Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = icing evolution curves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1168 KiB  
Article
Description of the Serological Response After Treatment of Chronic Imported Schistosomiasis
by Marta González-Sanz, Irene Martín-Rubio, Oihane Martín, Alfonso Muriel, Sagrario de la Fuente-Hernanz, Clara Crespillo-Andújar, Sandra Chamorro-Tojeiro, Begoña Monge-Maíllo, Francesca F. Norman and José A. Pérez-Molina
Trop. Med. Infect. Dis. 2025, 10(1), 22; https://doi.org/10.3390/tropicalmed10010022 - 14 Jan 2025
Cited by 1 | Viewed by 1026
Abstract
Background: Chronic schistosomiasis can lead to significant morbidity. Serology is highly sensitive; however, its role in assessing treatment response is controversial. This study aimed to analyze serological values following treatment of chronic imported schistosomiasis. Methods: A retrospective observational study was performed including patients [...] Read more.
Background: Chronic schistosomiasis can lead to significant morbidity. Serology is highly sensitive; however, its role in assessing treatment response is controversial. This study aimed to analyze serological values following treatment of chronic imported schistosomiasis. Methods: A retrospective observational study was performed including patients treated for chronic imported schistosomiasis from 2018 to 2022 who had at least one serological result at baseline and during follow-up. Demographic, clinical, and laboratory data were evaluated. Generalized estimating equation (GEE) models and Kaplan–Meier curves were used to analyze the evolution of serological values. Results: Of the 83 patients included, 72 (86.7%) were male, and the median age was 26 years (IQR 22–83). Most patients, 76 (91.6%), were migrants from sub-Saharan Africa. While 24 cases (28.9%) presented with urinary symptoms, the majority (59; 71.1%) were asymptomatic. Schistosoma haematobium eggs were observed in five cases (6.2%). Eosinophilia was present in 34 participants (40.9%). All patients had an initial positive Schistosoma ELISA serology, median ODI 2.3 (IQR 1.5–4.4); the indirect hemagglutination (IHA) test was positive/indeterminate in 34 cases (43.1%). Following treatment with praziquantel, serology values significantly decreased: −0.04 (IC95% −0.073, −0.0021) and −5.73 (IC95% −9.92, −1.53) units per month for ELISA and IHA, respectively. A quarter of patients (25%) had negative ELISA results 63 weeks after treatment. All symptomatic cases were clinically cured. Conclusions: Serial serological determinations could be helpful for monitoring chronic schistosomiasis in non-endemic regions. The ideal timing for these follow-up tests is yet to be determined. Further research is needed to determine the factors that influence a negative result during follow-up. Full article
Show Figures

Figure 1

21 pages, 6398 KiB  
Article
Early Internal Short Circuit Diagnosis for Lithium-Ion Battery Packs Based on Dynamic Time Warping of Incremental Capacity
by Meng Zhang, Qiang Guo, Ke Fu, Xiaogang Du, Hao Zhang, Qi Zuo, Qi Yang and Chao Lyu
Batteries 2024, 10(11), 378; https://doi.org/10.3390/batteries10110378 - 28 Oct 2024
Cited by 1 | Viewed by 1743
Abstract
Timely identification of early internal short circuit faults, commonly referred to as micro short circuits (MSCs), is essential yet poses significant challenges for the safe and reliable operation of lithium-ion battery (LIB) energy storage systems. This paper introduces an innovative diagnostic method for [...] Read more.
Timely identification of early internal short circuit faults, commonly referred to as micro short circuits (MSCs), is essential yet poses significant challenges for the safe and reliable operation of lithium-ion battery (LIB) energy storage systems. This paper introduces an innovative diagnostic method for early internal short circuits in LIB packs, utilizing dynamic time warping (DTW) applied to incremental capacity (IC). Initially, the terminal voltages of all cells within the LIB pack are ordered at any moment to determine the median terminal voltage, which is then used to generate the median IC curve. This curve acts as a reference benchmark that represents the condition of healthy cells in the pack. Subsequently, the DTW algorithm is utilized to measure the similarity between each cell’s IC curve and the median IC curve. Cells exhibiting similarity scores that exceed a specified threshold are identified as having MSC faults. Lastly, for the cells diagnosed with MSC conditions, a method for estimating short-circuit resistance (SR) based on variations in maximum charging voltage is devised to quantitatively evaluate the severity and evolution of the MSC. Experimental findings reveal that the proposed method effectively identifies MSC cells in the LIB pack and estimates their SRs without the necessity of a battery model, thereby affirming the method’s validity. Full article
Show Figures

Figure 1

17 pages, 3613 KiB  
Article
Analysis of Local Scour around Double Piers in Tandem Arrangement in an S-Shaped Channel under Ice-Jammed Flow Conditions
by Shihao Dong, Zhenhua Zhang, Zhicong Li, Pangpang Chen, Jun Wang and Guowei Li
Water 2024, 16(19), 2831; https://doi.org/10.3390/w16192831 - 6 Oct 2024
Cited by 2 | Viewed by 1098
Abstract
The stability of bridge foundations is affected by local scour, and the formation of ice jams exacerbates local scour around bridge piers. These processes, particularly the evolution of ice jams and local scour around piers, are more complex in curved sections than in [...] Read more.
The stability of bridge foundations is affected by local scour, and the formation of ice jams exacerbates local scour around bridge piers. These processes, particularly the evolution of ice jams and local scour around piers, are more complex in curved sections than in straight sections. This study, based on experiments in an S-shaped channel, investigates how various factors—the flow Froude number, ice–water discharge rate, median particle diameter, pier spacing, and pier diameter—affect the maximum local scour depth around double piers in tandem and the distribution of ice jam thickness. The results indicate that under ice-jammed flow conditions, the maximum local scour depth around double piers in tandem is positively correlated with the ice–water discharge rate, pier spacing, and pier diameter and negatively correlated with median particle diameter. The maximum local scour depth is positively correlated with the flow Froude number when it ranges from 0.1 to 0.114, peaking at 0.114. Above this value, the correlation becomes negative. In curved channels, the arrangement of double piers in tandem substantially influences ice jam thickness distribution, with increases in pier diameter and spacing directly correlating with greater ice jam thickness at each cross-section. Furthermore, ice jam thickness is responsive to flow conditions, escalating with higher ice–water discharge rates and decreasing flow Froude numbers. Full article
(This article belongs to the Special Issue Cold Region Hydrology and Hydraulics)
Show Figures

Figure 1

25 pages, 15152 KiB  
Article
Effects of Mix Components on Fracture Properties of Seawater Volcanic Scoria Aggregate Concrete
by Yijie Huang, Lina Zheng, Peng Li, Qing Wang and Yukun Zhang
Materials 2024, 17(16), 4100; https://doi.org/10.3390/ma17164100 - 19 Aug 2024
Viewed by 1127
Abstract
The fracture mechanism and macro-properties of SVSAC were studied using a novel test system combined with numerical simulations, which included three-point bending beam tests, the digital image correlation (DIC) technique, scanning electron microscopy (SEM), and ABAQUS analyses. In total, 9 groups and 36 [...] Read more.
The fracture mechanism and macro-properties of SVSAC were studied using a novel test system combined with numerical simulations, which included three-point bending beam tests, the digital image correlation (DIC) technique, scanning electron microscopy (SEM), and ABAQUS analyses. In total, 9 groups and 36 specimens were fabricated by considering two critical parameters: initial notch-to-depth ratios (a0/h) and concrete mix components (seawater and volcanic scoria coarse aggregate (VSCA)). Changes in fracture parameters, such as the load-crack mouth opening displacement curve (P-CMOD), load-crack tip opening displacement curve (P-CTOD), and fracture energy (Gf), were obtained. The typical double-K fracture parameters (i.e., initial fracture toughness (KICini) and unstable fracture toughness (KICun)) and tension-softening (σ-CTOD) curve were analyzed. The test results showed that the initial cracking load (Pini), Gf, and characteristic length (Lch) of the SVSAC increased with decreasing a0/h. Compared with the ordinary concrete (OC) specimen, the P-CMOD and P-CTOD curves of the specimen changed after using seawater and VSCA. The evolution of the crack propagation length was obtained through the DIC technique, indicating cracks appeared earlier and the fracture properties of specimen decreased after using VSCA. Generally, the KICun and KICini of SVSAC were 36.17% and 8.55% lower than those of the OC specimen, respectively, whereas the effects of a0/h were negligible. The reductions in Pini, Gf, and Lch of the specimen using VSCA were 10.94%, 32.66%, and 60.39%, respectively; however, seawater efficiently decreased the negative effect of VSCA on the fracture before the cracking width approached 0.1 mm. Furthermore, the effects of specimen characteristics on the fracture mechanism were also studied through numerical simulations, indicating the size of the beam changed the fracture toughness. Finally, theoretical models of the double-K fracture toughness and the σ-CTOD relations were proposed, which could prompt their application in marine structures. Full article
Show Figures

Figure 1

20 pages, 12121 KiB  
Article
Simulation of Frost-Heave Failure of Air-Entrained Concrete Based on Thermal–Hydraulic–Mechanical Coupling Model
by Xinmiao Wang, Feng Xue, Xin Gu and Xiaozhou Xia
Materials 2024, 17(15), 3727; https://doi.org/10.3390/ma17153727 - 27 Jul 2024
Cited by 2 | Viewed by 1531
Abstract
The internal pore structural characteristics and microbubble distribution features of concrete have a significant impact on its frost resistance, but their size is relatively small compared to aggregates, making them difficult to visually represent in the mesoscopic numerical model of concrete. Therefore, based [...] Read more.
The internal pore structural characteristics and microbubble distribution features of concrete have a significant impact on its frost resistance, but their size is relatively small compared to aggregates, making them difficult to visually represent in the mesoscopic numerical model of concrete. Therefore, based on the ice-crystal phase transition mechanism of pore water and the theory of fine-scale inclusions, this paper establishes an estimation model for effective thermal conductivity and permeability coefficients that can reflect the distribution characteristics of the internal pore size and the content of microbubbles in porous media and explores the evolution mechanism of effective thermal conductivity and permeability coefficients during the freezing process. The segmented Gaussian integration method is adopted for the calculation of integrals involving pore size distribution curves. In addition, based on the concept that the fracture phase represents continuous damage, a switching model for the permeability coefficient is proposed to address the fundamental impact of frost cracking on permeability. Finally, the proposed estimation models for thermal conductivity and permeability are applied to the cement mortar and the interface transition zone (ITZ), and a thermal–hydraulic–mechanical coupling finite element model of concrete specimens at the mesoscale based on the fracture phase-field method is established. After that, the frost-cracking mechanism in ordinary concrete samples during the freezing process is explored, as well as the mechanism of microbubbles in relieving pore pressure and the adverse effect of accelerated cooling on frost cracking. The results show that the cracks first occurred near the aggregate on the concrete sample surface and then extended inward along the interface transition zone, which is consistent with the frost-cracking scenario of concrete structures in cold regions. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

25 pages, 2874 KiB  
Article
Identification of Trends in Dam Monitoring Data Series Based on Machine Learning and Individual Conditional Expectation Curves
by Miguel Á. Fernández-Centeno, Patricia Alocén and Miguel Á. Toledo
Water 2024, 16(9), 1239; https://doi.org/10.3390/w16091239 - 26 Apr 2024
Viewed by 1847
Abstract
Dams are complex systems that involve both the structure itself and its foundation. Rheological phenomena, expansive reactions, or alterations in the geotechnical parameters of the foundation, among others, result in non-reversible and cumulative modifications in the dam response, leading to trends in the [...] Read more.
Dams are complex systems that involve both the structure itself and its foundation. Rheological phenomena, expansive reactions, or alterations in the geotechnical parameters of the foundation, among others, result in non-reversible and cumulative modifications in the dam response, leading to trends in the monitoring data series. The accurate identification and definition of these trends to study their evolution are key aspects of dam safety. This manuscript proposes a methodology to identify trends in dam behavioural data series by identifying the influence of the time variable on the predictions provided by the ML models. Initially, ICE curves and SHAP values are employed to extract temporal dependence, and the ICE curves are found to be more precise and efficient in terms of computational cost. The temporal dependencies found are adjusted using a GWO algorithm to different function characteristics of irreversible processes in dams. The function that provides the best fit is selected as the most plausible. The results obtained allow us to conclude that the proposed methodology is capable of obtaining estimates of the most common trends that affect movements in concrete dams with greater precision than the statistical models most commonly used to predict the behaviour of these types of variables. These results are promising for its general application to other types of dam monitoring data series, given the versatility demonstrated for the unsupervised identification of temporal dependencies. Full article
Show Figures

Figure 1

12 pages, 47347 KiB  
Article
Ecotoxicity of 2,4-Dichlorophenol to Microsorium pteropus by High Spatial Resolution Mapping of Stoma Oxygen Emission
by Ning Zhong and Daoyong Zhang
Water 2024, 16(8), 1146; https://doi.org/10.3390/w16081146 - 18 Apr 2024
Viewed by 1491
Abstract
The toxicity of emerging organic pollutants to photosystems of aquatic plants is still not well clarified. This study aimed to develop a novel ecotoxicological experimental protocol based on nanoscale electrochemical mapping of photosynthetic oxygen evolution of aquatic plants by scanning electrochemical microscopy (SECM). [...] Read more.
The toxicity of emerging organic pollutants to photosystems of aquatic plants is still not well clarified. This study aimed to develop a novel ecotoxicological experimental protocol based on nanoscale electrochemical mapping of photosynthetic oxygen evolution of aquatic plants by scanning electrochemical microscopy (SECM). The protocol was also checked by confocal laser scanning microscopy (CLSM), the traditional Clark oxygen electrode method, and the chlorophyll fluorescence technique. The typical persistent organic pollutant 2,4-dichlorophenol (2,4-DCP) in a water environment and the common aquatic Microsorium pteropus (M. pteropus) were chosen as the model organic pollutant and tested plant, respectively. It was found that the SECM method could discriminate the responses of stoma micromorphology and spatial pattens of photosynthetic oxygen evolution on single stoma well. The shape of stoma blurred with increasing 2,4-DCP concentration, which was in good agreement with the CLSM images. The dose–response curves and IC50 values obtained from the SECM data were verified by the data measured by the traditional Clark oxygen electrode method and chlorophyll fluorescence test. The IC50 value of single-stoma oxygen emission of plant leaves exposed for 24 h, which was derived from the SECM current data (32,535 μg L−1), was close to those calculated from the maximum photosynthetic efficiency (Fv/Fm) measured by the chlorophyll fluorescence test (33,963 μg L−1) and the Clark oxygen electrode method photosynthetic oxygen evolution rate (32,375 μg L−1). The 72 h and 96 h 2,4-DCP exposure data further confirmed the reliability of the nanoscale stoma oxygen emission mapping methodology for ecotoxicological assessment. In this protocol, the procedures for how to collect effective electrochemical data and how to extract useful information from the single-stoma oxygen emission pattern were well established. This study showed that SECM is a feasible and reliable ecotoxicological tool for evaluation of toxicity of organic pollutants to higher plants with a unique nanoscale visualization advantage over the conventional methods. Full article
(This article belongs to the Special Issue Research and Methodology on New Contaminants in Water and Soil)
Show Figures

Figure 1

14 pages, 3425 KiB  
Article
A Novel Generalized Clapeyron Equation-Based Model for Capturing the Soil Freezing Characteristics Curve of Saline Soil: Validation by Small Sample Lab and Field Experiments
by Liwen Wang, Xianghao Wang, Juan Han, Chaozi Wang, Chenglong Zhang and Zailin Huo
Water 2024, 16(5), 670; https://doi.org/10.3390/w16050670 - 25 Feb 2024
Viewed by 1701
Abstract
The soil freezing characteristic curve (SFCC) describes the relationship between the freezing point and unfrozen water content, which are two critical parameters in depicting the heat, solute, and water transport in frozen soil. In this paper, we propose a novel Generalized Clapeyron Equation [...] Read more.
The soil freezing characteristic curve (SFCC) describes the relationship between the freezing point and unfrozen water content, which are two critical parameters in depicting the heat, solute, and water transport in frozen soil. In this paper, we propose a novel Generalized Clapeyron Equation (GCE)-based model, the GCE-Salt Model, to better capture the SFCC in frozen soil in the presence of solute. It keeps the matric potential Ψf in the GCE as its original meaning and incorporates the effect of solute potential in the equilibrium freezing temperature. The performance of our GCE-Salt Model was validated by both lab and field experimental data and compared with related models (Combined Model and GCE-Tan Model). The GCE-Salt Model performed exceptionally well in extremely saline soil and it performed well in both non-saline and saline soil. (1) Our GCE-Salt Model could capture the SFCC of non-saline soil equally as well as the Combined Model (NSE = 0.866); (2) our GCE-Salt Model performed similarly well as the Combined Model and a little better than the GCE-Tan Model for the slightly to highly saline soil (NSE ≥ 0.80 for three models); and (3) our GCE-Salt Model (NSE = 0.919) beat the Combined Model (NSE = 0.863) and the GCE-Tan Model (NSE = 0.62) in capturing the SFCC of extremely saline soil, mainly because the inherent expression of our GCE-Salt Model can more accurately capture the freezing point. Our findings highlight the effect of solute potential on the ice–water change and could improve the understanding of the effect of freezing and thawing on the thermal–hydrological processes, structure of saline soil, and landscape evolution in cold regions. Full article
Show Figures

Figure 1

14 pages, 6398 KiB  
Article
The Incremental Capacity Curves and Frequency Response Characteristic Evolution of Lithium Titanate Battery during Ultra-High-Rate Discharging Cycles
by Chu Wang, Yaohong Sun, Yinghui Gao and Ping Yan
Energies 2023, 16(8), 3434; https://doi.org/10.3390/en16083434 - 13 Apr 2023
Cited by 3 | Viewed by 2483
Abstract
The high-rate discharging performance of lithium titanate batteries is a crucial aspect of their functionality. Under high-power demands, the discharge rate, which is defined as the ratio of discharge current to the maximum capacity, can exceed 50 C or higher. This study investigates [...] Read more.
The high-rate discharging performance of lithium titanate batteries is a crucial aspect of their functionality. Under high-power demands, the discharge rate, which is defined as the ratio of discharge current to the maximum capacity, can exceed 50 C or higher. This study investigates the evolution of incremental capacity (IC) curves and frequency response characteristic of 2 Ah lithium titanate batteries subjected to aging cycles at 50 C. The results provide a new indicator to assess the fading of the state of health (SOH) of lithium titanate batteries during ultra-high-rate discharge cycles. Full article
Show Figures

Figure 1

14 pages, 9269 KiB  
Article
The Effects of Cold Rolling and Annealing on the Microstructure Evolution of Ordered C-2000 Alloy during Metallic Wire Preparation
by Liang Yuan, Faqiang Gou, Deqiang Sun, Zhiqiang Li and Yunlong Xue
Metals 2023, 13(4), 651; https://doi.org/10.3390/met13040651 - 25 Mar 2023
Cited by 3 | Viewed by 3004
Abstract
When using well-designed multiple-stage heavy-drawn processes, i.e., cold rolling, drawing and cluster drawing to fabricate a metallic wire or fiber in steps, cold rolling and annealing are critical steps due to their effect on the initial microstructure before the heavy-drawn process. Understanding the [...] Read more.
When using well-designed multiple-stage heavy-drawn processes, i.e., cold rolling, drawing and cluster drawing to fabricate a metallic wire or fiber in steps, cold rolling and annealing are critical steps due to their effect on the initial microstructure before the heavy-drawn process. Understanding the relationship between microstructure evolution and cold rolling followed by annealing is required for smoothly implementing the heavy-drawn process. In this work, the evolution behavior in terms of the microstructure during cold rolling followed by annealing was investigated in a novel C-2000 alloy that is a promising candidate material for the fabrication of high-performance metallicwire. The investigation encompassed parameters including the grain size, grain boundaries, recrystallization texture, and short-range ordered (SRO) structure. Results show that the grain size distribution of the cold-rolledC-2000 alloy followed by annealing at 900 °C is quite uneven. The low-angle grain boundaries induced by cold rolling are more frequently transformed into the Σ3 twin boundaries during recrystallization. At the initial stage of annealing at 900 °C after cold rolling, the contents of different texture components are significantly different, but the differences tend to decrease with the extension of the annealing time. In addition, cold rolling destroys SRO domains formed during solid solution water quenching, and the destruction of SRO affects the precipitation of the long-range ordered phase during annealing. Incoherent Σ3ic with curved grain boundaries play an important role in the recrystallization of nucleation sites in the process of static recrystallization by nucleation–growth. Full article
(This article belongs to the Special Issue Grain Boundary and Mapping of Metals and Alloys)
Show Figures

Figure 1

20 pages, 2559 KiB  
Article
Study on the Influence of Saturation on Freeze–Thaw Damage Characteristics of Sandstone
by Xinlei Zhang, Jiaxu Jin, Xiaoli Liu, Yukai Wang and Yahao Li
Materials 2023, 16(6), 2309; https://doi.org/10.3390/ma16062309 - 13 Mar 2023
Cited by 3 | Viewed by 2195
Abstract
In order to explore the evolution mechanism of freeze–thaw disasters and the role of water in the freezing–thawing cycles of rocks, the macro mechanical indexes and microstructural characteristics of seven different saturation sandstones after certain freeze–thaw cycles were analyzed. Electron microscope scanning, nuclear [...] Read more.
In order to explore the evolution mechanism of freeze–thaw disasters and the role of water in the freezing–thawing cycles of rocks, the macro mechanical indexes and microstructural characteristics of seven different saturation sandstones after certain freeze–thaw cycles were analyzed. Electron microscope scanning, nuclear magnetic resonance, and uniaxial compression tests were employed to study the migration law of water in the rock, the crack growth law, and the damage mechanism during freeze–thaw cycles. The results showed that when the saturation was 85%, the peak load curve of sandstone with different saturation appeared at the minimum point, and the porosity of sandstone reached the maximum. The damage variable increased sharply when the saturation was 75–85%. This proves that 85% saturation is the critical value of sandstone after five freeze–thaw cycles. The water migration freezing model is established, and the migration direction of capillary film water during freezing is micropore → mesopore → macropore. The migration of water is accompanied by the expansion and generation of cracks. Then we study the mechanism and law of crack expansion, and the crack propagation rate is positively related to the theoretical suction. The theoretical suction and theoretical ice pressure increased linearly with the decrease in temperature, which accelerated the crack propagation. The crack propagation rate in decreasing order is Vmacropore > Vmesopore > Vmicropore. The research results can provide a theoretical basis for evaluating the stability of rocks under the action of freeze–thaw cycles in cold regions. Full article
Show Figures

Figure 1

16 pages, 11682 KiB  
Article
Tensile Characteristics and Fracture Mode of Frozen Fractured Rock Mass Based on Brazilian Splitting Test
by Tingting Wang, Pingfeng Li, Chun’an Tang, Bingbing Zhang, Jiang Yu and Tao Geng
Appl. Sci. 2022, 12(22), 11788; https://doi.org/10.3390/app122211788 - 20 Nov 2022
Cited by 12 | Viewed by 2376
Abstract
Frozen fractured rock mass is often encountered during the implementation of geotechnical engineering in cold regions. The tensile strength parameters of frozen rock play an important role in the construction of rock slopes involving tensile failure. In order to study the tensile characteristics [...] Read more.
Frozen fractured rock mass is often encountered during the implementation of geotechnical engineering in cold regions. The tensile strength parameters of frozen rock play an important role in the construction of rock slopes involving tensile failure. In order to study the tensile characteristics of a frozen fractured rock mass in a cold region, original rock specimens were mined and processed in the Yulong Copper Mine, and artificial, frozen fractured marble specimens were made. The effects of different ice-filled crack angles, lengths, and widths on the force–displacement curve and the tensile strength of frozen rock were studied by laboratory Brazilian splitting experiments and RFPA3D, and the evolution law of the tensile strength of frozen rock was revealed. At the same time, wing crack initiation and cracking mode after tensile failure were analyzed by high-speed camera; the whole process of the Brazilian splitting of frozen rock was reconstructed, and the development of microcrack initiation in frozen rock was analyzed. The following conclusions were drawn from the test results: the frozen rock specimens have typical brittle-failure characteristics. The tensile strength of frozen rock decreases gradually with the increase in the width and length of ice-filled cracks, and decreases first and then increases with the increase in the angle of the ice-filled crack. The ice-filled crack incurs damage first, and then the wing cracks start from the tip of the ice-filled crack and extend continuously. The tensile strength of frozen rock is significantly affected by the angle and length of ice-filled cracks. Full article
Show Figures

Figure 1

17 pages, 2618 KiB  
Article
The Temperature Field Evolution and Water Migration Law of Coal under Low-Temperature Freezing Conditions
by Bo Li, Li Li, Laisheng Huang and Xiaoquan Lv
Int. J. Environ. Res. Public Health 2021, 18(24), 13188; https://doi.org/10.3390/ijerph182413188 - 14 Dec 2021
Cited by 9 | Viewed by 2552
Abstract
This study examines the evolution law of the coal temperature field under low-temperature freezing conditions. The temperature inside coal samples with different water contents was measured in real-time at several measurement points in different locations inside the sample under the condition of low-temperature [...] Read more.
This study examines the evolution law of the coal temperature field under low-temperature freezing conditions. The temperature inside coal samples with different water contents was measured in real-time at several measurement points in different locations inside the sample under the condition of low-temperature medium (liquid nitrogen) freezing. The temperature change curve was then used to analyse the laws of temperature propagation and the movement of the freezing front of the coal, which revealed the mechanism of internal water migration in the coal under low-temperature freezing conditions. The results indicate that the greater the water content of the coal sample, the greater the temperature propagation rate. The reasons for this are the phase change of ice and water inside the coal during the freezing process; the increase in the contact area of the ice and coal matrix caused by the volume expansion; and the joint action of the two. The process of the movement of the freezing front is due to the greater adsorption force of the ice lens than that of the coal matrix. Thus, the water molecules adsorbed in the unfrozen area of the coal matrix migrate towards the freezing front and form a new ice lens. Considering the temperature gradient and water content of the coal samples, Darcy’s permeation equation and water migration equation for the inside of the coal under freezing conditions were derived, and the segregation potential and matrix potential were analysed. The obtained theoretical and experimental results were found to be consistent. The higher the water content of the coal samples, the smaller the matrix potential for the hindrance of water migration. Furthermore, the larger the temperature gradient, the larger the segregation potential, and the faster the water migration rate. Full article
(This article belongs to the Special Issue Full Life-Cycle Safety Management of Coal and Rock Dynamic Disasters)
Show Figures

Figure 1

15 pages, 553 KiB  
Article
Progenitors of Long-Duration Gamma-ray Bursts
by Arpita Roy
Galaxies 2021, 9(4), 79; https://doi.org/10.3390/galaxies9040079 - 19 Oct 2021
Cited by 8 | Viewed by 3039
Abstract
We review the current scenario of long-duration Gamma-ray burst (LGRB) progenitors, and in addition, present models of massive stars for a mass range of 10150M with ΔM=10M and rotation rate [...] Read more.
We review the current scenario of long-duration Gamma-ray burst (LGRB) progenitors, and in addition, present models of massive stars for a mass range of 10150M with ΔM=10M and rotation rate v/vcrit=0 to 0.6 with a velocity resolution Δv/vcrit=0.1. We further discuss possible metallicity and rotation rate distribution from our models that might be preferable for the creation of successful LGRB candidates given the observed LGRB rates and their metallicity evolution. In the current understanding, LGRBs are associated with Type-Ic supernovae (SNe). To establish LGRB-SN correlation, we discuss three observational paths: (i) space-time coincidence, (ii) evidence from photometric light curves of LGRB afterglows and SN Type-Ic, (iii) spectroscopic study of both LGRB afterglow and SN. Superluminous SNe are also believed to have the same origin as LGRBs. Therefore, we discuss constraints on the progenitor parameters that can possibly dissociate these two events from a theoretical perspective. We further discuss the scenario of single star versus binary star as a more probable pathway to create LGRBs. Given the limited parameter space in the mass, mass ratio and separation between the two components in a binary, binary channel is less likely to create LGRBs to match the observed LGRB rate. Despite effectively-single massive stars are fewer in number compared to interacting binaries, their chemically homogeneous evolution (CHE) might be the major channel for LGRB production. Full article
(This article belongs to the Special Issue Gamma-Ray Burst Science in 2030)
Show Figures

Figure 1

16 pages, 3561 KiB  
Article
The Optimal Pumping Power under Different Ice Slurry Concentrations Using Evolutionary Strategy Algorithms
by Shuai Hao, Wenjie Zhou, Junliang Lu and Jiajun Wang
Energies 2021, 14(20), 6738; https://doi.org/10.3390/en14206738 - 16 Oct 2021
Cited by 2 | Viewed by 2309
Abstract
A suitable ice slurry fluid with a suitable ice concentration ratio can save operational costs. The design of the optimal ice slurry concentration focuses on finding an evolution strategy, which can further minimize the power consumption of the pump. A theoretical model was [...] Read more.
A suitable ice slurry fluid with a suitable ice concentration ratio can save operational costs. The design of the optimal ice slurry concentration focuses on finding an evolution strategy, which can further minimize the power consumption of the pump. A theoretical model was established to simulate the effect of different ice concentrations and flow rates on the performance of the pump. The data obtained were fitted by curve-fitting function. The process was modeled in the MATLAB evolutionary strategy algorithm to obtain the configuration scheme of the ice concentration and flow under different refrigeration capacities. The simulation results showed that when the required cooling capacity was 13.889 kWh, ice concentration was set to 19.68%, and flow rate was set to 2.1075 × 10−4 m3/s, the power consumption could be reduced by 23%. Full article
Show Figures

Figure 1

Back to TopTop