Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (753)

Search Parameters:
Keywords = hysteresis behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5485 KiB  
Article
Wireless Patch Antenna Characterization for Live Health Monitoring Using Machine Learning
by Dominic Benintendi, Kevin M. Tennant, Edward M. Sabolsky and Jay Wilhelm
Sensors 2025, 25(15), 4654; https://doi.org/10.3390/s25154654 - 27 Jul 2025
Abstract
Temperature monitoring in extreme environments, such as coal-fired power plants, was addressed by designing and testing wireless patch antennas for use in machine learning-aided temperature estimation. The sensors were designed to monitor the temperature and health of boiler systems. Wireless interrogation of the [...] Read more.
Temperature monitoring in extreme environments, such as coal-fired power plants, was addressed by designing and testing wireless patch antennas for use in machine learning-aided temperature estimation. The sensors were designed to monitor the temperature and health of boiler systems. Wireless interrogation of the sensor was performed using a Vector Network Analyzer (VNA) and a pair of interrogation antennas to capture resonance behavior under varying thermal and spatial conditions with sensitivities ranging from 0.052 to 0.20 MHz°C. Sensor calibration was conducted using a Long Short-Term Memory (LSTM) model, which leveraged temporal patterns to account for hysteresis effects. The calibration method demonstrated improved performance when combined with an LSTM model, achieving up to a 76% improvement in temperature estimation error when compared with Linear Regression (LR). The experiments highlighted an innovative solution for patch antenna-based non-contact temperature measurement, which addresses limitations with conventional methods such as RFID-based systems, infrared, and thermocouples. Full article
(This article belongs to the Special Issue Advanced Sensing Techniques for Environmental and Energy Systems)
Show Figures

Figure 1

23 pages, 12169 KiB  
Article
Effect of Quasi-Static Door Operation on Shear Layer Bifurcations in Supersonic Cavities
by Skyler Baugher, Datta Gaitonde, Bryce Outten, Rajan Kumar, Rachelle Speth and Scott Sherer
Aerospace 2025, 12(8), 668; https://doi.org/10.3390/aerospace12080668 - 26 Jul 2025
Viewed by 32
Abstract
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena [...] Read more.
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena that couple with the shear layer at the cavity lip, further modulating shear layer bifurcations and tonal mechanisms. In particular, asymmetric states manifest as ‘tornado’ vortices with significant practical consequences on the design and operation. Both inward- and outward-facing leading-wedge doors, resulting in leading edge shocks directed into and away from the cavity, are examined at select opening angles ranging from 22.5° to 90° (fully open) at Mach 1.6. The computational approach utilizes the Reynolds-Averaged Navier–Stokes equations with a one-equation model and is augmented by experimental observations of cavity floor pressure and surface oil-flow patterns. For the no-doors configuration, the asymmetric results are consistent with a long-time series DDES simulation, previously validated with two experimental databases. When fully open, outer wedge doors (OWD) yield an asymmetric flow, while inner wedge doors (IWD) display only mildly asymmetric behavior. At lower door angles (partially closed cavity), both types of doors display a successive bifurcation of the shear layer, ultimately resulting in a symmetric flow. IWD tend to promote symmetry for all angles observed, with the shear layer experiencing a pitchfork bifurcation at the ‘critical angle’ (67.5°). This is also true for the OWD at the ‘critical angle’ (45°), though an entirely different symmetric flow field is established. The first observation of pitchfork bifurcations (‘critical angle’) for the IWD is at 67.5° and for the OWD, 45°, complementing experimental observations. The back wall signature of the bifurcated shear layer (impingement preference) was found to be indicative of the 3D cavity dynamics and may be used to establish a correspondence between 3D cavity dynamics and the shear layer. Below the critical angle, the symmetric flow field is comprised of counter-rotating vortex pairs at the front and back wall corners. The existence of a critical angle and the process of door opening versus closing indicate the possibility of hysteresis, a preliminary discussion of which is presented. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 2100 KiB  
Article
Enantioseparation of Proton Pump Inhibitors by HPLC on Polysaccharide-Type Stationary Phases: Enantiomer Elution Order Reversal, Thermodynamic Characterization, and Hysteretic Effect
by Máté Dobó, Gergely Molnár, Ali Mhammad, Gergely Dombi, Arash Mirzahosseini, Zoltán-István Szabó and Gergő Tóth
Int. J. Mol. Sci. 2025, 26(15), 7217; https://doi.org/10.3390/ijms26157217 - 25 Jul 2025
Viewed by 91
Abstract
The separation of three proton pump inhibitors (omeprazole, lansoprazole, and rabeprazole) as exemplified molecules containing chiral sulfoxide groups was investigated in polar organic liquid chromatographic mode on seven different polysaccharide stationary phases (Chiralcel OD and OJ; Chiralpak AD, AS, and IA; Lux Cellulose-2 [...] Read more.
The separation of three proton pump inhibitors (omeprazole, lansoprazole, and rabeprazole) as exemplified molecules containing chiral sulfoxide groups was investigated in polar organic liquid chromatographic mode on seven different polysaccharide stationary phases (Chiralcel OD and OJ; Chiralpak AD, AS, and IA; Lux Cellulose-2 and -4). Different alcohols, such as methanol, ethanol, 1-propanol, 2-propanol, and their combinations, were used as eluents. After method optimization, semi-preparative enantioseparation was successfully applied for the three proton pump inhibitors to collect the individual enantiomers. A detailed investigation was conducted into elution order reversal, thermodynamic parameters, the effect of eluent mixtures, and the hysteresis of retention time and selectivity. Using Chiralpak AS, containing the amylose tris[(S)-α-methylbenzylcarbamate] chiral selector, the separation of the investigated enantiomers was achieved in all four neat eluents, with methanol providing the best results. In many cases, a reversal of the enantiomer elution order was observed. In addition to chiral-selector-dependent reversal, eluent-dependent reversal was also observed. Notably, even replacing methanol with ethanol altered the enantiomer elution order. Both enthalpy- and entropy-controlled enantioseparation were also observed in several cases; however, temperature-dependent elution order reversal was not. The hysteresis of retention and selectivity was further investigated on amylose-type columns in methanol–2-propanol and methanol–ethanol eluent mixtures. The phenomenon was observed on all amylose columns regardless of the eluent mixtures employed. Hystereticity ratios were calculated and used to compare the hysteresis behaviors of different systems. Multivariate statistical analysis revealed that Chiralpak AS exhibited the most distinct enantioselective behavior among the tested columns, likely due to the absence of a direct connection between the carbamate moiety and the aromatic substituent. The present study aided in understanding the mechanisms leading to enantiomer recognition, which is crucial for developing new chiral stationary phases and chiral HPLC method development in general. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

22 pages, 3715 KiB  
Article
Fractional-Order Creep Hysteresis Modeling of Dielectric Elastomer Actuator and Its Implicit Inverse Adaptive Control
by Yue Wang, Yuan Liu, Xiuyu Zhang, Xuefei Zhang, Lincheng Han and Zhiwei Li
Fractal Fract. 2025, 9(8), 479; https://doi.org/10.3390/fractalfract9080479 - 22 Jul 2025
Viewed by 136
Abstract
Focusing on the dielectric elastomer actuator (DEA), this paper proposes a backstepping implicit inverse adaptive control scheme with creep direct inverse compensation. Firstly, a novel fractional-order creep Krasnoselskii–Pokrovskii (FCKP) model is established, which effectively captures hysteresis behavior and creep dynamic characteristics. Significantly, this [...] Read more.
Focusing on the dielectric elastomer actuator (DEA), this paper proposes a backstepping implicit inverse adaptive control scheme with creep direct inverse compensation. Firstly, a novel fractional-order creep Krasnoselskii–Pokrovskii (FCKP) model is established, which effectively captures hysteresis behavior and creep dynamic characteristics. Significantly, this study pioneers the incorporation of the fractional-order method into a hysteresis-coupled creep model. Secondly, based on the FCKP model, the creep direct inverse compensation is developed to combine with the backstepping implicit inverse adaptive control scheme, where the implicit inverse algorithm avoids the construction of the direct inverse model to mitigate hysteresis. Finally, the proposed control scheme was validated on the DEA system control experimental platform. Under both single-frequency and composite-frequency conditions, it achieved mean absolute errors of 0.0035 and 0.0111, and root mean square errors of 0.0044 and 0.0133, respectively, demonstrating superior tracking performance compared to other control schemes. Full article
Show Figures

Figure 1

25 pages, 10024 KiB  
Article
Forecasting with a Bivariate Hysteretic Time Series Model Incorporating Asymmetric Volatility and Dynamic Correlations
by Hong Thi Than
Entropy 2025, 27(7), 771; https://doi.org/10.3390/e27070771 - 21 Jul 2025
Viewed by 183
Abstract
This study explores asymmetric volatility structures within multivariate hysteretic autoregressive (MHAR) models that incorporate conditional correlations, aiming to flexibly capture the dynamic behavior of global financial assets. The proposed framework integrates regime switching and time-varying delays governed by a hysteresis variable, enabling the [...] Read more.
This study explores asymmetric volatility structures within multivariate hysteretic autoregressive (MHAR) models that incorporate conditional correlations, aiming to flexibly capture the dynamic behavior of global financial assets. The proposed framework integrates regime switching and time-varying delays governed by a hysteresis variable, enabling the model to account for both asymmetric volatility and evolving correlation patterns over time. We adopt a fully Bayesian inference approach using adaptive Markov chain Monte Carlo (MCMC) techniques, allowing for the joint estimation of model parameters, Value-at-Risk (VaR), and Marginal Expected Shortfall (MES). The accuracy of VaR forecasts is assessed through two standard backtesting procedures. Our empirical analysis involves both simulated data and real-world financial datasets to evaluate the model’s effectiveness in capturing downside risk dynamics. We demonstrate the application of the proposed method on three pairs of daily log returns involving the S&P500, Bank of America (BAC), Intercontinental Exchange (ICE), and Goldman Sachs (GS), present the results obtained, and compare them against the original model framework. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

24 pages, 6323 KiB  
Article
Study on Creep Characteristics of High-Volume Fly Ash-Cement Backfill Considering Initial Damage
by Shuokang Wang, Jingjing Yan, Zihui Dong, Hua Guo, Yuanzhong Yang and Naseer Muhammad Khan
Minerals 2025, 15(7), 759; https://doi.org/10.3390/min15070759 - 19 Jul 2025
Viewed by 304
Abstract
To reveal the long-term deformation behavior of high-volume fly ash-based backfill under continuous mining and backfilling, a fly ash–cement backfill material with 73.0% fly ash content was developed, and creep characteristic tests considering initial damage were conducted. The results demonstrate that: (1) A [...] Read more.
To reveal the long-term deformation behavior of high-volume fly ash-based backfill under continuous mining and backfilling, a fly ash–cement backfill material with 73.0% fly ash content was developed, and creep characteristic tests considering initial damage were conducted. The results demonstrate that: (1) A calculation method for the initial damage of backfill based on stress–strain hysteresis loop cycles is proposed, with cumulative characteristics of initial damage across mining phases analyzed; (2) Creep behaviors of backfill affected by initial damage are investigated, revealing the weakening effect of initial damage on long-term bearing capacity; (3) An enhanced, nonlinear plastic damage element is developed, enabling the construction of an HKBN constitutive model capable of characterizing the complete creep behavior of backfill materials. The research establishes a theoretical framework for engineering applications of backfill materials with early-age strength below 5 MPa, while significantly enhancing the utilization efficiency of coal-based solid wastes. Full article
Show Figures

Figure 1

21 pages, 5973 KiB  
Article
Soft Conductive Textile Sensors: Characterization Methodology and Behavioral Analysis
by Giulia Gamberini, Selene Tognarelli and Arianna Menciassi
Sensors 2025, 25(14), 4448; https://doi.org/10.3390/s25144448 - 17 Jul 2025
Viewed by 299
Abstract
Resistive stretching sensors are currently used in healthcare robotics due to their ability to vary electrical resistance when subjected to mechanical strain. However, commercial sensors often lack the softness required for integration into soft structures. This study presents a detailed methodology to characterize [...] Read more.
Resistive stretching sensors are currently used in healthcare robotics due to their ability to vary electrical resistance when subjected to mechanical strain. However, commercial sensors often lack the softness required for integration into soft structures. This study presents a detailed methodology to characterize fabric-based resistive stretching sensors, focusing on both static and dynamic performance, for application in a smart vascular simulator for surgical training. Five sensors, called #1–#5, were developed using conductive fabrics integrated into soft silicone. Stability and fatigue tests were performed to evaluate their behavior. The surface structure and fiber distribution were analyzed using digital microscopy and scanning electron microscopy, while element analysis was performed via Energy-Dispersive X-ray Spectroscopy. Sensors #1 and #3 are the most stable with a low relative standard deviation and good sensitivity at low strains. Sensor #3 showed the lowest hysteresis, while sensor #1 had the widest operating range (0–30% strain). Although all sensors showed non-monotonic behavior across 0–100% strain, deeper investigation suggested that the sensor response depends on the configuration of conductive paths within and between fabric layers. Soft fabric-based resistive sensors represent a promising technical solution for physical simulators for surgical training. Full article
(This article belongs to the Special Issue Sensor Technology in Robotic Surgery)
Show Figures

Graphical abstract

13 pages, 4656 KiB  
Article
High-Speed and Hysteresis-Free Near-Infrared Optical Hydrogen Sensor Based on Ti/Pd Bilayer Thin Films
by Ashwin Thapa Magar, Tu Anh Ngo, Hoang Mai Luong, Thi Thu Trinh Phan, Minh Tuan Trinh, Yiping Zhao and Tho Duc Nguyen
Nanomaterials 2025, 15(14), 1105; https://doi.org/10.3390/nano15141105 - 16 Jul 2025
Viewed by 417
Abstract
Palladium (Pd) and titanium (Ti) exhibit opposite dielectric responses upon hydrogenation, with stronger effects observed in the near-infrared (NIR) region. Leveraging this contrast, we investigated Ti/Pd bilayer thin films as a platform for NIR hydrogen sensing—particularly at telecommunication-relevant wavelengths, where such devices have [...] Read more.
Palladium (Pd) and titanium (Ti) exhibit opposite dielectric responses upon hydrogenation, with stronger effects observed in the near-infrared (NIR) region. Leveraging this contrast, we investigated Ti/Pd bilayer thin films as a platform for NIR hydrogen sensing—particularly at telecommunication-relevant wavelengths, where such devices have remained largely unexplored. Ti/Pd bilayers coated with Teflon AF (TAF) and fabricated via sequential electron-beam and thermal evaporation were characterized using optical transmission measurements under repeated hydrogenation cycles. The Ti (5 nm)/Pd (x = 2.5 nm)/TAF (30 nm) architecture showed a 2.7-fold enhancement in the hydrogen-induced optical contrast at 1550 nm compared to Pd/TAF reference films, attributed to the hydrogen ion exchange between the Ti and Pd layers. The optimized structure, with a Pd thickness of x = 1.9 nm, exhibited hysteresis-free sensing behavior, a rapid response time (t90 < 0.35 s at 4% H2), and a detection limit below 10 ppm. It also demonstrated excellent selectivity with negligible cross-sensitivity to CO2, CH4, and CO, as well as high durability, showing less than 6% signal degradation over 135 hydrogenation cycles. These findings establish a scalable, room-temperature NIR hydrogen sensing platform with strong potential for deployment in automotive, environmental, and industrial applications. Full article
Show Figures

Figure 1

24 pages, 16393 KiB  
Article
Near-Surface-Mounted CFRP Ropes as External Shear Reinforcement for the Rehabilitation of Substandard RC Joints
by George Kalogeropoulos, Georgia Nikolopoulou, Evangelia-Tsampika Gianniki, Avraam Konstantinidis and Chris Karayannis
Buildings 2025, 15(14), 2409; https://doi.org/10.3390/buildings15142409 - 9 Jul 2025
Viewed by 310
Abstract
The effectiveness of an innovative retrofit scheme using near-surface-mounted (NSM) X-shaped CFRP ropes for the strengthening of substandard RC beam–column joints was investigated experimentally. Three large-scale beam–column joint subassemblages were constructed with poor reinforcement details. One specimen was subjected to cyclic lateral loading, [...] Read more.
The effectiveness of an innovative retrofit scheme using near-surface-mounted (NSM) X-shaped CFRP ropes for the strengthening of substandard RC beam–column joints was investigated experimentally. Three large-scale beam–column joint subassemblages were constructed with poor reinforcement details. One specimen was subjected to cyclic lateral loading, exhibited shear failure of the joint region and was used as the control specimen. The other specimens were retrofitted and subsequently subjected to the same history of incremental lateral displacement amplitudes with the control subassemblage. The retrofitting was characterized by low labor demands and included wrapping of NSM CFPR-ropes in the two diagonal directions on both lateral sides of the joint as shear reinforcement. Single or double wrapping of the joint was performed, while weights were suspended to prevent the loose placement of the ropes in the grooves. A significant improvement in the seismic performance of the retrofitted specimens was observed with respect to the control specimen, regarding strength and ductility. The proposed innovative scheme effectively prevented shear failure of the joint by shifting the damage in the beam, and the retrofitted specimens showed a more dissipating hysteresis behavior without significant loss of lateral strength and axial load-bearing capacity. The cumulative energy dissipation capacity of the strengthened specimens increased by 105.38% and 122.23% with respect to the control specimen. Full article
Show Figures

Figure 1

62 pages, 4192 KiB  
Review
Advancements in Magnetorheological Foams: Composition, Fabrication, AI-Driven Enhancements and Emerging Applications
by Hesamodin Khodaverdi and Ramin Sedaghati
Polymers 2025, 17(14), 1898; https://doi.org/10.3390/polym17141898 - 9 Jul 2025
Viewed by 492
Abstract
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while [...] Read more.
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while offering advantages like lightweight design, acoustic absorption, high energy harvesting capability, and tailored mechanical responses. Despite their potential, challenges such as non-uniform particle dispersion, limited durability under cyclic loads, and suboptimal magneto-mechanical coupling continue to hinder their broader adoption. This review systematically addresses these issues by evaluating the synthesis methods (ex situ vs. in situ), microstructural design strategies, and the role of magnetic particle alignment under varying curing conditions. Special attention is given to the influence of material composition—including matrix types, magnetic fillers, and additives—on the mechanical and magnetorheological behaviors. While the primary focus of this review is on MR foams, relevant studies on MR elastomers, which share fundamental principles, are also considered to provide a broader context. Recent advancements are also discussed, including the growing use of artificial intelligence (AI) to predict the rheological and magneto-mechanical behavior of MR materials, model complex device responses, and optimize material composition and processing conditions. AI applications in MR systems range from estimating shear stress, viscosity, and storage/loss moduli to analyzing nonlinear hysteresis, magnetostriction, and mixed-mode loading behavior. These data-driven approaches offer powerful new capabilities for material design and performance optimization, helping overcome long-standing limitations in conventional modeling techniques. Despite significant progress in MR foams, several challenges remain to be addressed, including achieving uniform particle dispersion, enhancing viscoelastic performance (storage modulus and MR effect), and improving durability under cyclic loading. Addressing these issues is essential for unlocking the full potential of MR foams in demanding applications where consistent performance, mechanical reliability, and long-term stability are crucial for safety, effectiveness, and operational longevity. By bridging experimental methods, theoretical modeling, and AI-driven design, this work identifies pathways toward enhancing the functionality and reliability of MR foams for applications in vibration damping, energy harvesting, biomedical devices, and soft robotics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 1070 KiB  
Article
Modeling Hysteretically Nonlinear Piezoelectric Composite Beams
by Abdulaziz H. Alazemi and Andrew J. Kurdila
Vibration 2025, 8(3), 37; https://doi.org/10.3390/vibration8030037 - 6 Jul 2025
Viewed by 195
Abstract
This paper presents a modeling framework for hysteretically nonlinear piezoelectric composite beams using functional differential equations (FDEs). While linear piezoelectric models are well established, they fail to capture the complex nonlinear behaviors that emerge at higher electric field strengths, particularly history-dependent hysteresis effects. [...] Read more.
This paper presents a modeling framework for hysteretically nonlinear piezoelectric composite beams using functional differential equations (FDEs). While linear piezoelectric models are well established, they fail to capture the complex nonlinear behaviors that emerge at higher electric field strengths, particularly history-dependent hysteresis effects. This paper develops a cascade model that integrates a high-dimensional linear piezoelectric composite beam representation with a nonlinear Krasnosel’skii–Pokrovskii (KP) hysteresis operator. The resulting system is formulated using a state-space model where the input voltage undergoes a history-dependent transformation. Through modal expansion and discretization of the Preisach plane, we derive a tractable numerical implementation that preserves essential nonlinear phenomena. Numerical investigations demonstrate how system parameters, including the input voltage amplitude, and hysteresis parameters significantly influence the dynamic response, particularly the shape and amplitude of limit cycles. The results reveal that while the model accurately captures memory-dependent nonlinearities, it depends on numerous real and distributed parameters, highlighting the need for efficient reduced-order modeling approaches. This work provides a foundation for understanding and predicting the complex behavior of piezoelectric systems with hysteresis, with potential applications in vibration control, energy harvesting, and precision actuation. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

21 pages, 9209 KiB  
Article
Effects of Exchange, Anisotropic, and External Field Couplings on a Nanoscale Spin-2 and Spin-3/2 System: A Thermomagnetic Analysis
by Julio Cesar Madera, Elisabeth Restrepo-Parra and Nicolás De La Espriella
Magnetochemistry 2025, 11(7), 56; https://doi.org/10.3390/magnetochemistry11070056 - 30 Jun 2025
Viewed by 261
Abstract
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in [...] Read more.
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in body-centered cubic (BCC) lattices interact within their relevant nanostructures. To determine the thermomagnetic behaviors of the nanoparticle, numerical simulations using Monte Carlo techniques and thermal bath class algorithms are performed. The results exhibit the effects of exchange couplings (J1,J2), magnetocrystalline anisotropies (D3/2,D2), and external magnetic fields (h) on the finite-temperature phase diagrams of magnetization (MT), magnetic susceptibility (χT), and thermal energy (kBT). The influences of the exchange, anisotropic, and external field parameters are clearly reflected in the compensation, hysteretic, and pseudocritical phenomena presented by the quasi-spherical nanoparticle. When the parameter reflecting ferromagnetic second-neighbor exchanges in the nanosphere (J2) increases, for a given value of the external magnetic field, the compensation (Tcomp) and pseudocritical (Tpc) temperatures increase. Similarly, in the ranges 0<J24.5 and 15h15 at a specific temperature, an increase in J2 results in the appearance of exchange anisotropies (exchange bias) and and increased hysteresis loop areas in the nanomodel. Full article
Show Figures

Figure 1

16 pages, 2524 KiB  
Article
Design of a Hierarchical Control Architecture for Fully-Driven Multi-Fingered Dexterous Hand
by Yinan Jin, Hujiang Wang, Han Ge and Guanjun Bao
Biomimetics 2025, 10(7), 422; https://doi.org/10.3390/biomimetics10070422 - 30 Jun 2025
Viewed by 404
Abstract
Multi-fingered dexterous hands provide superior dexterity in complex manipulation tasks due to their high degrees of freedom (DOFs) and biomimetic structures. Inspired by the anatomical structure of human tendons and muscles, numerous robotic hands powered by pneumatic artificial muscles (PAMs) have been created [...] Read more.
Multi-fingered dexterous hands provide superior dexterity in complex manipulation tasks due to their high degrees of freedom (DOFs) and biomimetic structures. Inspired by the anatomical structure of human tendons and muscles, numerous robotic hands powered by pneumatic artificial muscles (PAMs) have been created to replicate the compliant and adaptable features of biological hands. Nonetheless, PAMs have inherent nonlinear and hysteresis behaviors that create considerable challenges to achieving real-time control accuracy and stability in dexterous hands. In order to address these challenges, this paper proposes a hierarchical control architecture that employs a fuzzy PID strategy to optimize the nonlinear control of pneumatic artificial muscles (PAMs). The FPGA-based hardware integrates a multi-channel digital-to-analog converter (DAC) and a multiplexed acquisition module, facilitating the independent actuation of 20 PAMs and the real-time monitoring of 20 joints. The software implements a fuzzy PID algorithm that dynamically adjusts PID parameters based on both the error and the error rate, thereby effectively managing the nonlinear behaviors of the hand. Experimental results demonstrate that the designed control system achieves high precision in controlling the angle of a single finger joint, with errors maintained within ±1°. In scenarios involving multi-finger cooperative grasping and biomimetic motion demonstrations, the system exhibits excellent synchronization and real-time performance. These results validate the efficacy of the fuzzy PID control strategy and confirm that the proposed system fulfills the precision and stability requirements for complex operational tasks, providing robust support for the application of PAM-driven multi-fingered dexterous hands. Full article
(This article belongs to the Special Issue Biomimetic Robot Motion Control)
Show Figures

Figure 1

21 pages, 3215 KiB  
Article
Improving Ride Comfort in Heavy-Duty Vehicles Through Performance-Guaranteed Control of Active Seat Suspension
by Jian Chen, Dongyang Xi, Wen Hu and Yang Wu
Appl. Sci. 2025, 15(13), 7273; https://doi.org/10.3390/app15137273 - 27 Jun 2025
Viewed by 296
Abstract
To enhance riding comfort for drivers of heavy-duty vehicles, this paper introduces a novel adaptive prescribed performance control (APPC) for active seat suspension systems. The model incorporates dynamic friction and hysteresis damping effects to capture the complex behavior of the seat suspension. The [...] Read more.
To enhance riding comfort for drivers of heavy-duty vehicles, this paper introduces a novel adaptive prescribed performance control (APPC) for active seat suspension systems. The model incorporates dynamic friction and hysteresis damping effects to capture the complex behavior of the seat suspension. The accuracy of the proposed model is validated through experimental data. The controller utilizes a prescribed performance function (PPF) to regulate the dynamic response of the system, combined with an adaptive backstepping control (ABC) method to account for system uncertainties, such as variations in driver weight, friction, suspension stiffness, and damping coefficients. A set of parameter estimators, governed by innovative adaptive laws, compensates for estimation errors. Furthermore, the stability of the controlled system is rigorously demonstrated. Both simulation and experimental tests, including bump and random excitation tests, are conducted to assess the controller performance in both time and frequency domains. The results confirm that the proposed controller effectively mitigates vibrations in the driver–seat system and demonstrates robustness against system uncertainties. Full article
Show Figures

Figure 1

33 pages, 7235 KiB  
Review
Hysteresis Modeling of Soft Pneumatic Actuators: An Experimental Review
by Jesús de la Morena, Francisco Ramos and Andrés S. Vázquez
Actuators 2025, 14(7), 321; https://doi.org/10.3390/act14070321 - 27 Jun 2025
Viewed by 671
Abstract
Hysteresis is a nonlinear phenomenon found in many physical systems, including soft viscoelastic actuators, where it poses significant challenges to their application and performance. Consequently, developing accurate hysteresis models is essential for the effective design and optimization of soft actuators. Moreover, a reliable [...] Read more.
Hysteresis is a nonlinear phenomenon found in many physical systems, including soft viscoelastic actuators, where it poses significant challenges to their application and performance. Consequently, developing accurate hysteresis models is essential for the effective design and optimization of soft actuators. Moreover, a reliable model can be used to design compensators that mitigate the negative effects of hysteresis, improving closed-loop control accuracy and expanding the applicability of soft actuators in robotics. Physics-based approaches for modeling hysteresis in soft actuators offer valuable insights into the underlying material behavior. Nevertheless, they are often highly complex, making them impractical for real-world applications. Instead, phenomenological models provide a more feasible solution by representing hysteresis through input–output mappings based on experimental data. To effectively fit these phenomenological models, it is essential to rely on sensing data collected from real actuators. In this context, the primary objective of this work is a comprehensive comparative evaluation of the efficiency and performance of representative phenomenological hysteresis models (e.g., Bouc–Wen and Prandtl-Ishlinskii) using experimental data obtained from a pneumatic bending actuator made of a viscoelastic material. This evaluation suggests that the Generalized Prandtl–Ishlinskii model achieves the highest modeling accuracy, while the Preisach model with a probabilistic density function formulation excels in terms of parameter compactness. Full article
(This article belongs to the Special Issue Advanced Mechanism Design and Sensing for Soft Robotics)
Show Figures

Figure 1

Back to TopTop