Cancers 2024, 16(1), 143; https://doi.org/10.3390/cancers16010143 - 27 Dec 2023
Cited by 3 | Viewed by 1432
Abstract
Glucocorticoids are the cornerstone of B-lymphoblastic leukemia (B-ALL) therapy. Because response to glucocorticoids alone predicts overall outcomes for B-ALL, enhancing glucocorticoid potency should improve treatment. We previously showed that inhibition of the lymphoid-restricted PI3Kδ with idelalisib enhances glucocorticoid activity in B-ALL cells. Here, [...] Read more.
Glucocorticoids are the cornerstone of B-lymphoblastic leukemia (B-ALL) therapy. Because response to glucocorticoids alone predicts overall outcomes for B-ALL, enhancing glucocorticoid potency should improve treatment. We previously showed that inhibition of the lymphoid-restricted PI3Kδ with idelalisib enhances glucocorticoid activity in B-ALL cells. Here, we show that idelalisib enhances glucocorticoid potency in 90% of primary B-ALL specimens and is most pronounced at sub-saturating doses of glucocorticoids near the EC50. Potentiation is associated with enhanced regulation of all glucocorticoid-regulated genes, including genes that drive B-ALL cell death. Idelalisib reduces phosphorylation of the glucocorticoid receptor (GR) at PI3Kδ/MAPK1 (ERK2) targets S203 and S226. Ablation of these phospho-acceptor sites enhances sensitivity to glucocorticoids with ablation of S226 in particular reducing synergy. We also show that phosphorylation of S226 reduces the affinity of GR for DNA in vitro. We propose that PI3Kδ inhibition improves glucocorticoid efficacy in B-ALL in part by decreasing GR phosphorylation, increasing DNA binding affinity, and enhancing downstream gene regulation. This mechanism and the response of patient specimens suggest that idelalisib will benefit most patients with B-ALL, but particularly patients with less responsive, including high-risk, disease. This combination is also promising for the development of less toxic glucocorticoid-sparing therapies. Full article
(This article belongs to the Special Issue Novel Targeted Therapies for Blood Cancer)
Show Figures

Figure 1

13 pages, 1034 KiB  
Article
Real-World Evidence on the Clinical Characteristics and Management of Patients with Chronic Lymphocytic Leukemia in Spain Using Natural Language Processing: The SRealCLL Study
by Javier Loscertales, Pau Abrisqueta-Costa, Antonio Gutierrez, José Ángel Hernández-Rivas, Rafael Andreu-Lapiedra, Alba Mora, Carolina Leiva-Farré, María Dolores López-Roda, Ángel Callejo-Mellén, Esther Álvarez-García and José Antonio García-Marco
Cancers 2023, 15(16), 4047; https://doi.org/10.3390/cancers15164047 - 10 Aug 2023
Cited by 7 | Viewed by 4315
Abstract
The SRealCLL study aimed to obtain real-world evidence on the clinical characteristics and treatment patterns of patients with chronic lymphocytic leukemia (CLL) using natural language processing (NLP). Electronic health records (EHRs) from seven Spanish hospitals (January 2016–December 2018) were analyzed using EHRead® [...] Read more.
The SRealCLL study aimed to obtain real-world evidence on the clinical characteristics and treatment patterns of patients with chronic lymphocytic leukemia (CLL) using natural language processing (NLP). Electronic health records (EHRs) from seven Spanish hospitals (January 2016–December 2018) were analyzed using EHRead® technology, based on NLP and machine learning. A total of 534 CLL patients were assessed. No treatment was detected in 270 (50.6%) patients (watch-and-wait, W&W). First-line (1L) treatment was identified in 230 (43.1%) patients and relapsed/refractory (2L) treatment was identified in 58 (10.9%). The median age ranged from 71 to 75 years, with a uniform male predominance (54.8–63.8%). The main comorbidities included hypertension (W&W: 35.6%; 1L: 38.3%; 2L: 39.7%), diabetes mellitus (W&W: 24.4%; 1L: 24.3%; 2L: 31%), cardiac arrhythmia (W&W: 16.7%; 1L: 17.8%; 2L: 17.2%), heart failure (W&W 16.3%, 1L 17.4%, 2L 17.2%), and dyslipidemia (W&W: 13.7%; 1L: 18.7%; 2L: 19.0%). The most common antineoplastic treatment was ibrutinib in 1L (64.8%) and 2L (62.1%), followed by bendamustine + rituximab (12.6%), obinutuzumab + chlorambucil (5.2%), rituximab + chlorambucil (4.8%), and idelalisib + rituximab (3.9%) in 1L and venetoclax (15.5%), idelalisib + rituximab (6.9%), bendamustine + rituximab (3.5%), and venetoclax + rituximab (3.5%) in 2L. This study expands the information available on patients with CLL in Spain, describing the diversity in patient characteristics and therapeutic approaches in clinical practice. Full article
Show Figures

Figure 1

13 pages, 1331 KiB  
Review
Management of Gastro-Intestinal Toxicity of the Pi3 Kinase Inhibitor: Optimizing Future Dosing Strategies
by Claire Breal, Frederic Beuvon, Thibault de Witasse-Thezy, Solene Dermine, Patricia Franchi-Rezgui, Benedicte Deau-Fisher, Lise Willems, Eric Grignano, Adrien Contejean, Didier Bouscary, Jean Luc Faillie, Jean-Marc Treluyer, Corinne Guerin, Laurent Chouchana and Marguerite Vignon
Cancers 2023, 15(8), 2279; https://doi.org/10.3390/cancers15082279 - 13 Apr 2023
Cited by 1 | Viewed by 2178
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway plays a key role in cancer progression and in host immunity. Idelalisib was the first of this class to be approved with the second-generation Pi3 kinase inhibitors copanlisib, duvelisib and umbralisib, subsequently being approved in the United States. [...] Read more.
The phosphatidylinositol 3-kinase (PI3K) pathway plays a key role in cancer progression and in host immunity. Idelalisib was the first of this class to be approved with the second-generation Pi3 kinase inhibitors copanlisib, duvelisib and umbralisib, subsequently being approved in the United States. Real-world data are lacking, however, in relation to the incidence and toxicity of Pi3 kinase inhibitor-induced colitis. We here review, in the first instance, the general landscape of the Pi3K inhibitors in the context of hematological malignancies, with a focus on the adverse gastrointestinal side effects reported by various clinical trials. We further review the available worldwide pharmacovigilance data in relation to these drugs. Finally, we describe our own real-world experience with idelalisib-induced colitis management in our center and in a national setting. Full article
(This article belongs to the Special Issue Cancer Therapy: Where We Are and Where We Need to Go)
Show Figures

Figure 1

16 pages, 326 KiB  
Review
Assessment of Impact of Human Leukocyte Antigen-Type and Cytokine-Type Responses on Outcomes after Targeted Therapy Currently Used to Treat Chronic Lymphocytic Leukemia
by Mihaela Andreescu, Nicoleta Berbec and Alina Daniela Tanase
J. Clin. Med. 2023, 12(7), 2731; https://doi.org/10.3390/jcm12072731 - 6 Apr 2023
Cited by 2 | Viewed by 2722
Abstract
Tumor growth and metastasis are reliant on intricate interactions between the host immune system and various counter-regulatory immune escape mechanisms employed by the tumor. Tumors can resist immune surveillance by modifying the expression of human leukocyte antigen (HLA) molecules, which results in the [...] Read more.
Tumor growth and metastasis are reliant on intricate interactions between the host immune system and various counter-regulatory immune escape mechanisms employed by the tumor. Tumors can resist immune surveillance by modifying the expression of human leukocyte antigen (HLA) molecules, which results in the impaired presentation of tumor-associated antigens, subsequently evading detection and destruction by the immune system. The management of chronic lymphocytic leukemia (CLL) is based on symptom severity and includes various types of targeted therapies, including rituximab, obinutuzumab, ibrutinib, acalabrutinib, zanubrutinib, idelalisib, and venetoclax. These therapies rely on the recognition of specific peptides presented by HLAs on the surface of tumor cells by T cells, leading to an immune response. HLA class I molecules are found in most human cell types and interact with T-cell receptors (TCRs) to activate T cells, which play a vital role in inducing adaptive immune responses. However, tumor cells may evade T-cell attack by downregulating HLA expression, limiting the efficacy of HLA-dependent immunotherapy. The prognosis of CLL largely depends on the presence or absence of genetic abnormalities, such as del(17p), TP53 point mutations, and IGHV somatic hypermutation status. These oral targeted therapies alone or in combination with anti-CD20 antibodies have replaced chemoimmunotherapy as the primary treatment for CLL. In this review, we summarize the current clinical evidence on the impact of HLA- and cytokine-type responses on outcomes after targeted therapies currently used to treat CLL. Full article
(This article belongs to the Section Hematology)
34 pages, 1093 KiB  
Review
Hepatotoxicity of Small Molecule Protein Kinase Inhibitors for Cancer
by Mauro Viganò, Marta La Milia, Maria Vittoria Grassini, Nicola Pugliese, Massimo De Giorgio and Stefano Fagiuoli
Cancers 2023, 15(6), 1766; https://doi.org/10.3390/cancers15061766 - 14 Mar 2023
Cited by 16 | Viewed by 6782
Abstract
Small molecule protein kinase inhibitors (PKIs) have become an effective strategy for cancer patients. However, hepatotoxicity is a major safety concern of these drugs, since the majority are reported to increase transaminases, and few of them (Idelalisib, Lapatinib, Pazopanib, Pexidartinib, Ponatinib, Regorafenib, Sunitinib) [...] Read more.
Small molecule protein kinase inhibitors (PKIs) have become an effective strategy for cancer patients. However, hepatotoxicity is a major safety concern of these drugs, since the majority are reported to increase transaminases, and few of them (Idelalisib, Lapatinib, Pazopanib, Pexidartinib, Ponatinib, Regorafenib, Sunitinib) have a boxed label warning. The exact rate of PKI-induced hepatoxicity is not well defined due to the fact that the majority of data arise from pre-registration or registration trials on fairly selected patients, and the post-marketing data are often based only on the most severe described cases, whereas most real practice studies do not include drug-related hepatotoxicity as an end point. Although these side effects are usually reversible by dose adjustment or therapy suspension, or by switching to an alternative PKI, and fatality is uncommon, all patients undergoing PKIs should be carefully pre-evaluated and monitored. The management of this complication requires an individually tailored reappraisal of the risk/benefit ratio, especially in patients who are responding to therapy. This review reports the currently available data on the risk and management of hepatotoxicity of all the approved PKIs. Full article
(This article belongs to the Special Issue Development of Small Molecule Inhibitors for Metastatic Cancer)
Show Figures

Figure 1

24 pages, 3408 KiB  
Article
Molecular Insight into Drug Resistance Mechanism Conferred by Aberrant PIK3CD Splice Variant in African American Prostate Cancer
by Siyoung Ha and Bi-Dar Wang
Cancers 2023, 15(4), 1337; https://doi.org/10.3390/cancers15041337 - 20 Feb 2023
Cited by 7 | Viewed by 2765
Abstract
Targeting PI3Kδ has emerged as a promising therapy for hematologic and non-hematologic malignancies. Previously, we identified an oncogenic splice variant, PIK3CD-S, conferring Idelalisib resistance in African American (AA) prostate cancer (PCa). In the current study, we employed a comprehensive analysis combining molecular [...] Read more.
Targeting PI3Kδ has emerged as a promising therapy for hematologic and non-hematologic malignancies. Previously, we identified an oncogenic splice variant, PIK3CD-S, conferring Idelalisib resistance in African American (AA) prostate cancer (PCa). In the current study, we employed a comprehensive analysis combining molecular biology, biochemistry, histology, in silico simulation, and in vitro functional assays to investigate the PIK3CD-S expression profiles in PCa samples and to elucidate the drug resistance mechanism mediated by PI3Kδ-S (encoded by PIK3CD-S). The immunohistochemistry, RT-PCR, and Western blot assays first confirmed that PI3Kδ-S is highly expressed in AA PCa. Compared with PCa expressing the full-length PI3Kδ-L, PCa expressing PI3Kδ-S exhibits enhanced drug resistance properties, including a higher cell viability, more antiapoptotic and invasive capacities, and constitutively activated PI3K/AKT signaling, in the presence of PI3Kδ/PI3K inhibitors (Idelalisib, Seletalisib, Wortmannin, and Dactolisib). Molecular docking, ATP-competitive assays, and PI3 kinase assays have further indicated a drastically reduced affinity of PI3Kδ inhibitors with PI3Kδ-S vs. PI3Kδ-L, attributed to the lack of core binding residues in the PI3Kδ-S catalytic domain. Additionally, SRSF2 has been identified as a critical splicing factor mediating exon 20 skipping in PIK3CD pre-mRNA. The inhibition of the SRSF2 activity by SRPIN340 successfully sensitizes AA PCa cells to PI3Kδ inhibitors, suggesting a novel therapeutic option for Idelalisib-resistant tumors. Full article
(This article belongs to the Special Issue The Role of Alternative Splicing in Cancer)
Show Figures

Figure 1

15 pages, 3115 KiB  
Article
Combined BCL-2 and PI3K/AKT Pathway Inhibition in KMT2A-Rearranged Acute B-Lymphoblastic Leukemia Cells
by Clemens Holz, Sandra Lange, Anett Sekora, Gudrun Knuebel, Saskia Krohn, Hugo Murua Escobar, Christian Junghanss and Anna Richter
Int. J. Mol. Sci. 2023, 24(2), 1359; https://doi.org/10.3390/ijms24021359 - 10 Jan 2023
Cited by 7 | Viewed by 3736
Abstract
Numerous hematologic neoplasms, including acute B-lymphoblastic leukemia (B-ALL), are characterized by overexpression of anti-apoptotic BCL-2 family proteins. Despite the high clinical efficacy of the specific BCL-2 inhibitor venetoclax in acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL), dose limitation and resistance argue [...] Read more.
Numerous hematologic neoplasms, including acute B-lymphoblastic leukemia (B-ALL), are characterized by overexpression of anti-apoptotic BCL-2 family proteins. Despite the high clinical efficacy of the specific BCL-2 inhibitor venetoclax in acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL), dose limitation and resistance argue for the early exploration of rational combination strategies. Recent data indicated that BCL-2 inhibition in B-ALL with KMT2A rearrangements is a promising intervention option; however, combinatorial approaches have not been in focus so far. The PI3K/AKT pathway has emerged as a possible target structure due to multiple interactions with the apoptosis cascade as well as relevant dysregulation in B-ALL. Herein, we demonstrate for the first time that combined BCL-2 and PI3K/AKT inhibition has synergistic anti-proliferative effects on B-ALL cell lines. Of note, all tested combinations (venetoclax + PI3K inhibitors idelalisib or BKM-120, as well as AKT inhibitors MK-2206 or perifosine) achieved comparable anti-leukemic effects. In a detailed analysis of apoptotic processes, among the PI3K/AKT inhibitors only perifosine resulted in an increased rate of apoptotic cells. Furthermore, the combination of venetoclax and perifosine synergistically enhanced the activity of the intrinsic apoptosis pathway. Subsequent gene expression studies identified the pro-apoptotic gene BBC3 as a possible player in synergistic action. All combinatorial approaches additionally modulated extrinsic apoptosis pathway genes. The present study provides rational combination strategies involving selective BCL-2 and PI3K/AKT inhibition in B-ALL cell lines. Furthermore, we identified a potential mechanistic background of the synergistic activity of combined venetoclax and perifosine application. Full article
(This article belongs to the Special Issue Protein Kinase in Disease)
Show Figures

Figure 1

13 pages, 2426 KiB  
Article
A ROR1 Small Molecule Inhibitor (KAN0441571C) Induced Significant Apoptosis of Mantle Cell Lymphoma (MCL) Cells
by Amineh Ghaderi, Wen Zhong, Mohammad Ali Okhovat, Johanna Aschan, Ann Svensson, Birgitta Sander, Johan Schultz, Thomas Olin, Anders Österborg, Mohammad Hojjat-Farsangi and Håkan Mellstedt
Pharmaceutics 2022, 14(10), 2238; https://doi.org/10.3390/pharmaceutics14102238 - 20 Oct 2022
Cited by 13 | Viewed by 3336
Abstract
The receptor tyrosine kinase orphan receptor 1 (ROR1) is absent in most normal adult tissues but overexpressed in various malignancies and is of importance for tumor cell survival, proliferation, and metastasis. In this study, we evaluated the apoptotic effects of a novel small [...] Read more.
The receptor tyrosine kinase orphan receptor 1 (ROR1) is absent in most normal adult tissues but overexpressed in various malignancies and is of importance for tumor cell survival, proliferation, and metastasis. In this study, we evaluated the apoptotic effects of a novel small molecule inhibitor of ROR1 (KAN0441571C) as well as venetoclax (BCL-2 inhibitor), bendamustine, idelalisib (PI3Kδ inhibitor), everolimus (mTOR inhibitor), and ibrutinib (BTK inhibitor) alone or in combination in human MCL primary cells and cell lines. ROR1 expression was evaluated by flow cytometry and Western blot (WB). Cytotoxicity was analyzed by MTT and apoptosis by Annexin V/PI staining as well as signaling and apoptotic proteins (WB). ROR1 was expressed both in patient-derived MCL cells and human MCL cell lines. KAN0441571C alone induced significant time- and dose-dependent apoptosis of MCL cells. Apoptosis was accompanied by decreased expression of MCL-1 and BCL-2 and cleavage of PARP and caspase 3. ROR1 was dephosphorylated as well as ROR1-associated signaling pathway molecules, including the non-canonical WNT signaling pathway (PI3Kδ/AKT/mTOR). The combination of KAN0441571C and ibrutinib, venetoclax, idelalisib, everolimus, or bendamustine had a synergistic apoptotic effect and significantly prevented phosphorylation of ROR1-associated signaling molecules as compared to KAN0441571C alone. Our results suggest that targeting ROR1 by a small molecule inhibitor, KAN0441571C, should be further evaluated particularly in combination with other targeting drugs as a new therapeutic approach for MCL. Full article
(This article belongs to the Special Issue Kinase Inhibitor for Cancer Therapy)
Show Figures

Figure 1

15 pages, 7979 KiB  
Article
Discovery of Novel PI3Kδ Inhibitors Based on the p110δ Crystal Structure
by Wenqing Jia, Shuyu Luo, Wennan Zhao, Weiren Xu, Yuxu Zhong and Dexin Kong
Molecules 2022, 27(19), 6211; https://doi.org/10.3390/molecules27196211 - 21 Sep 2022
Cited by 5 | Viewed by 2708
Abstract
PI3Kδ is a key mediator of B-cell receptor signaling and plays an important role in the pathogenesis of certain hematological malignancies, such as chronic lymphocytic leukemia. Idelalisib, which targets PI3Kδ specifically, is the first approved PI3K inhibitor for cancer therapy. Recently, we carried [...] Read more.
PI3Kδ is a key mediator of B-cell receptor signaling and plays an important role in the pathogenesis of certain hematological malignancies, such as chronic lymphocytic leukemia. Idelalisib, which targets PI3Kδ specifically, is the first approved PI3K inhibitor for cancer therapy. Recently, we carried out virtual screening, cell-based assays, adapta kinase assays, and molecular dynamic analysis to discover novel PI3Kδ inhibitors and identified NSC348884 as a lead PI3Kδ inhibitor. NSC348884 had an excellent docking score, potent PI3Kδ-inhibitory activity, antitumor effects on various cancer cell lines, and a favorable binding mode with the active site of PI3Kδ. Moreover, through the structural modification of NSC348884, we further discovered comp#1, which forms H-bonds with both Val828 and Lys779 in the ATP binding pocket of PI3Kδ, with a more favorable conformation binding to PI3Kδ. In addition, we found that N1, N1, N2-trimethyl-N2-((6-methyl-1H-benzo[d]imidazol-2-yl) methyl) ethane-1,2-diamine might be a potential scaffold structure. Thus, the result of this study provides a far more efficient approach for discovering novel inhibitors targeting PI3Kδ. Full article
(This article belongs to the Special Issue Small Molecule Immuno-Oncology Drugs in Cancer Therapy)
Show Figures

Graphical abstract

16 pages, 3681 KiB  
Article
mTORC2 Is the Major Second Layer Kinase Negatively Regulating FOXO3 Activity
by Lucia Jimenez, Carlos Amenabar, Victor Mayoral-Varo, Thomas A. Mackenzie, Maria C. Ramos, Andreia Silva, Giampaolo Calissi, Inês Grenho, Carmen Blanco-Aparicio, Joaquin Pastor, Diego Megías, Bibiana I. Ferreira and Wolfgang Link
Molecules 2022, 27(17), 5414; https://doi.org/10.3390/molecules27175414 - 24 Aug 2022
Cited by 6 | Viewed by 3495
Abstract
Forkhead box O (FOXO) proteins are transcription factors involved in cancer and aging and their pharmacological manipulation could be beneficial for the treatment of cancer and healthy aging. FOXO proteins are mainly regulated by post-translational modifications including phosphorylation, acetylation and ubiquitination. As these [...] Read more.
Forkhead box O (FOXO) proteins are transcription factors involved in cancer and aging and their pharmacological manipulation could be beneficial for the treatment of cancer and healthy aging. FOXO proteins are mainly regulated by post-translational modifications including phosphorylation, acetylation and ubiquitination. As these modifications are reversible, activation and inactivation of FOXO factors is attainable through pharmacological treatment. One major regulatory input of FOXO signaling is mediated by protein kinases. Here, we use specific inhibitors against different kinases including PI3K, mTOR, MEK and ALK, and other receptor tyrosine kinases (RTKs) to determine their effect on FOXO3 activity. While we show that inhibition of PI3K efficiently drives FOXO3 into the cell nucleus, the dual PI3K/mTOR inhibitors dactolisib and PI-103 induce nuclear FOXO translocation more potently than the PI3Kδ inhibitor idelalisib. Furthermore, specific inhibition of mTOR kinase activity affecting both mTORC1 and mTORC2 potently induced nuclear translocation of FOXO3, while rapamycin, which specifically inhibits the mTORC1, failed to affect FOXO3. Interestingly, inhibition of the MAPK pathway had no effect on the localization of FOXO3 and upstream RTK inhibition only weakly induced nuclear FOXO3. We also measured the effect of the test compounds on the phosphorylation status of AKT, FOXO3 and ERK, on FOXO-dependent transcriptional activity and on the subcellular localization of other FOXO isoforms. We conclude that mTORC2 is the most important second layer kinase negatively regulating FOXO activity. Full article
(This article belongs to the Special Issue Feature Papers in Chemical BiologyEdition of 2022-2023)
Show Figures

Figure 1

23 pages, 826 KiB  
Review
Old and New Drugs for Chronic Lymphocytic Leukemia: Lights and Shadows of Real-World Evidence
by Monia Marchetti, Candida Vitale, Gian Matteo Rigolin, Alessandra Vasile, Andrea Visentin, Lydia Scarfò, Marta Coscia and Antonio Cuneo
J. Clin. Med. 2022, 11(8), 2076; https://doi.org/10.3390/jcm11082076 - 7 Apr 2022
Cited by 8 | Viewed by 3358
Abstract
Several novel treatments for chronic lymphocytic leukemia (CLL) have been recently approved based on the results of randomized clinical trials. However, real-world evidence (RWE) is also requested before and after drug authorization in order to confirm safety and to provide data for health [...] Read more.
Several novel treatments for chronic lymphocytic leukemia (CLL) have been recently approved based on the results of randomized clinical trials. However, real-world evidence (RWE) is also requested before and after drug authorization in order to confirm safety and to provide data for health technology assessments. We conducted a scoping review of the available RWE for targeted treatments of CLL, namely ibrutinib, acalabrutinib, idelalisib, and venetoclax, as well as for chemoimmunotherapy (CIT). In particular, we searched studies published since 1 January 2010 and reported outcomes of the above treatments based on health databases, registries, or phase IV studies, including named-patient programs. We included both full papers and abstracts of studies presented at major meetings. Overall, 110 studies were selected and analyzed: 28,880 patients were treated with ibrutinib, 1424 with idelalisib, 751 with venetoclax, 496 with acalabrutinib, and 14,896 with CIT. Reported discontinuation rates were higher than in clinical trials, while effectiveness could not be indirectly compared with clinical trials since a detailed case mix, including cytogenetic risk factors, was partially available and propensity scores rarely applied. RWE on CLL can help to set realistic outcomes with novel treatments, however, real-world studies should be fostered, and available data shared. Full article
(This article belongs to the Special Issue Advances in the Treatment of Chronic Lymphocytic Leukemia)
Show Figures

Figure 1

30 pages, 2731 KiB  
Article
Structural Insights from Molecular Modeling of Isoindolin-1-One Derivatives as PI3Kγ Inhibitors against Gastric Carcinoma
by Suparna Ghosh and Seung Joo Cho
Biomedicines 2022, 10(4), 813; https://doi.org/10.3390/biomedicines10040813 - 30 Mar 2022
Cited by 8 | Viewed by 3333
Abstract
The upregulation of phosphoinositol-3-kinase γ (PI3Kγ) is deemed to be positively correlated with tumor-associated-macrophage (TAM)-mediated gastric carcinoma (GC). PI3Kγ suppresses tumor necrosis factor-alpha (TNF-α) and interleukin-12 (IL-12) through activation of the AKT/mTOR pathway, which promotes the immunosuppressant phenotype of TAM. Unlike α and [...] Read more.
The upregulation of phosphoinositol-3-kinase γ (PI3Kγ) is deemed to be positively correlated with tumor-associated-macrophage (TAM)-mediated gastric carcinoma (GC). PI3Kγ suppresses tumor necrosis factor-alpha (TNF-α) and interleukin-12 (IL-12) through activation of the AKT/mTOR pathway, which promotes the immunosuppressant phenotype of TAM. Unlike α and β isoforms, δ and γ isoforms are primarily distributed in leucocytes and macrophages. Dual inhibitors against PI3Kδ and PI3Kγ have been proven to have merits in targeting solid tumors. Furthermore, it has been found that PI3Kδ is activated by cytokines, while PI3Kγ is activated by G-protein-coupled receptors (GPCRs). This facilitates determining the functional difference between these two isoforms. For this goal, selective inhibitors would be immensely helpful. In the current manuscript, we conducted various molecular modeling studies with a series of isoindolin-1-one derivatives as potent PI3Kγ inhibitors by combining molecular docking, molecular dynamics (MD), molecular mechanics, Poisson–Boltzmann/generalized Born surface area (MM-PB/GBSA) binding free energy calculation, and three-dimensional structure–activity relationship (3D-QSAR) study. To evaluate the selectivity of γ isoform over δ, the molecular modeling studies of idelalisib analogs reported as PI3Kδ inhibitors were also investigated. The contour polyhedrons were generated from the comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) around the ligand-bound active site for both isoforms, which could emphasize plausible explanations for the physicochemical factors that affect selective ligand recognition. The binding modalities of the two isoforms using CoMFA and MD models were compared, which suggested some key differences in the molecular interactions with the ligands and could be summarized as three subsites (one affinity subsite near the C-helix and DFG and two hydrophobic subsites). In the context of the structure–activity relationship (SAR), several new compounds were designed using a fragment-substitution strategy with the aim of selectively targeting PI3Kγ. The pIC50 values of the designed compounds were predicted by the 3D-QSAR models, followed by the MM-PB/GBSA binding energy estimation. The overall findings suggest that the designed compounds have the potential to be used as PI3Kγ inhibitors with a higher binding affinity and selectivity. Full article
(This article belongs to the Special Issue Gastric Cancer: From Translational to Clinical Molecule Studies)
Show Figures

Figure 1

Back to TopTop