Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (512)

Search Parameters:
Keywords = hypoxia–ischemia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1802 KiB  
Article
Ceramide Synthase 2 Promotes Cardiac Very-Long-Chain Dihydroceramide Accumulation and Is Linked to Arrhythmias and Heart Failure in Humans
by Linda Andersson, Mathieu Cinato, Elias Björnson, Annika Lundqvist, Azra Miljanovic, Marcus Henricsson, Per-Olof Bergh, Martin Adiels, Anders Jeppsson, Jan Borén and Malin C. Levin
Int. J. Mol. Sci. 2025, 26(14), 6859; https://doi.org/10.3390/ijms26146859 - 17 Jul 2025
Viewed by 184
Abstract
Acute myocardial hypoxia/ischemia is associated with abnormal accumulation of myocardial lipids, including dihydroceramides. Here, we characterized how dihydroceramides are remodeled in response to hypoxia and assessed how dihydroceramide remodeling correlates to human cardiac pathophysiology. Hypoxia resulted in a marked accumulation of very-long-chain (VLC)-dihydroceramides [...] Read more.
Acute myocardial hypoxia/ischemia is associated with abnormal accumulation of myocardial lipids, including dihydroceramides. Here, we characterized how dihydroceramides are remodeled in response to hypoxia and assessed how dihydroceramide remodeling correlates to human cardiac pathophysiology. Hypoxia resulted in a marked accumulation of very-long-chain (VLC)-dihydroceramides in cultured HL-1 cardiomyocytes. In humans, we identified a correlation between the abundance of VLC-dihydroceramides in myocardial biopsies and arrhythmias and heart failure and showed that cardiac expression of CERS2, coding for an enzyme that promotes synthesis of VLC-dihydroceramides, was associated with signaling pathways linked to cardiac arrhythmia and cardiomyopathy. In cultured HL-1 cardiomyocytes, we showed that CerS2 knockdown reduced accumulation of VLC dihydroceramides and altered the expression of mediators regulating Ca2+ cycling and electrical conduction. In conclusion, our findings indicate that increased abundance of VLC-dihydroceramides, promoted by increased activity of CerS2 in response to hypoxia, could play a role in cardiac arrhythmias and heart failure. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

25 pages, 12149 KiB  
Article
Total Flavones of Rhododendron Protect Against Ischemic Cerebral Injury by Regulating the Phosphorylation of the RhoA-ROCK2 Pathway via Endothelial-Derived H2S
by Xiaoqing Sun, Xingyu Zhang, Yuwen Li, Jiyue Wen, Zhiwu Chen and Shuo Chen
Curr. Issues Mol. Biol. 2025, 47(7), 513; https://doi.org/10.3390/cimb47070513 - 3 Jul 2025
Viewed by 401
Abstract
This study aims to investigate the mechanism by which the total flavones of Rhododendron (TFR) protect against cerebral ischemic injury through the endothelial-derived H2S-mediated regulation of RhoA phosphorylation at the Ser188 and Rho kinase 2 (ROCK2) phosphorylation at Thr436. [...] Read more.
This study aims to investigate the mechanism by which the total flavones of Rhododendron (TFR) protect against cerebral ischemic injury through the endothelial-derived H2S-mediated regulation of RhoA phosphorylation at the Ser188 and Rho kinase 2 (ROCK2) phosphorylation at Thr436. For experimental design, mouse or rat cerebrovascular endothelial cells (ECs) were cultured with or without neurons and subjected to hypoxia/reoxygenation (H/R) injury. The vasodilation of the cerebral basilar artery was assessed. Cerebral ischemia/reperfusion (I/R) injury was induced in mice by bilateral carotid artery ligation, followed by Morris water maze and open field behavioral assessments. The protein levels of cystathionine-γ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST), RhoA, ROCK2, p-RhoA (RhoA phosphorylated at Ser188), and p-ROCK2 (ROCK2 phosphorylated at Thr436) were quantified. Additionally, the activities of RhoA and ROCK2 were measured. Notably, TFR significantly inhibited H/R-induced H2S reduction and suppressed the increased expression and activity of RhoA and ROCK2 in ECs, effects attenuated by CSE or 3-MST knockout. Moreover, TFR-mediated cerebrovascular dilation was reduced by RhoA or ROCK2 inhibitors, while the protective effect of TFR against cerebral I/R injury in mice was markedly attenuated by the heterozygous knockout of ROCK2. In the ECs-co-cultured neurons, the inhibition of TFR on H/R-induced neuronal injury and decrease in H2S level in the co-culture was attenuated by the knockout of CSE or 3-MST in the ECs. TFR notably inhibited the H/R-induced upregulation of neuronal RhoA, ROCK2, and p-ROCK2 protein levels, as well as the activities of RhoA and ROCK2, while reversing the decrease in p-RhoA. However, the knockout of CSE or 3-MST in the ECs significantly attenuated the inhibition of TFR on these increases. Furthermore, 3-MST knockout in ECs attenuated the TFR-mediated suppression of p-RhoA reduction. Additionally, CSE or 3-MST knockout in ECs exacerbated H/R-induced neuronal injury, reduced H2S level in the co-culture system, and increased RhoA activity and ROCK2 expression in neurons. In summary, TFR protected against ischemic cerebral injury by endothelial-derived H2S promoting the phosphorylation of RhoA at Ser188 but inhibited the phosphorylation of ROCK2 at Thr436 to inhibit the RhoA-ROCK2 pathway in neurons. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

11 pages, 504 KiB  
Communication
Role of Nitric Oxide in Cardioprotection by Poloxamer 188
by Zhu Li, Matthew B. Barajas, Takuro Oyama and Matthias L. Riess
Cells 2025, 14(13), 1001; https://doi.org/10.3390/cells14131001 - 30 Jun 2025
Viewed by 377
Abstract
Poloxamer (P) 188 attenuates myocardial ischemia/reperfusion injury through cell membrane stabilization. Cell–cell interactions between endothelial cells (ECs) and cardiomyocytes (CMs) further protect CMs: co-cultures showed that, at an optimal density, ECs protected CMs against hypoxia/reoxygenation (HR) injury. The mechanism of interaction with P188 [...] Read more.
Poloxamer (P) 188 attenuates myocardial ischemia/reperfusion injury through cell membrane stabilization. Cell–cell interactions between endothelial cells (ECs) and cardiomyocytes (CMs) further protect CMs: co-cultures showed that, at an optimal density, ECs protected CMs against hypoxia/reoxygenation (HR) injury. The mechanism of interaction with P188 still requires exploration. We examined if N(ω)-nitro-L-arginine methyl ester (LNAME), a non-specific nitric oxide (NO) synthase inhibitor, abolishes protection in the presence or absence of P188 and/or ECs. We co-cultured mouse coronary artery ECs in an insert atop mouse CMs plated at confluency on the bottom of a well. Normoxic controls remained in complete media while HR groups were exposed to 24 h hypoxia at 0.01% O2 in serum- and glucose-free media, followed by 2 h reoxygenation in complete media. P188 (300 μM), LNAME (40 mM), or vehicle were administered upon reoxygenation. ECs at the used lower density did not decrease HR-triggered lactate dehydrogenase release or calcium overload in CMs by themselves. P188 reduced both indicators after HR by 16/18% without and by 22/25% with ECs, respectively. LNAME abrogated CM protection by P188. Neither intervention had an effect under normoxia. Our co-culture data indicates that P188 requires NO, not necessarily of endothelial origin, to elicit CM protection. Full article
Show Figures

Figure 1

25 pages, 672 KiB  
Review
Stem Cell Therapy Approaches for Ischemia: Assessing Current Innovations and Future Directions
by Changguo Ma, An Yu, Tingyan He, Yulin Qian and Min Hu
Int. J. Mol. Sci. 2025, 26(13), 6320; https://doi.org/10.3390/ijms26136320 - 30 Jun 2025
Viewed by 403
Abstract
Characterized by insufficient blood supply leading to tissue hypoxia and damage, ischemia is the underlying cause of major conditions such as ischemic stroke, myocardial infarction, and peripheral artery disease. Stem cell therapy, as a regenerative strategy, demonstrates significant potential in restoring tissue blood [...] Read more.
Characterized by insufficient blood supply leading to tissue hypoxia and damage, ischemia is the underlying cause of major conditions such as ischemic stroke, myocardial infarction, and peripheral artery disease. Stem cell therapy, as a regenerative strategy, demonstrates significant potential in restoring tissue blood flow and organ function in ischemic environments. This review systematically explores the latest advances in stem cell therapy for ischemic diseases, focusing on different cell types and their mechanisms of action, including direct differentiation, paracrine signaling, immunomodulation, and microenvironment regulation. Furthermore, it highlights innovations in gene editing and bioengineering technologies that enhance cell delivery, targeting, and therapeutic efficacy. Simultaneously, this article discusses the challenges faced, advances in cell tracking and delivery, and future research directions, aiming to provide insights for the development of more effective and personalized treatment strategies Full article
(This article belongs to the Special Issue Advances in the Prevention and Treatment of Ischemic Diseases)
Show Figures

Figure 1

13 pages, 669 KiB  
Article
Physical Activity and Pain Perception in Residents Under Conditions of Chronic Hypoxia
by Margot Evelin Bernedo-Itusaca, Kely Melina Vilca-Coaquira, Ángel Gabriel Calisaya-Huacasi, Madeleyne Rosmery Cosi-Cupi, Stanley Rivaldo Leqque-Santi, Shantal Cutipa-Tinta, Alberto Salazar-Granara, Yony Martin-Pino Vanegas, Alcides Flores-Paredes, Shihui Guo, William Li, Moua Yang, Ginés Viscor and Ivan Hancco Zirena
Oxygen 2025, 5(3), 11; https://doi.org/10.3390/oxygen5030011 - 30 Jun 2025
Viewed by 584
Abstract
(1) Background: Previous studies indicate that individuals who engage in regular physical activity have a higher pain threshold than those who do not exercise. However, it remains unclear how this phenomenon behaves in individuals exposed to chronic hypoxia. This study evaluates pain [...] Read more.
(1) Background: Previous studies indicate that individuals who engage in regular physical activity have a higher pain threshold than those who do not exercise. However, it remains unclear how this phenomenon behaves in individuals exposed to chronic hypoxia. This study evaluates pain perception at high altitude between high-altitude natives who exercised regularly and those who did not practice physical activity. (2) Methods: Eighty-four healthy volunteers aged 20 to 30 years old with a body mass index (BMI) within the normal range (18.5–24.9) residing in the city of Puno (3825 m) were recruited. The unilateral ischemia pain provocation test was used, applying pressure with a manual sphygmomanometer to generate transient ischemia in the arm while the patient opens and closes their hand. Onset, peak, and resolution times of pain, heart rate, and oxygen saturation were recorded. (3) Results: The average time to pain onset in the right arm was 30.2 s ± 14.1 during light physical activity, whereas, during moderate physical activity, it increased to 32.5 s ± 15.4. In the left arm, the average time until pain sensation was 27.9 s ± 16.8 during light physical activity and increased to 34.6 s ± 18.5 with moderate physical activity. Regarding the progression of pain intensity, the average time to reach unbearable pain in the right arm was 54.1 s ± 16.4 during light physical activity and 53.8 s ± 19.6 during moderate physical activity; in the left arm, it was 53.0 s ± 19.6 during light physical activity, increasing to 59.3 s ± 24.5 during moderate physical activity. (4) Conclusions: A more stable and slightly higher pain tolerance in the dominant arm was observed. Full article
Show Figures

Figure 1

20 pages, 5004 KiB  
Article
Maresin1 Alleviates Ischemia Reperfusion Injury After Lung Transplantation by Inhibiting Ferroptosis via the PKA-Hippo-YAP Signaling Pathway
by Peng Deng, You Wu, Li Wan, Xiangfu Sun and Quanchao Sun
Biomedicines 2025, 13(7), 1594; https://doi.org/10.3390/biomedicines13071594 - 30 Jun 2025
Viewed by 405
Abstract
Background: Lung ischemia reperfusion injury (LIRI) is a severe complication after lung transplantation (LT). Ferroptosis contributes to the pathogenesis of LIRI. Maresin1 (MaR1) is an endogenous pro-resolving lipid mediator that exerts protective effects against multiorgan diseases. However, the role and mechanism of [...] Read more.
Background: Lung ischemia reperfusion injury (LIRI) is a severe complication after lung transplantation (LT). Ferroptosis contributes to the pathogenesis of LIRI. Maresin1 (MaR1) is an endogenous pro-resolving lipid mediator that exerts protective effects against multiorgan diseases. However, the role and mechanism of MaR1 in the ferroptosis of LIRI after LT need to be further investigated. Methods: A mouse LT model and a pulmonary vascular endothelial cell line after hypoxia reoxygenation (H/R) culture were established in our study. Histological morphology and inflammatory cytokine levels predicted the severity of LIRI. Cell viability and cell injury were determined by CCK-8 and LDH assays. Ferroptosis biomarkers, including Fe2+, MDA, 4-HNE, and GSH, were assessed by relevant assay kits. Transferrin receptor (TFRC) and Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) protein levels were examined by western blotting. In vitro, lipid peroxide levels were detected by DCFH-DA staining and flow cytometry analysis. The ultrastructure of mitochondria was imaged using transmission electron microscopy. Furthermore, the potential mechanism by which MaR1 regulates ferroptosis was explored and verified with signaling pathway inhibitors using Western blotting. Results: MaR1 protected mice from LIRI after LTx, which was reversed by the ferroptosis agonist Sorafenib in vivo. MaR1 administration decreased Fe2+, MDA, 4-HNE, TFRC, and ACSL4 contents, increased GSH levels, and ameliorated mitochondrial ultrastructural injury after LTx. In vitro, Sorafenib resulted in lower cell viability and worsened cell injury and enhanced the hallmarks of ferroptosis after H/R culture, which was rescued by MaR1 treatment. Mechanistically, the protein kinase A and YAP inhibitors partly blocked the effects of MaR1 on ferroptosis inhibition and LIRI protection. Conclusions: This study revealed that MaR1 alleviates LIRI and represses ischemia reperfusion-induced ferroptosis via the PKA-Hippo-YAP signaling pathway, which may offer a promising theoretical basis for the clinical application of organ protection after LTx. Full article
(This article belongs to the Special Issue The Role of Iron in Human Diseases)
Show Figures

Figure 1

9 pages, 475 KiB  
Communication
Expanded Access Use of Sanguinate Saves Lives: Over 100 Cases Including 14 Previously Published Cases
by Jonathan S. Jahr, Ronald Jubin, Zhen Mei, Joseph Giessinger, Rubie Choi and Abe Abuchowski
Anesth. Res. 2025, 2(3), 15; https://doi.org/10.3390/anesthres2030015 - 29 Jun 2025
Viewed by 301
Abstract
Background: PP-007 (SANGUINATE®, PEGylated carboxyhemoglobin, bovine) is under development to treat conditions of ischemia/hypoxia. Hemorrhagic/hypovolemic shock (H/HVS) becomes a life-threatening comorbidity due in part to hypotension and hypoxia. Blood transfusions are indicated, but supply and compatibility issues may limit subject access [...] Read more.
Background: PP-007 (SANGUINATE®, PEGylated carboxyhemoglobin, bovine) is under development to treat conditions of ischemia/hypoxia. Hemorrhagic/hypovolemic shock (H/HVS) becomes a life-threatening comorbidity due in part to hypotension and hypoxia. Blood transfusions are indicated, but supply and compatibility issues may limit subject access or when blood is not an option due to religious restriction or concern for clinical complications. PP-007 is universally compatible with an effective hydrodynamic radius and colloidal osmotic pressure facilitating perfusion without promoting extravasation. Methods: A review of previous clinical trials was performed and revealed an Open-Label Phase 1 safety study of acute severe anemia (hemoglobin ≤ 5 g/dL) in adult (≥18 y) patients unable to receive red blood cell transfusion (NCT02754999). Primary outcomes included safety events with secondary efficacy measures of organ function and survival at 1, 14, and 28 days. Additionally, a retrospective review of published, peer-reviewed case reports was performed, evaluating the administration of Sanguinate for Expanded Access in those patient populations where blood was not an option over the past 12 years. Results: A total of 103 subjects were enrolled in the Phase I safety study with significant co-morbidities that most commonly included hypertension (n = 43), acute and chronic kidney disease (n = 38), diabetes mellitus (n = 29), gastrointestinal bleeds (n = 18), and sickle cell disease (n = 13). Enrollment characteristics included decreased hemoglobin and severe anemia (mean baseline hemoglobin of 4.2 g/dL). Treatments included an average of three infusions [range 1–17]. Secondary efficacy measures were mean Hb levels, respiratory support, and vasopressor requirements, all demonstrating clinically relevant improvements. Fourteen additional cases were identified in the literature. Though one patient died due to pre-treatment conditions, all patients but one were discharged home in stable condition. Conclusion: Collectively, these observations are encouraging and provide support for the continued evaluation of PP-007 in advanced clinical trials in severe anemia including H/HVS. The review of published case reports underscored the potential of Sanguinate to reduce early mortality. Adverse effects included transient hypertension, lethargy, dizziness, and troponin elevation. These findings highlight the need for continued research and funding of blood alternatives to improve outcomes when standard blood transfusions are unavailable or contraindicated. Full article
Show Figures

Figure A1

28 pages, 13615 KiB  
Article
The Anti-Parkinsonian A2A Receptor Antagonist Istradefylline (KW-6002) Attenuates Behavioral Abnormalities, Neuroinflammation, and Neurodegeneration in Cerebral Ischemia: An Adenosinergic Signaling Link Between Stroke and Parkinson’s Disease
by Michael G. Zaki, Elisabet Jakova, Mahboubeh Pordeli, Elina Setork, Changiz Taghibiglou and Francisco S. Cayabyab
Int. J. Mol. Sci. 2025, 26(12), 5680; https://doi.org/10.3390/ijms26125680 - 13 Jun 2025
Viewed by 1401
Abstract
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target [...] Read more.
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target in neurodegenerative disorders involving extracellular adenosine elevation. Istradefylline, a selective A2AR antagonist, has been approved for Parkinson’s disease (PD) adjunctive therapy and showed neuroprotective effects in PD and Alzheimer’s disease. However, the role of A2ARs in post-stroke neuronal damage and behavioral deficits remains unclear. We recently showed that A2AR antagonism prevented the adenosine-induced post-hypoxia synaptic potentiation of glutamatergic neurotransmission following the hypoxia/reperfusion of hippocampal slices. Here, we investigated the potential neuroprotective effects of istradefylline in male Sprague-Dawley rats subjected to pial vessel disruption (PVD) used to model a small-vessel stroke. Rats were treated with either a vehicle control or istradefylline (3 mg/kg i.p.) following PVD surgery for three days. Istradefylline administration prevented anxiety and depressive-like behaviors caused by PVD stroke. In addition, istradefylline significantly attenuated ischemia-induced cognitive impairment and motor deficits. Moreover, istradefylline markedly reduced hippocampal neurodegeneration, as well as GFAP/Iba-1, TNF-α, nNOS, and iNOS levels after PVD, but prevented the downregulation of anti-inflammatory markers TGF-β1 and IL-4. Together, these results suggest a molecular link between stroke and PD and that the anti-PD drug istradefylline displays translational potential for drug repurposing as a neuroprotective agent for cerebral ischemic damage. Full article
Show Figures

Figure 1

35 pages, 1617 KiB  
Review
Role of Ischemia/Reperfusion and Oxidative Stress in Shock State
by Yarielis Ivette Vázquez-Galán, Sandra Guzmán-Silahua, Walter Ángel Trujillo-Rangel and Simón Quetzalcoatl Rodríguez-Lara
Cells 2025, 14(11), 808; https://doi.org/10.3390/cells14110808 - 30 May 2025
Viewed by 1314
Abstract
Shock is a life-threatening condition characterized by inadequate tissue perfusion leading to systemic hypoxia and metabolic failure. Ischemia/reperfusion (I/R) injury exacerbates shock progression through oxidative stress and immune dysregulation, contributing to multi-organ dysfunction. This narrative review synthesizes current evidence on the interplay between [...] Read more.
Shock is a life-threatening condition characterized by inadequate tissue perfusion leading to systemic hypoxia and metabolic failure. Ischemia/reperfusion (I/R) injury exacerbates shock progression through oxidative stress and immune dysregulation, contributing to multi-organ dysfunction. This narrative review synthesizes current evidence on the interplay between I/R injury, oxidative stress, and immune modulation in shock states. We analyze the classification of shock, its progression, and the molecular pathways involved in ischemic adaptation, inflammatory responses, and oxidative injury. Shock pathophysiology is driven by systemic ischemia, triggering adaptive responses such as hypoxia-inducible factor (HIF) signaling and metabolic reprogramming. However, prolonged hypoxia leads to mitochondrial dysfunction, increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) production, and immune activation. The transition from systemic inflammatory response syndrome (SIRS) to compensatory anti-inflammatory response syndrome (CARS) contributes to immune imbalance, further aggravating tissue damage. Dysregulated immune checkpoint pathways, including CTLA-4 and PD-1, fail to suppress excessive inflammation, exacerbating oxidative injury and immune exhaustion. The intricate relationship between oxidative stress, ischemia/reperfusion injury, and immune dysregulation in shock states highlights potential therapeutic targets. Strategies aimed at modulating redox homeostasis, controlling immune responses, and mitigating I/R damage may improve patient outcomes. Future research should focus on novel interventions that restore immune balance while preventing excessive oxidative injury. Full article
(This article belongs to the Special Issue Inflammation in Target Organs)
Show Figures

Figure 1

12 pages, 1032 KiB  
Article
Esomeprazole’s Role in Enhancing Colonic Anastomotic Healing Post-Ischemic Injury in the Rat Model
by Faruk Pehlivanli, Oktay Aydin, Mehmet Selçuk Mısırlıgil, Kevser Peker and İlker Kaplan
Medicina 2025, 61(5), 851; https://doi.org/10.3390/medicina61050851 - 6 May 2025
Viewed by 421
Abstract
Background and Objectives: Colonic anastomotic leaks are still a critical cause of morbidity and mortality. The study aimed to investigate the effects of esomeprazole on anastomotic healing after left colon anastomosis in rats with an ischemic colon. Material and Methods: Thirty-five male [...] Read more.
Background and Objectives: Colonic anastomotic leaks are still a critical cause of morbidity and mortality. The study aimed to investigate the effects of esomeprazole on anastomotic healing after left colon anastomosis in rats with an ischemic colon. Material and Methods: Thirty-five male Wistar albino rats were divided into acute (CONTROL-A, ESP-A) and chronic (CONTROL-C, ESP-C) stage groups. Rats in the CONTROL-A and CONTROL-C groups underwent colonic anastomosis after hypoxia-reperfusion injury in the colon, and intraperitoneal saline was administered for three and ten days, respectively. Intraperitoneal 10 mg/day esomeprazole was given to the rats in the ESP-A and ESP-C groups for three and ten days after similar surgical procedures. Then, at scheduled times, 2 cm proximal and distal regions of the anastomosis line were resected, and bursting pressure was measured. Hydroxyproline (HYP), myeloperoxidase (MPO), malondialdehyde (MDA), caspase-3 (CSP3) and catalase (CAT), nitric oxide (NO), reduced glutathione (RGT), superoxide dismutase (SOD), TNF-α, IL-6, aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels were measured in tissue and blood serum samples. Results: In the acute stage, CAT, NO, RGT, and SOD values in ESP-A group were lower than CONTROL-A group values. In addition, TNF, IL-6, ALT, and AST values in the ESP-A group were higher than the CONTROL-A group values between groups (p < 0.05). However, HYP and burst pressure values were not different between the groups. In the chronic stage, CAT, NO, RGT, SOD, CSP3, and burst pressure values in the ESP-A group were higher than CONTROL-A group values (p = 0.05). In contrast, TNF, IL-6, ALT, AST, HYP, MPO, and MDA values in the ESP-A group were lower than the CONTROL-A group values (p < 0.05). Conclusions: These results suggest that esomeprazole has anti-inflammatory and antioxidant activity in the chronic phase of ischemia–reperfusion injury, thus protecting the intestinal tissue from ischemic damage and enhancing the healing of the anastomosis line. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

21 pages, 5491 KiB  
Review
Innovations in Drug Discovery for Sickle Cell Disease Targeting Oxidative Stress and NRF2 Activation—A Short Review
by Athena Starlard-Davenport, Chithra D. Palani, Xingguo Zhu and Betty S. Pace
Int. J. Mol. Sci. 2025, 26(9), 4192; https://doi.org/10.3390/ijms26094192 - 28 Apr 2025
Viewed by 1478
Abstract
Sickle cell disease (SCD) is a monogenic blood disorder characterized by abnormal hemoglobin S production, which polymerizes under hypoxia conditions to produce chronic red blood cell hemolysis, widespread organ damage, and vasculopathy. As a result of vaso-occlusion and ischemia-reperfusion injury, individuals with SCD [...] Read more.
Sickle cell disease (SCD) is a monogenic blood disorder characterized by abnormal hemoglobin S production, which polymerizes under hypoxia conditions to produce chronic red blood cell hemolysis, widespread organ damage, and vasculopathy. As a result of vaso-occlusion and ischemia-reperfusion injury, individuals with SCD have recurrent pain episodes, infection, pulmonary disease, and fall victim to early death. Oxidative stress due to chronic hemolysis and the release of hemoglobin and free heme is a key driver of the clinical manifestations of SCD. The net result is the generation of reactive oxygen species that consume nitric oxide and overwhelm the antioxidant system due to a reduction in enzymes such as superoxide dismutase and glutathione peroxidase. The primary mechanism for handling cellular oxidative stress is the activation of antioxidant proteins by the transcription factor NRF2, a promising target for treatment development, given the significant role of oxidative stress in the clinical severity of SCD. In this review, we discuss the role of oxidative stress in health and the clinical complications of SCD, and the potential of NRF2 as a treatment target, offering hope for developing effective therapies for SCD. This task requires our collective dedication and focus. Full article
(This article belongs to the Special Issue Oxidation in Human Health and Disease)
Show Figures

Figure 1

22 pages, 5990 KiB  
Article
Involvement of Nuclear Receptors PPAR-α, PPAR-γ, and the Transcription Factor Nrf2 in Cellular Protection Against Oxidative Stress Regulated by H2S and Induced by Hypoxia–Reoxygenation and High Glucose in Primary Cardiomyocyte Cultures
by Luz Ibarra-Lara, Araceli Sánchez-López, Leonardo del Valle-Mondragon, Elizabeth Soria-Castro, Gabriela Zarco-Olvera, Mariana Patlán, Verónica Guarner-Lans, Juan Carlos Torres-Narváez, Angélica Ruiz-Ramírez, Fernando Díaz de León-Sánchez, Víctor Hugo Oidor-Chan and Vicente Castrejón-Téllez
Antioxidants 2025, 14(4), 482; https://doi.org/10.3390/antiox14040482 - 17 Apr 2025
Viewed by 870
Abstract
Myocardial oxidative stress increases under conditions of hyperglycemia and ischemia/reperfusion (I/R) injury, leading to cellular damage. Inhibition of oxidative stress is involved in the cardioprotective effects of hydrogen sulfide (H2S) during I/R and diabetes, and H2S has the potential [...] Read more.
Myocardial oxidative stress increases under conditions of hyperglycemia and ischemia/reperfusion (I/R) injury, leading to cellular damage. Inhibition of oxidative stress is involved in the cardioprotective effects of hydrogen sulfide (H2S) during I/R and diabetes, and H2S has the potential to protect the heart. However, the mechanism by which H2S regulates the level of cardiac reactive oxygen species (ROS) during I/R and hyperglycemic conditions remains unclear. Therefore, the objective of this study was to evaluate the cytoprotective effect of H2S in primary cardiomyocyte cultures subjected to hyperglycemia, hypoxia–reoxygenation (HR), or both conditions, by assessing the PPAR-α/Keap1/Nrf2/p47phox/NOX4/p-eNOS/CAT/SOD and the PPAR-γ/PGC-1α/AMPK/GLUT4 signaling pathways. Treatment with NaHS (100 μM) as an H2S donor in cardiomyocytes subjected to hyperglycemia, HR, or a combination of both increased cell viability, total antioxidant capacity, and tetrahydrobiopterin (BH4) concentrations, while reducing ROS production, malondialdehyde concentrations, 8-hydroxy-2′-deoxyguanosine, and dihydrobiopterin (BH2) concentrations. Additionally, the H2S donor treatment increased the expression and activity of PPAR-α, reversed the reduction in the expression of PPAR-γ, PGC-1α, AMPK, GLUT4, Nrf2, p-eNOS, SOD, and CAT, and decreased the expression of Keap1, p47phox and NOX4. Therefore, the treatment with the H2S donor protects cardiomyocytes from damage caused by hyperglycemia, HR, or both conditions by reducing oxidative stress markers and improving antioxidant mechanisms, thereby increasing cell viability and “cardiomyocyte ultrastructure”. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

43 pages, 5385 KiB  
Article
Hypothermia Shifts Neurodegeneration Phenotype in Neonatal Human Hypoxic–Ischemic Encephalopathy but Not in Related Piglet Models: Possible Relationship to Toxic Conformer and Intrinsically Disordered Prion-like Protein Accumulation
by Lee J. Martin, Jennifer K. Lee, Mark V. Niedzwiecki, Adriana Amrein Almira, Cameron Javdan, May W. Chen, Valerie Olberding, Stephen M. Brown, Dongseok Park, Sophie Yohannan, Hasitha Putcha, Becky Zheng, Annalise Garrido, Jordan Benderoth, Chloe Kisner, Javid Ghaemmaghami, Frances J. Northington and Panagiotis Kratimenos
Cells 2025, 14(8), 586; https://doi.org/10.3390/cells14080586 - 12 Apr 2025
Viewed by 1862
Abstract
Hypothermia (HT) is used clinically for neonatal hypoxic–ischemic encephalopathy (HIE); however, the brain protection is incomplete and selective regional vulnerability and lifelong consequences remain. Refractory damage and impairment with HT cooling/rewarming could result from unchecked or altered persisting cell death and proteinopathy. We [...] Read more.
Hypothermia (HT) is used clinically for neonatal hypoxic–ischemic encephalopathy (HIE); however, the brain protection is incomplete and selective regional vulnerability and lifelong consequences remain. Refractory damage and impairment with HT cooling/rewarming could result from unchecked or altered persisting cell death and proteinopathy. We tested two hypotheses: (1) HT modifies neurodegeneration type, and (2) intrinsically disordered proteins (IDPs) and encephalopathy cause toxic conformer protein (TCP) proteinopathy neonatally. We studied postmortem human neonatal HIE cases with or without therapeutic HT, neonatal piglets subjected to global hypoxia-ischemia (HI) with and without HT or combinations of HI and quinolinic acid (QA) excitotoxicity surviving for 29–96 h to 14 days, and human oligodendrocytes and neurons exposed to QA for cell models. In human and piglet encephalopathies with normothermia, the neuropathology by hematoxylin and eosin staining was similar; necrotic cell degeneration predominated. With HT, neurodegeneration morphology shifted to apoptosis-necrosis hybrid and apoptotic forms in human HIE, while neurons in HI piglets were unshifting and protected robustly. Oligomers and putative TCPs of α-synuclein (αSyn), nitrated-Syn and aggregated αSyn, misfolded/oxidized superoxide dismutase-1 (SOD1), and prion protein (PrP) were detected with highly specific antibodies by immunohistochemistry, immunofluorescence, and immunoblotting. αSyn and SOD1 TCPs were seen in human HIE brains regardless of HT treatment. αSyn and SOD1 TCPs were detected as early as 29 h after injury in piglets and QA-injured human oligodendrocytes and neurons in culture. Cell immunophenotyping by immunofluorescence showed αSyn detected with antibodies to aggregated/oligomerized protein; nitrated-Syn accumulated in neurons, sometimes appearing as focal dendritic aggregations. Co-localization also showed aberrant αSyn accumulating in presynaptic terminals. Proteinase K-resistant PrP accumulated in ischemic Purkinje cells, and their target regions had PrP-positive neuritic plaque-like pathology. Immunofluorescence revealed misfolded/oxidized SOD1 in neurons, axons, astrocytes, and oligodendrocytes. HT attenuated TCP formation in piglets. We conclude that HT differentially affects brain damage in humans and piglets. HT shifts neuronal cell death to other forms in human while blocking ischemic necrosis in piglet for sustained protection. HI and excitotoxicity also acutely induce formation of TCPs and prion-like proteins from IDPs globally throughout the brain in gray matter and white matter. HT attenuates proteinopathy in piglets but seemingly not in humans. Shifting of cell death type and aberrant toxic protein formation could explain the selective system vulnerability, connectome spreading, and persistent damage seen in neonatal HIE leading to lifelong consequences even after HT treatment. Full article
(This article belongs to the Special Issue Perinatal Brain Injury—from Pathophysiology to Therapy)
Show Figures

Figure 1

20 pages, 5658 KiB  
Article
Neurotropic Effects of Cortexin on Models of Mental and Physical Developmental Delay
by Denis V. Kurkin, Dmitry A. Bakulin, Evgeny I. Morkovin, Vladimir I. Petrov, Andrei V. Strygin, Alexey V. Smirnov, Maksim V. Shmidt, Julia V. Gorbunova, Yury A. Kolosov, Olga V. Ivanova, Ivan S. Krysanov, Marina A. Dzhavakhyan, Andrew V. Zaborovsky, Valeria B. Saparova, Igor E. Makarenko, Roman I. Drai, Ilia A. Lugovik, Nikolay A. Verlov and Vladimir S. Burdakov
Biomedicines 2025, 13(4), 860; https://doi.org/10.3390/biomedicines13040860 - 2 Apr 2025
Viewed by 2169
Abstract
Objective: To evaluate the efficacy of the neurotropic action of cortexin in models of mental and physical developmental delays in rat offspring. Methods: The neurotropic properties of bovine brain cortex polypeptides were studied using two models of mental and physical developmental delays in [...] Read more.
Objective: To evaluate the efficacy of the neurotropic action of cortexin in models of mental and physical developmental delays in rat offspring. Methods: The neurotropic properties of bovine brain cortex polypeptides were studied using two models of mental and physical developmental delays in rats: toxic CNS damage (oral administration of ethanol during the last week of pregnancy) and neonatal trauma (ischemia-hypoxia). The drug was administered intramuscularly or rectally as suppositories for 20 days. Treatment efficacy was evaluated using the mNSS scale, open field, rotarod, and adhesive removal tests. A histological examination of the brain was subsequently performed. In a separate series of experiments in mice, the concentration of the test drug cortexin and the reference drug cerebrolysin was determined in blood and brain tissue samples using radioactive iodine (Na125I) labeling of these preparations. Results: Modeling developmental delay in rat offspring (due to the toxic effect of ethanol in late pregnancy or neonatal trauma) led to pronounced neurological deficits, manifested by decreased motor activity, and sensorimotor, and coordination disorders. Administration of cortexin in all forms reduced the severity of neurological deficits as measured by mNSS scores, improved motor activity in the Open Field test, enhanced performance in the Adhesive Removal and Rotarod tests, and decreased structural changes in brain tissues. Histological examination revealed reduced neuronal damage in multiple cortical regions, with a significant increase in normal, unchanged neurons compared to placebo groups. Comparison of the blood concentrations of labeled Na125I cortexin depending on the type of administration showed similar distribution profiles in brain tissues, primarily dependent on its blood concentration, which was influenced by the route of administration. Conclusions: The results indicate that brain polypeptides (cortexin), administered either intramuscularly or rectally, can reach the systemic circulation and cross the blood-brain barrier, as demonstrated by our distribution studies using radiolabeled preparations. These polypeptides exert comparable neurotropic effects in models of mental and physical developmental delays in offspring caused by neonatal trauma or the toxic effect of ethanol in late pregnancy in rats. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

12 pages, 218 KiB  
Brief Report
Long COVID Is Associated with Severe Cognitive Limitations Among U.S. Adults
by Rolake Neba, Iman Mohamed, Theodora Iwudibia, Jahnavi Pinnamraju and Usha Sambamoorthi
COVID 2025, 5(4), 46; https://doi.org/10.3390/covid5040046 - 25 Mar 2025
Viewed by 1603
Abstract
Long COVID is characterized by persistent symptoms following the resolution of an acute COVID-19 infection. Long COVID may affect cognition due to possible ischemia, neuro-inflammation, and hypoxia related to COVID-19. The purpose of this study was to analyze the association of long COVID [...] Read more.
Long COVID is characterized by persistent symptoms following the resolution of an acute COVID-19 infection. Long COVID may affect cognition due to possible ischemia, neuro-inflammation, and hypoxia related to COVID-19. The purpose of this study was to analyze the association of long COVID with severe cognitive limitations. Utilizing data from the 20 September–2 October 2023 Census Household Pulse Survey among adults, COVID status was categorized as: (1) long COVID, (2) COVID-19, or (3) no COVID. The cognitive limitations were abstracted from the Washington Group Short Set on Functioning, as follows: No difficulty; Some difficulty; A lot of difficulty; and Cannot do at all; we combined “a lot of difficulty” or “unable to do” under the category “severe cognitive limitation”. Rao–Scott Chi-square tests and multivariable multinomial logistic regressions that accounted for replicate weights were used to analyze the adjusted association of long COVID with cognitive limitations. Overall, 15.1% had long COVID. A higher percentage of adults with long COVID (13.1% vs. 4.1%) reported severe cognitive limitations compared to no COVID (p < 0.001). In a fully adjusted logistic regression model, adults with long COVID were more likely to report at least a lot of difficulty in cognition (aOR = 1.64 95% CI = 1.38, 1.96) compared to no COVID. Full article
(This article belongs to the Section Long COVID and Post-Acute Sequelae)
Back to TopTop