Physical Activity and Pain Perception in Residents Under Conditions of Chronic Hypoxia
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The Revised IASP definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Årnes, A.P.; Nielsen, C.S.; Stubhaug, A.; Fjeld, M.K.; Johansen, A.; Morseth, B.; Strand, B.H.; Wilsgaard, T.; Steingrímsdóttir, Ó.A.; Russo, L. Longitudinal relationships between habitual physical activity and pain tolerance in the general population. PLoS ONE 2023, 18, e0285041. [Google Scholar] [CrossRef]
- Am, Z.O.; Ob, P.N. Influence of physical exercise in pain threshold in human: A systematic review. Integr. Clin. Med. 2020, 4, 1–6. [Google Scholar] [CrossRef]
- Leźnicka, K.; Pawlak, M.; Maciejewska-Skrendo, A.; Buczny, J.; Wojtkowska, A.; Pawlus, G.; Machoy-Mokrzyńska, A.; Jażdżewska, A. Is Physical Activity an Effective Factor for Modulating Pressure Pain Threshold and Pain Tolerance after Cardiovascular Incidents? Int. J. Environ. Res. Public Health 2022, 19, 11276. [Google Scholar] [CrossRef]
- Pettersen, S.D.; Aslaksen, P.M.; Pettersen, S.A. Pain Processing in Elite and High-Level Athletes Compared to Non-athletes. Front. Psychol. 2020, 11, 1908. [Google Scholar] [CrossRef] [PubMed]
- Hoeger Bement, M.K.; Weyer, A.; Hartley, S.; Drewek, B.; Harkins, A.L.; Hunter, S.K. Pain Perception After Isometric Exercise in Women With Fibromyalgia. Arch. Phys. Med. Rehabil. 2011, 92, 89–95. [Google Scholar] [CrossRef]
- Vaegter, H.B.; Handberg, G.; Graven-Nielsen, T. Hypoalgesia After Exercise and the Cold Pressor Test is Reduced in Chronic Musculoskeletal Pain Patients With High Pain Sensitivity. Clin. J. Pain 2016, 32, 58–69. [Google Scholar] [CrossRef]
- Koltyn, K.F.; Brellenthin, A.G.; Cook, D.B.; Sehgal, N.; Hillard, C. Mechanisms of exercise-induced hypoalgesia. J. Pain 2014, 15, 1294–1304. [Google Scholar] [CrossRef]
- Kosek, E.; Lundberg, L. Segmental and plurisegmental modulation of pressure pain thresholds during static muscle contractions in healthy individuals. Eur. J. Pain Lond. Engl. 2003, 7, 251–258. [Google Scholar] [CrossRef]
- Ohga, S.; Hattori, T.; Shimo, K.; Maeda, H.; Matsubara, T. Impact of electrical muscle stimulation-induced muscle contractions on endogenous pain modulatory system: A quantitative sensory testing evaluation. BMC Musculoskelet. Disord. 2024, 25, 1077. [Google Scholar] [CrossRef]
- Greenspan, J.D.; Craft, R.M.; LeResche, L.; Arendt-Nielsen, L.; Berkley, K.J.; Fillingim, R.B.; Gold, M.; Holdcroft, A.; Lautenbacher, S.; Mayer, E.A.; et al. Studying sex and gender differences in pain and analgesia: A consensus report. Pain 2007, 132 (Suppl. S1), S26–S45. [Google Scholar] [CrossRef]
- Vilca-Coaquira, K.M.; Calisaya-Huacasi, A.G.; Tejada-Flores, J.; Tintaya-Ramos, H.O.; Quispe-Trujillo, M.M.; Quispe-Humpiri, S.A.; Rojas-Chambilla, R.A.; Peña-Vicuña, G.F.; Granara, A.S.; Sardón, L.F.L.; et al. Pain Perception Threshold in Young High-Altitude Natives After Acute Exposure to Severe Hypoxic Conditions. Oxygen 2025, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Hamed, N.S. Pain Threshold Measurements in High and Lowaltitude among Healthy Volunteer Adults: A comparative Study. Int. J. Physiother. 2016, 3, 643–649. [Google Scholar] [CrossRef]
- Kaczmarski, P.; Karuga, F.F.; Szmyd, B.; Sochal, M.; Białasiewicz, P.; Strzelecki, D.; Gabryelska, A. The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea. Int. J. Mol. Sci. 2022, 23, 9080. [Google Scholar] [CrossRef] [PubMed]
- Goodman, C.A. Role of mTORC1 in mechanically induced increases in translation and skeletal muscle mass. J. Appl. Physiol. 1985 2019, 127, 581–590. [Google Scholar] [CrossRef]
- Roberts, M.D.; McCarthy, J.J.; Hornberger, T.A.; Phillips, S.M.; Mackey, A.L.; Nader, G.A.; Boppart, M.D.; Kavazis, A.N.; Reidy, P.T.; Ogasawara, R.; et al. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: Current understanding and future directions. Physiol. Rev. 2023, 103, 2679–2757. [Google Scholar] [CrossRef]
- Ibata, N.; Terentjev, E.M. Why exercise builds muscles: Titin mechanosensing controls skeletal muscle growth under load. Biophys. J. 2021, 120, 3649–3663. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, L.L.; Dhavale, M.; Abdelaal, M.K.; Alam, A.N.; Blazin, T.; Prajapati, D.; Mostafa, J.A. Exercise-Induced Hypertension in Healthy Individuals and Athletes: Is it an Alarming Sign? Cureus 2020, 12, e11988. [Google Scholar] [CrossRef]
- Díaz Martínez, A.E.; Alcaide Martín, M.J.; González-Gross, M. Basal Values of Biochemical and Hematological Parameters in Elite Athletes. Int. J. Environ. Res. Public Health 2022, 19, 3059. [Google Scholar] [CrossRef]
- Cabanas, A.M.; Fuentes-Guajardo, M.; Sáez, N.; Catalán, D.D.; Collao-Caiconte, P.O.; Martín-Escudero, P. Exploring the Hidden Complexity: Entropy Analysis in Pulse Oximetry of Female Athletes. Biosensors 2024, 14, 52. [Google Scholar] [CrossRef]
- Geisler, M.; Eichelkraut, L.; Miltner, W.H.R.; Weiss, T. Expectation of exercise in trained athletes results in a reduction of central processing to nociceptive stimulation. Behav. Brain Res. 2019, 356, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Song, W.; Zhang, M.; Teng, L.; Tang, Q.; Zhu, L. Potential mechanisms of exercise for relieving inflammatory pain: A literature review of animal studies. Front. Aging Neurosci. 2024, 16, 1359455. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Özcan, A.; Tulum, Z.; Pınar, L.; Başkurt, F. Comparison of Pressure Pain Threshold, Grip Strength, Dexterity and Touch Pressure of Dominant and Non-Dominant Hands within and Between Right- and Left-Handed Subjects. J. Korean Med. Sci. 2004, 19, 874–878. [Google Scholar] [CrossRef] [PubMed]
- Pud, D.; Golan, Y.; Pesta, R. Hand dominancy—A feature affecting sensitivity to pain. Neurosci. Lett. 2009, 467, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.; Neugebauer, V. Hemispheric Lateralization of Pain Processing by Amygdala Neurons. J. Neurophysiol. 2009, 102, 2253–2264. [Google Scholar] [CrossRef]
- Ricart, A.; Pages, T.; Viscor, G.; Leal, C.; Ventura, J.L. Sex-linked differences in pulse oxymetry. Br. J. Sports Med. 2008, 42, 620–621. [Google Scholar]
- Bartley, E.J.; Fillingim, R.B. Sex differences in pain: A brief review of clinical and experimental findings. BJA Br. J. Anaesth. 2013, 111, 52–58. [Google Scholar] [CrossRef]
- Failla, M.D.; Beach, P.A.; Atalla, S.; Dietrich, M.S.; Bruehl, S.; Cowan, R.L.; Monroe, T.B. Gender Differences in Pain Threshold, Unpleasantness, and Descending Pain Modulatory Activation Across the Adult Life Span: A Cross Sectional Study. J. Pain 2024, 25, 1059–1069. [Google Scholar] [CrossRef]
- Martin, R.M. Influence of biological sex, trait gender, and state gender on pain threshold, pain tolerance, and ratings of pain severity. Personal. Individ. Differ. 2019, 138, 183–187. [Google Scholar] [CrossRef]
- Mendoza-Arranz, C.; López-Rebenaque, O.; Cabrera-López, C.D.; López-Mejías, A.; Fierro-Marrero, J.; DeAsís-Fernández, F. Effects of Apnea-Induced Hypoxia on Hypoalgesia in Healthy Subjects. Sports 2024, 12, 294. [Google Scholar] [CrossRef]
- Tracey, I.; Mantyh, P.W. The cerebral signature for pain perception and its modulation. Neuron 2007, 55, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Fillingim, R.B.; King, C.D.; Ribeiro-Dasilva, M.C.; Rahim-Williams, B.; Riley, J.L. Sex, Gender, and Pain: A Review of Recent Clinical and Experimental Findings. J. Pain Off. J. Am. Pain. Soc. 2009, 10, 447–485. [Google Scholar] [CrossRef] [PubMed]
- Årnes, A.P.; Nielsen, C.S.; Stubhaug, A.; Fjeld, M.K.; Hopstock, L.A.; Horsch, A.; Johansen, A.; Morseth, B.; Wilsgaard, T.; Steingrímsdóttir, Ó.A. Physical activity and cold pain tolerance in the general population. Eur. J. Pain 2021, 25, 637–650. [Google Scholar] [CrossRef]
- Geneen, L.J.; Moore, R.A.; Clarke, C.; Martin, D.; Colvin, L.A.; Smith, B.H. Physical activity and exercise for chronic pain in adults: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2017, 4, CD011279. [Google Scholar]
- Amandusson, Å.; Blomqvist, A. Estrogenic influences in pain processing. Front. Neuroendocr. 2013, 34, 329–349. [Google Scholar] [CrossRef]
- Fernandes, I.A.; Mattos, J.D.; Campos, M.O.; Rocha, M.P.; Mansur, D.E.; Rocha, H.M.; Garcia, V.P.; Alvares, T.; Secher, N.H.; Nóbrega, A.C. Reactive oxygen species play a modulatory role in the hyperventilatory response to poikilocapnic hyperoxia in humans. J. Physiol. 2021, 599, 3993–4007. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Sáenz, P.; Moreno-Domínguez, A.; Gao, L.; López-Barneo, J. Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α. Front. Physiol. 2020, 11, 614893. [Google Scholar] [CrossRef]
- Pak, O.; Nolte, A.; Knoepp, F.; Giordano, L.; Pecina, P.; Hüttemann, M.; Grossman, L.I.; Weissmann, N.; Sommer, N. Mitochondrial oxygen sensing of acute hypoxia in specialized cells—Is there a unifying mechanism? Biochim. Biophys. Acta Bioenerg. 2022, 1863, 148911. [Google Scholar] [CrossRef]
- Zoccal, D.B.; Vieira, B.N.; Mendes, L.R.; Evangelista, A.B.; Leirão, I.P. Hypoxia sensing in the body: An update on the peripheral and central mechanisms. Exp. Physiol. 2024, 109, 461–469. [Google Scholar] [CrossRef]
- Jespersen, A.; Amris, K.; Graven-Nielsen, T.; Arendt-Nielsen, L.; Bartels, E.M.; Torp-Pedersen, S.; Bliddal, H.; Danneskiold-Samsoe, B. Assessment of pressure-pain thresholds and central sensitization of pain in lateral epicondylalgia. Pain Med. Malden Mass 2013, 14, 297–304. [Google Scholar] [CrossRef]
- Forte, G.; Troisi, G.; Pazzaglia, M.; Pascalis, V.D.; Casagrande, M. Heart Rate Variability and Pain: A Systematic Review. Brain Sci. 2022, 12, 153. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.G. The role of heart rate variability in sports physiology. Exp. Ther. Med. 2016, 11, 1531. [Google Scholar] [CrossRef] [PubMed]
Low Physical Activity | Moderate Physical Activity | |||||
---|---|---|---|---|---|---|
Men (n = 30) | Women (n = 7) | p | Men (n = 36) | Women (n = 9) | p | |
Age (y) | 23.5 ± 2.5 | 23.6 ± 1.2 | 0.845 | 22.7 ± 1.8 | 22.2 ± 1.6 | 0.290 |
Weight (kg) | 67.2 ± 10.4 | 56.2 ± 5.4 | 0.066 | 64.9 ± 10.6 | 60.2 ± 5.9 | 0.002 |
Height (m) | 1.7 ± 0.5 | 1.5 ± 0.5 | 0.000 | 1.7 ± 0.5 | 1.5 ± 0.5 | 0.000 |
BMI (kg·m−2) | 23.9 ± 3.3 | 23.4 ± 1.9 | 0.064 | 23.7 ± 3.4 | 25.3 ± 2.5 | 0.583 |
Low Physical Activity | Moderate Physical Activity | |||||
---|---|---|---|---|---|---|
Men (n = 30) | Women (n = 7) | p | Men (n = 36) | Women (n = 9) | p | |
Systolic Blood Pressure (mmHg) | 107.32 ± 10.3 | 99.9 ± 12.0 | 0.081 | 108.8 ± 10.5 | 103.9 ± 7.5 | 0.059 |
Diastolic Blood Pressure (mmHg) | 73.3 ± 7.5 | 66.9 ± 8.7 | 0.042 | 68.5 ± 7.8 | 69.9 ± 4.2 | 0.459 |
Hemoglobin (g/dL) | 16.3 ± 1.3 | 14.9 ± 1.0 | 0.002 | 15.9 ± 0.9 | 15.2 ± 0.9 | 0.002 |
Oxygen Saturation (%) | 90.7 ± 2.3 | 91.6 ± 1.9 | 0.698 | 90.8 ± 2.1 | 91.0 ± 2.1 | 0.698 |
Heart Rate (bpm) | 82.1 ± 11.3 | 82.1 ± 11.3 | 0.603 | 78.3 ± 11.5 | 79.1 ± 8.4 | 0.779 |
RIGHT ARM | |||||
---|---|---|---|---|---|
Low Physical Activity | Moderate Physical Activity | Difference | p | ||
Time (s) | First pain | 30.2 ± 14.1 | 32.5 ± 15.4 | 2.3 | 0.494 |
Unbearable pain | 54.1 ± 16.4 | 53.8 ± 19.6 | 0.3 | 0.943 | |
No pain | 76.4 ± 18.4 | 75.2 ± 26.8 | 1.2 | 0.825 | |
Exacerbation time | 23.9 ± 8.3 | 21.3 ± 10.8 | 2.6 | 0.250 | |
Pain resolution time | 22.3 ± 10.9 | 21.4 ± 13.2 | 0.9 | 0.744 | |
Sat O2 (%) | First pain | 91.5 ± 2.6 | 92.3 ± 2.3 | 0.8 | 0.141 |
Unbearable pain | 92.9 ± 2.3 | 92.9 ± 2.4 | 0.0 | 0.998 | |
No pain | 92.9 ± 2.4 | 93.2 ±2.3 | 0.2 | 0.685 | |
Heart rate (bpm) | First pain | 87.2 ± 10.9 | 88.8 ± 12.7 | 1.8 | 0.513 |
Unbearable pain | 88.8 ± 12.0 | 86.9 ± 12.5 | 1.9 | 0.487 | |
No pain | 78.2 ± 11.6 | 74.3 ± 11.8 | 3.9 | 0.139 |
LEFT ARM | |||||
---|---|---|---|---|---|
Low Physical Activity | Moderate Physical Activity | Difference | p | ||
Time (s) | First pain | 27.9 ± 16.8 | 34.6 ± 18.5 | 6.7 | 0.097 |
Unbearable pain | 53.0 ± 19.6 | 59.3 ± 24.5 | 6.3 | 0.225 | |
No pain | 75.3 ± 22.2 | 77.1 ± 25.5 | 1.8 | 0.749 | |
Exacerbation time | 25.1 ± 12.2 | 24.7 ± 15.8 | 0.4 | 0.894 | |
Pain resolution time | 22.3 ± 11.8 | 17.8 ± 6.9 | 4.5 | 0.023 | |
Sat O2 (%) | First pain | 91.4 ± 2.4 | 92.1 ± 2.9 | 0.8 | 0.215 |
Unbearable pain | 92.2 ± 1.9 | 92.9 ± 2.3 | 0.7 | 0.175 | |
No pain | 92.5 ± 1.9 | 93.1 ± 2.2 | 0.6 | 0.222 | |
Heart rate (bpm) | First pain | 89.0 ± 8.9 | 86.7 ± 12.0 | 2.3 | 0.352 |
Unbearable pain | 91.0 ± 13.5 | 85.6 ± 10.9 | 5.4 | 0.041 | |
No pain | 81.8 ± 12.6 | 75.5 ± 11.5 | 6.3 | 0.020 |
RIGHT ARM | |||||||
---|---|---|---|---|---|---|---|
Low Physical Activity | Moderate Physical Activity | ||||||
Women | Men | p | Women | Men | p | ||
Time (s) | First pain | 31.2 ± 16.5 | 29.4 ± 12.1 | 0.728 | 28.2 ± 8.6 | 34.7 ± 17.5 | 0.113 |
Unbearable pain | 52.4 ± 19.1 | 55.6 ± 14.0 | 0.602 | 46.7 ± 12.5 | 57.5 ± 21.6 | 0.039 | |
No pain | 74.6 ± 18.9 | 78.0 ± 18.4 | 0.619 | 70.4 ± 23.3 | 77.7 ± 28.3 | 0.315 | |
Exacerbation time | 21.2 ± 7.4 | 26.3 ± 8.5 | 0.097 | 18.5 ± 8.1 | 22.8 ± 11.7 | 0.144 | |
Pain resolution time | 22.1 ± 8.1 | 22.4 ± 13.1 | 0.955 | 23.7 ± 15.7 | 20.2 ± 11.9 | 0.330 | |
Sat O2 (%) | First pain | 91.3 ± 2.9 | 91.6 ± 2.4 | 0.733 | 92.4 ± 2.9 | 92.2 ± 2.1 | 0.713 |
Unbearable pain | 93.2 ± 2.3 | 92.8 ± 2.4 | 0.590 | 92.7 ± 3.0 | 93.1 ± 2.0 | 0.555 | |
No pain | 92.9 ± 2.4 | 92.9 ± 2.5 | 0.992 | 93.2 ± 2.7 | 93.1 ± 2.1 | 0.913 | |
Heart rate (bpm) | First pain | 88.8 ± 12.2 | 85.6 ± 9.9 | 0.432 | 91.8 ± 12.7 | 87.3 ± 12.6 | 0.196 |
Unbearable pain | 90.4 ± 14.4 | 87.4 ± 9.8 | 0.505 | 89.5 ± 11.7 | 85.6 ± 12.8 | 0.242 | |
No pain | 79.4 ± 10.1 | 77.2± 13.2 | 0.608 | 78.2 ± 14.4 | 72.4 ± 9.8 | 0.075 |
LEFT ARM | |||||||
---|---|---|---|---|---|---|---|
Low Physical Activity | Moderate Physical Activity | ||||||
Women | Men | p | Women | Men | p | ||
Time (s) | First pain | 25.8 ± 18.5 | 29.8 ± 15.6 | 0.529 | 31.7 ± 20.7 | 36.1 ± 17.3 | 0.376 |
Unbearable pain | 50.1 ± 20.8 | 55.6 ± 18.8 | 0.449 | 58.3 ± 26.3 | 59.8 ± 23.8 | 0.828 | |
No pain | 74.6 ± 21.3 | 75.9 ± 23.7 | 0.883 | 75.4 ± 26.9 | 77.9 ± 24.9 | 0.716 | |
Exacerbation time | 24.3 ± 8.3 | 25.9 ± 14.9 | 0.728 | 26.7 ± 17.9 | 23.7 ± 14.8 | 0.487 | |
Pain resolution time | 24.6 ± 12.4 | 20.3 ± 11.2 | 0.323 | 17.1 ± 6.0 | 18.1 ± 7.4 | 0.569 | |
Sat O2 (%) | First pain | 91.1 ± 2.5 | 91.6 ± 2.4 | 0.543 | 92.7 ± 2.8 | 91.9 ± 2.9 | 0.297 |
Unbearable pain | 92.3 ± 2.1 | 92.1 ± 1.93 | 0.8 | 92.9 ± 2.9 | 93.1 ± 1.9 | 0.341 | |
No pain | 92.4 ± 1.6 | 92.6 ± 2.1 | 0.700 | 93.2 ± 2.8 | 93.0 ± 1.9 | 0.785 | |
Heart rate (bpm) | First pain | 89.7 ± 8.9 | 88.4 ± 9.0 | 0.701 | 89.4 ± 9.0 | 85.4 ± 13.2 | 0.215 |
Unbearable pain | 91.6 ± 14.4 | 90.5 ± 13.1 | 0.821 | 86.0 ± 9.7 | 85.39 ± 11.6 | 0.837 | |
No pain | 82.8 ± 12.7 | 80.9 ± 12.9 | 0.696 | 76.0 ± 9.9 | 75.3 ± 12.3 | 0.821 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernedo-Itusaca, M.E.; Vilca-Coaquira, K.M.; Calisaya-Huacasi, Á.G.; Cosi-Cupi, M.R.; Leqque-Santi, S.R.; Cutipa-Tinta, S.; Salazar-Granara, A.; Vanegas, Y.M.-P.; Flores-Paredes, A.; Guo, S.; et al. Physical Activity and Pain Perception in Residents Under Conditions of Chronic Hypoxia. Oxygen 2025, 5, 11. https://doi.org/10.3390/oxygen5030011
Bernedo-Itusaca ME, Vilca-Coaquira KM, Calisaya-Huacasi ÁG, Cosi-Cupi MR, Leqque-Santi SR, Cutipa-Tinta S, Salazar-Granara A, Vanegas YM-P, Flores-Paredes A, Guo S, et al. Physical Activity and Pain Perception in Residents Under Conditions of Chronic Hypoxia. Oxygen. 2025; 5(3):11. https://doi.org/10.3390/oxygen5030011
Chicago/Turabian StyleBernedo-Itusaca, Margot Evelin, Kely Melina Vilca-Coaquira, Ángel Gabriel Calisaya-Huacasi, Madeleyne Rosmery Cosi-Cupi, Stanley Rivaldo Leqque-Santi, Shantal Cutipa-Tinta, Alberto Salazar-Granara, Yony Martin-Pino Vanegas, Alcides Flores-Paredes, Shihui Guo, and et al. 2025. "Physical Activity and Pain Perception in Residents Under Conditions of Chronic Hypoxia" Oxygen 5, no. 3: 11. https://doi.org/10.3390/oxygen5030011
APA StyleBernedo-Itusaca, M. E., Vilca-Coaquira, K. M., Calisaya-Huacasi, Á. G., Cosi-Cupi, M. R., Leqque-Santi, S. R., Cutipa-Tinta, S., Salazar-Granara, A., Vanegas, Y. M.-P., Flores-Paredes, A., Guo, S., Li, W., Yang, M., Viscor, G., & Zirena, I. H. (2025). Physical Activity and Pain Perception in Residents Under Conditions of Chronic Hypoxia. Oxygen, 5(3), 11. https://doi.org/10.3390/oxygen5030011