Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (193)

Search Parameters:
Keywords = hydrolysis reactor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1768 KiB  
Article
Enrichment Strategies for Enhanced Food Waste Hydrolysis in Acidogenic Leach Bed Reactors
by Lei Zheng, Yuanhua Li, Xiaofang Yang, Yongjuan Zhu, Binghua Yan and Kejun Feng
Water 2025, 17(14), 2082; https://doi.org/10.3390/w17142082 - 11 Jul 2025
Viewed by 268
Abstract
This study evaluated the efficacy of acclimated cow manure as a seed microbiome to enhance food waste hydrolysis. Anaerobic hydrolysis was performed on simulated food waste in a hydrolytic–acidogenic leach bed reactor (LBR) operated in batch mode under mesophilic conditions (35 °C) for [...] Read more.
This study evaluated the efficacy of acclimated cow manure as a seed microbiome to enhance food waste hydrolysis. Anaerobic hydrolysis was performed on simulated food waste in a hydrolytic–acidogenic leach bed reactor (LBR) operated in batch mode under mesophilic conditions (35 °C) for 16 days. The acclimation process involved three sequential runs: Run-1 utilized 20% (w/w) cow manure as seed, Run-2 employed the digestate from Run-1 (day 5), and Run-3 used the digestate from Run-1 (day 10). Run-3 achieved 70.4% removal of volatile solids (VSs), surpassing Run-1 (47.1%) and Run-2 (57.1%). Compared with the first run, the production of chemical oxygen demand (COD) and total soluble products (TSPs) increased by 48.7% and 75.9%, respectively, in Run-3. The hydrolysis rate of proteins was 48.4% in Run-1, while an increase of 16.9% was achieved in Run-3 with the acclimatized consortium. A molecular analysis of the microbial community existing in the reactors of Run-2 and Run-3 indicated that the improvement in process performance was closely related to the selection and enrichment of specific hydrolytic–acidogenic bacteria in the reactor. A functional analysis showed that the gene copy numbers for pyruvate synthesis and fatty acid synthesis and metabolism pathways were higher in all bacterial species in Run-3 compared to in those of the other two runs, indicating improved capacity through acclimation in Run-3. The experimental results demonstrate that the hydrolysis of food waste can be enhanced through the acclimation of seed microbes from cow manure. Full article
(This article belongs to the Special Issue Anaerobic Digestion Process in Wastewater Treatment)
Show Figures

Figure 1

17 pages, 2975 KiB  
Article
Investigating the Impact of Organic Loading Rates and Magnetic Nanoparticles on the Performance and Stability of Continuous Stirred Tank Reactors
by Asim Ali, Adham Mohammed Alnadish, Sallahuddin Panhwar, Hareef Ahmed Keerio, Abdul Waheed and Rasool Bux Mahar
Processes 2025, 13(7), 2126; https://doi.org/10.3390/pr13072126 - 4 Jul 2025
Viewed by 1218
Abstract
Research on energy demand is advancing, with the addition of nanomaterials in anaerobic digestion increasing stability, accelerating hydrolysis, and reducing microbial inhibition. However, further research is needed to determine the mechanisms, ideal dosages, and long-term impacts. This work used continuous stir tank reactors [...] Read more.
Research on energy demand is advancing, with the addition of nanomaterials in anaerobic digestion increasing stability, accelerating hydrolysis, and reducing microbial inhibition. However, further research is needed to determine the mechanisms, ideal dosages, and long-term impacts. This work used continuous stir tank reactors (CSTRs) to experimentally examine the biocompatibility of iron oxide nanoparticles (Fe3O4-NPs) at a concentration of 75 mg/L at various organic loading rates (OLRs) of 0.3, 0.8, and 1.3 gVS/L.d (CSTRs). The efficiency of the reactors was observed by considering various parameters, such as pH, soluble chemical oxygen demand (sCOD), TVFA formation and degradation, total solids (TS), and volatile solids (VS) removal, as well as methane (CH4) generation. Hence, it was found that the reactor with added NPs (R1) yielded an optimum 725.9 mL/gVS of CH4 and this was achieved at the lowest OLR of 0.3 gVS/Ld. However, another reactor (R2, without NPs), exhibited more stabilized results, ranging from 372.8 to 424.4 mL/gVS at 0.3 to 1.3 gVS/Ld of OLR, respectively. Therefore, in R1, the maximum removal of sCOD, TVFAs, and VS was achieved at 90%, 74%, and 93%, respectively, as compared to R2. Full article
(This article belongs to the Special Issue Advances in Biomass Conversion and Biorefinery Applications)
Show Figures

Figure 1

36 pages, 1698 KiB  
Review
Enhancing Bioplastic Degradation in Anaerobic Digestion: A Review of Pretreatment and Co-Digestion Strategies
by Mohamed Shafana Farveen, Raúl Muñoz, Rajnish Narayanan and Octavio García-Depraect
Polymers 2025, 17(13), 1756; https://doi.org/10.3390/polym17131756 - 25 Jun 2025
Viewed by 864
Abstract
The increasing production of bioplastics worldwide requires sustainable end-of-life solutions to minimize the environmental burden. Anaerobic digestion (AD) has been recognized as a potential technology for valorizing waste and producing renewable energy. However, the inherent resistance of certain bioplastics to degradation under anaerobic [...] Read more.
The increasing production of bioplastics worldwide requires sustainable end-of-life solutions to minimize the environmental burden. Anaerobic digestion (AD) has been recognized as a potential technology for valorizing waste and producing renewable energy. However, the inherent resistance of certain bioplastics to degradation under anaerobic conditions requires specific strategies for improvement. Thus, in this review, the anaerobic biodegradability of commonly used bioplastics such as polylactic acid (PLA), polyhydroxybutyrate (PHB), polybutylene adipate-co-terephthalate (PBAT), polybutylene succinate (PBS), polycaprolactone (PCL), and starch- and cellulose-based bioplastics are critically evaluated for various operational parameters, including the temperature, particle size, inoculum-to-substrate ratio (ISR) and polymer type. Special attention is given to process optimization strategies, including pretreatment techniques (mechanical, thermal, hydrothermal, chemical and enzymatic) and co-digestion with nutrient-rich organic substrates, such as food waste and sewage sludge. The combinations of these strategies used for improving hydrolysis kinetics, increasing the methane yield and stabilizing reactor performance are described. In addition, new technologies, such as hydrothermal pretreatment and microbial electrolysis cell-assisted AD, are also considered as prospective strategies for reducing the recalcitrant nature of some bioplastics. While various strategies have enhanced anaerobic degradability, a consistent performance across bioplastic types and operational settings remains a challenge. By integrating key recent findings and limitations alongside pretreatment and co-digestion strategies, this review offers new insights to facilitate the circular use of bioplastics in solid waste management systems. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Figure 1

17 pages, 2632 KiB  
Essay
Preparation of Calcium-Chelating Peptides from Squid Skin and Evaluation of Calcium Absorption Capacity in Caco-2 Cell Monolayer Model
by Jihao Zeng, Xue Bai, Yongli Zhang, Qianyu Le, Jinhong Wu and Huiyun Chen
Foods 2025, 14(9), 1594; https://doi.org/10.3390/foods14091594 - 30 Apr 2025
Viewed by 567
Abstract
To develop a highly bioavailable calcium supplement, this study utilized Peruvian squid (Dosidicus gigas) skin as a raw material. Through alkaline protease hydrolysis and enzymatic membrane reactor separation, three molecular weight fractions of squid skin peptides were obtained, followed by calcium [...] Read more.
To develop a highly bioavailable calcium supplement, this study utilized Peruvian squid (Dosidicus gigas) skin as a raw material. Through alkaline protease hydrolysis and enzymatic membrane reactor separation, three molecular weight fractions of squid skin peptides were obtained, followed by calcium ion chelation to synthesize calcium-chelating peptides (CCPs-SS). Systematic characterization revealed that the less than 1 kDa fraction of CCPs-SS exhibited superior antioxidant capacity (82.18%) and calcium chelation efficiency (77.14%) in cellular models compared to higher molecular weight counterparts. Optimal synthesis conditions were identified as 60 °C, pH 9, and 12 mg/mL calcium chloride concentration. Post-chelation analyses demonstrated significant physicochemical alterations for CCPs-SS: ζ-potential shifted from −18.4 mV to −10.47 mV, while particle size increased from 476.75 nm to 664.4 nm. Notably, membrane separation enhanced phenylalanine and leucine molar concentrations by 25.5% and 57.6%, respectively, suggesting structural modifications that potentiate bioactivity. These findings demonstrate an innovative strategy for converting squid processing byproducts into functional nutraceuticals, which not only addresses calcium deficiency challenges but also promotes resource sustainability by utilizing waste materials. Full article
(This article belongs to the Special Issue Comprehensive Utilization of By-Products in Food Industry)
Show Figures

Figure 1

15 pages, 4763 KiB  
Article
The Synthesis of NiY Zeolite via the Acid Hydrolysis of Ethyl Silicate and Its Catalytic Performance in the Degradation of Benzyl Phenyl Ethers
by Bosen Zhou, Zhengbo Lai, Yuanyuan Li, Hualan Zhou, Ye Tian, Yibo Zhao and Ming Xia
Inorganics 2025, 13(3), 89; https://doi.org/10.3390/inorganics13030089 - 17 Mar 2025
Viewed by 446
Abstract
The siliceous precursor was hydrolyzed from tetraethylorthosilicate (TEOS) under acidic conditions, followed by the addition of sodium aluminate and sodium hydroxide. Y zeolite was subsequently obtained through hydrothermal crystallization under alkaline conditions. Key synthesis parameters, including reactant molar ratios, crystallization temperature, and time, [...] Read more.
The siliceous precursor was hydrolyzed from tetraethylorthosilicate (TEOS) under acidic conditions, followed by the addition of sodium aluminate and sodium hydroxide. Y zeolite was subsequently obtained through hydrothermal crystallization under alkaline conditions. Key synthesis parameters, including reactant molar ratios, crystallization temperature, and time, were systematically varied to optimize the synthesis conditions. The synthesized products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption analysis, and inductively coupled plasma (ICP) elemental analysis. Well-crystallized Y zeolite with a silica-alumina ratio (SAR) of 5.55 was successfully synthesized via TEOS hydrolysis catalyzed by sulfuric acid at a low crystallization temperature of 85 °C. The catalytic performance of benzyl phenyl ether, a lignin model compound, over NiY catalyst was evaluated in a high-pressure reactor. The results indicate that the catalytic efficiency of Y zeolite synthesized using TEOS as the silicon source under acidic hydrolysis conditions is significantly superior to Y zeolite prepared using alkaline silica sol as the silicon source. Full article
Show Figures

Figure 1

23 pages, 3044 KiB  
Article
The In Silico Optimization of a Fed-Batch Reactor Used for the Enzymatic Hydrolysis of Chicory Inulin to Fructose by Employing a Dynamic Approach
by Daniela Gheorghe, Gheorghe Maria, Laura Renea and Crina Muscalu
Dynamics 2025, 5(1), 10; https://doi.org/10.3390/dynamics5010010 - 7 Mar 2025
Viewed by 1229
Abstract
In recent years, inulin enzymatic hydrolysis has become a very promising alternative for producing fructose on a large scale. Genetically modified chicory was used to extract inulin of industrial quality. By using an adequate kinetic model from the literature, this study aimed to [...] Read more.
In recent years, inulin enzymatic hydrolysis has become a very promising alternative for producing fructose on a large scale. Genetically modified chicory was used to extract inulin of industrial quality. By using an adequate kinetic model from the literature, this study aimed to determine the optimal operating alternatives of a batch (BR) or fed-batch (FBR) reactor used for the hydrolysis of inulin to fructose. The operation of the FBR with a constant or variable/dynamic feeding was compared to that of the BR to determine which best maximizes reactor production while minimizing enzyme consumption. Multi-objective optimal solutions were also investigated by using the Pareto-optimal front technique. Our in-silico analysis reveals that, for this enzymatic process, the best alternative is the FBR operated with a constant control variable but using the set-point given by the (breakpoint) of the Pareto optimal front under the imposed technological constraints. This set point reported the best performances, regarding all the considered opposite economic objectives. Also, the FBR with a constant, but NLP optimal feeding, reported fairly good performances. Full article
Show Figures

Graphical abstract

25 pages, 3293 KiB  
Article
Design of a Semi-Continuous Microwave System for Pretreatment of Microwave-Assisted Pyrolysis Using a Theoretical Method
by Paula Andrea Ramírez Cabrera, Alejandra Sophia Lozano Pérez and Carlos Alberto Guerrero Fajardo
Inventions 2025, 10(2), 24; https://doi.org/10.3390/inventions10020024 - 4 Mar 2025
Viewed by 1573
Abstract
This article provides an overview of various microwave-assisted techniques, such as microwave-assisted extraction (MAE), microwave-assisted organic synthesis (MAOS), microwave-assisted pyrolysis (MAP), microwave-assisted hydrothermal treatment (MAHT), microwave-assisted acid hydrolysis (MAAH), microwave-assisted organosolv (MAO), microwave-assisted alkaline hydrolysis (MAA), microwave-assisted enzymatic hydrolysis (MAEH), and microwave-assisted fermentation [...] Read more.
This article provides an overview of various microwave-assisted techniques, such as microwave-assisted extraction (MAE), microwave-assisted organic synthesis (MAOS), microwave-assisted pyrolysis (MAP), microwave-assisted hydrothermal treatment (MAHT), microwave-assisted acid hydrolysis (MAAH), microwave-assisted organosolv (MAO), microwave-assisted alkaline hydrolysis (MAA), microwave-assisted enzymatic hydrolysis (MAEH), and microwave-assisted fermentation (MAF). Microwave-assisted biomass pretreatment has emerged as a promising method to improve the efficiency of biomass conversion processes, in particular microwave-assisted pyrolysis (MAP). The focus is on microwave-assisted pyrolysis, detailing its key components, including microwave sources, applicators, feedstock characteristics, absorbers, collection systems, and reactor designs. Based on different studies reported in the literature and a mathematical model, a mechanical design of a microwave oven adapted for pyrolysis is proposed together with a computer-aided design and a finite element analysis. The semi-continuous system is designed for a 40 L capacity and a power of 800 W. The material with which the vessel was designed is suitable for the proposed process. The challenges, opportunities, and future directions of microwave-assisted technologies for the sustainable use of biomass resources are presented. Full article
Show Figures

Figure 1

16 pages, 3251 KiB  
Article
Freezing Method Assists Peracetic Acid Oxidation for Promoting the Methane Production from Sludge Anaerobic Digestion
by Zhen-Wei Liu, Yan-Qiu Chen, Zhi-Shuai Liu and Sheng-Wu Wang
Energies 2025, 18(3), 731; https://doi.org/10.3390/en18030731 - 5 Feb 2025
Viewed by 748
Abstract
Peracetic acid (PAA) oxidation, which is a kind of chemical method for sludge pretreatment, has been verified to be valid for promoting sludge anaerobic digestion performance. However, the methane production is still limited at certain levels by this method, because excess PAA has [...] Read more.
Peracetic acid (PAA) oxidation, which is a kind of chemical method for sludge pretreatment, has been verified to be valid for promoting sludge anaerobic digestion performance. However, the methane production is still limited at certain levels by this method, because excess PAA has negative effects on methanogens. This work selected a freezing method combined with PAA to form a composite sludge pretreatment technology for synergistically improving the biomethane production. According to the experimental data, the methane yield was largely enhanced from 166.4 ± 5.6 mL/g volatile suspended solids (VSS) in the control to 261.5 ± 7.3 mL/g VSS by the combined freezing (−10 °C) and PAA (0.08 g/g TSS) pretreatment, with a 57.2% increase rate. Kinetic analysis showed that the methane production potential, methane production rate, and hydrolysis rate were promoted, respectively, from 159.4 mL/g VSS, 17.18 mL/g VSS/d, and 0.104 d−1 to 254.9 mL/g VSS, 25.69 mL/g VSS/d, and 0.125 d−1 by the freezing + PAA pretreatment. Mechanism analysis revealed that the freezing + PAA pretreatment destroyed both extracellular polymeric substances (EPS) and microbial cells in the sludge, resulting in the increase in hydrolysis efficiency. Gene analysis showed that the hydrolytic microbes (Hyphomicrobium and norank_f_Caldilineaceae), acidogens (e.g., Petrimonas, Tissierella, and Mycobacerium) and methanogens (Methanosaeta, Methanosarcina, and Methanobacterium) were all enriched by the freezing + PAA pretreatment, with the total abundances calculated to be 10.65% and 22.07% in the control and pretreated reactors, respectively. Considering both technical and economic factors, the freezing + PAA method is feasible for sludge pretreatment. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

31 pages, 9588 KiB  
Article
Impact of Silver and Copper Oxide Nanoparticles on Anaerobic Digestion of Sludge and Bacterial Community Structure
by Zainab K. Abdulsada, Richard Kibbee, Juliska Princz and Banu Örmeci
Nanomaterials 2025, 15(3), 236; https://doi.org/10.3390/nano15030236 - 3 Feb 2025
Viewed by 1202
Abstract
The effect of metal nanoparticles on the anaerobic digestion of sludge and the sludge bacterial community are still not well-understood, and both improvements and inhibitions have been reported. This study investigated the impact of 2, 10, and 30 mg/g TS silver and copper [...] Read more.
The effect of metal nanoparticles on the anaerobic digestion of sludge and the sludge bacterial community are still not well-understood, and both improvements and inhibitions have been reported. This study investigated the impact of 2, 10, and 30 mg/g TS silver and copper oxide nanoparticles (AgNPs and CuONPs) on the mesophilic anaerobic digestion of sludge and the bacterial community structure. The reactors were monitored for changes in tCOD, sCOD, TS, VS, biogas generation, and cell viability. Also, the relative abundance and taxonomic distribution of the bacterial communities were analyzed at the phylum and genus levels, including the genera involved in anaerobic digestion. Both AgNPs and CuONPs exhibited some inhibition on anaerobic digestion of sludge and biogas generation, and the inhibition was more evident at higher concentrations. CuONPs had a stronger inhibitory effect compared to AgNPs. After the introduction of AgNPs and CuONPs, cell viability initially decreased over the first two weeks but recovered after that. At high concentrations, AgNPs and CuONPs decreased the overall bacterial diversity, and inhibited the dominant bacterial species, allowing those in less abundance to flourish. The relative abundance of the bacteria responsible for hydrolysis and acidogenesis increased and the relative abundance of acetogenic bacteria decreased with higher AgNP and CuONP concentrations. The majority of the parameters measured for monitoring the anaerobic digestion performance and bacterial community were not statistically significant at 2 mg/g TS of AgNPs and CuONPs, which represents naturally present concentrations in wastewater sludge that are below the USEPA ceiling concentration limits. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

16 pages, 1657 KiB  
Article
Effect of Wet, Hemi-Solid, and Solid-State Conditions and Substrate to Inoculum Ratio on Methane Production from Sugarcane Bagasse
by Thiago Edwiges and Prasad Kaparaju
Sustainability 2025, 17(3), 892; https://doi.org/10.3390/su17030892 - 23 Jan 2025
Cited by 1 | Viewed by 893
Abstract
Sugarcane bagasse (SCB) constitutes up to 28% of the weight of crushed sugarcane, with significant potential for bioenergy production. Solid-state anaerobic digestion with total solids (TSs) over 15% is an interesting technology that can be used to treat agricultural wastes such as SCB, [...] Read more.
Sugarcane bagasse (SCB) constitutes up to 28% of the weight of crushed sugarcane, with significant potential for bioenergy production. Solid-state anaerobic digestion with total solids (TSs) over 15% is an interesting technology that can be used to treat agricultural wastes such as SCB, resulting in smaller reactor sizes and lower water consumption. This study investigates methane production from SCB under wet (10% TS), hemi-solid (15% TS), and solid-state (20% TS) anaerobic digestion with substrate-to-inoculum ratios (SIR) of 1, 2, 3, and 4. Batch experiments were conducted under mesophilic conditions (37 °C) to evaluate methane yields, volumetric methane productivity, and kinetic parameters. Results revealed that the highest methane yields—125, 115, and 106 L CH4 kg VS−1—were achieved for wet, hemi-solid, and solid-state digestion, respectively. Despite similar methane yields across TS conditions, volumetric methane productivities increased by 118% and 128% from hemi-slid and solid-state digestion, demonstrating their potential for scaling up in commercial biogas plants. The first-order kinetic model best-predicted methane production (R2 > 0.984), with hydrolysis identified as the limiting step (Khyd ≤ 0.05 d−1). These findings highlight the advantages of solid-state anaerobic digestion for lignocellulosic feedstocks like SCB, contributing to bioenergy sustainability and the circular economy. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

11 pages, 1557 KiB  
Article
Engineering Calculations for Catalytic Hydrolysis of CF4
by Robert Barat
ChemEngineering 2025, 9(1), 10; https://doi.org/10.3390/chemengineering9010010 - 20 Jan 2025
Viewed by 1041
Abstract
Tetrafluoromethane (CF4) is the simplest perfluorocarbon, a class of compounds with very high greenhouse gas potential. Catalytic hydrolysis offers an opportunity to convert these compounds to manageable CO2 and HF. Recently published data showed the effectiveness of Ga-doping to overcome [...] Read more.
Tetrafluoromethane (CF4) is the simplest perfluorocarbon, a class of compounds with very high greenhouse gas potential. Catalytic hydrolysis offers an opportunity to convert these compounds to manageable CO2 and HF. Recently published data showed the effectiveness of Ga-doping to overcome the fluorine poisoning of various Al2O3 catalysts at relatively modest temperatures. This prior work offered a partial catalytic mechanism together with kinetic and conversion data. The current paper completes the catalytic mechanism, and then analyzes it using the Langmuir–Hinshelwood algorithm for both the initial CF4 conversion, and the catalyst site regeneration. The resulting derived rate expression, together with a catalyst activity coefficient expression, are then used in flow reactor configurations to simulate both relatively short exposure time runs with little loss of activity, as well as longer runs with severe activity loss. The reasonable agreement with the published laboratory data suggests that these expressions can be used for a larger-scale practical reactor design. Full article
Show Figures

Figure 1

21 pages, 7204 KiB  
Article
General Applicable Residence Time Distribution Model to Estimate Reaction Rates in a Rotor–Stator Spinning Disc Reactor
by Petra Meeuwse and Marit van Lieshout
ChemEngineering 2025, 9(1), 8; https://doi.org/10.3390/chemengineering9010008 - 10 Jan 2025
Cited by 1 | Viewed by 1066
Abstract
Many designs of industrial reactors stem from designs from the 1960s–1970s. For a wide range of reactions, these designs lead to suboptimal reaction configurations due to limitations in heat- or mass-transfer. Process intensification has come up with a different approach, resulting in micro- [...] Read more.
Many designs of industrial reactors stem from designs from the 1960s–1970s. For a wide range of reactions, these designs lead to suboptimal reaction configurations due to limitations in heat- or mass-transfer. Process intensification has come up with a different approach, resulting in micro- and mini-reactors being safer and more cost-effective on a full industrial scale. However, based on the experience in the suboptimal reactor designs, the reaction rates of these reactions seem too low for full-scale reactions in a mini reactor. We suggest a test for the reaction rate based on a generalized model in combination with a specific type of mini-reactor: the rotor–stator spinning disc reactor. The generalized model is based on existing models on residence time distribution in such reactors. It does not need to be tailor-fitted for a specific rotor–stator spinning disc reactor that is used for the test, as is the case with current models. In this article, we show that our simplifications induce a difference in outcome in reaction rate of less than 10% with the existing models. Experiments with the well-studied chemical reaction of the hydrolysis of acetic anhydride show that the reaction rates calculated based on this scan fall within the range of reported data from the literature. Full article
Show Figures

Figure 1

17 pages, 1559 KiB  
Review
Towards a Quantitative Description of Proteolysis: Contribution of Demasking and Hydrolysis Steps to Proteolysis Kinetics of Milk Proteins
by Mikhail M. Vorob’ev
Foods 2025, 14(1), 93; https://doi.org/10.3390/foods14010093 - 2 Jan 2025
Cited by 1 | Viewed by 2041
Abstract
The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch [...] Read more.
The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch reactor that take into account differences in the hydrolysis of the individual peptide bonds, as well as the limited accessibility (masking) for the enzymes of some hydrolysis sites in the protein substrate. Kinetic studies of the proteolysis of β-casein and β-lactoglobulin by various proteolytic enzymes throughout the whole degree of hydrolysis are reviewed. The two-step proteolysis model is regarded, which includes demasking of peptide bonds as a result of opening of the protein structure at the first stage, then hydrolysis of the demasked peptide bonds. To determine the kinetics of demasking, the shift in Trp fluorescence during opening of the protein substrate is analyzed. Two stages of demasking and secondary masking are also considered, explaining the appearance of unhydrolyzed peptide bonds at the end of proteolysis with decreasing enzyme concentrations. Proteolysis of a nanosized substrate is considered for the example of tryptic hydrolysis of β-CN micelles, leading to the formation and degradation of new nanoparticles and non-monotonic changes in the secondary protein structures during proteolysis. Full article
(This article belongs to the Special Issue Structural Characterization of Food Proteins and Peptides)
Show Figures

Figure 1

18 pages, 2796 KiB  
Article
Biomethane Production from Untreated and Treated Brewery’s Spent Grain: Feasibility of Anaerobic Digestion After Pretreatments According to Biogas Yield and Energy Efficiency
by Jessica Di Mario, Alberto Maria Gambelli and Giovanni Gigliotti
Agronomy 2024, 14(12), 2980; https://doi.org/10.3390/agronomy14122980 - 14 Dec 2024
Cited by 2 | Viewed by 1281
Abstract
The increasing global energy demand, coupled with the urgent need to reduce CO2 emissions, has intensified the search for renewable energy sources. Biogas, produced from agro-industrial biomass, presents a viable solution. In beer production, brewery’s spent grain (BSG), the largest by-product by [...] Read more.
The increasing global energy demand, coupled with the urgent need to reduce CO2 emissions, has intensified the search for renewable energy sources. Biogas, produced from agro-industrial biomass, presents a viable solution. In beer production, brewery’s spent grain (BSG), the largest by-product by volume, offers potential for bioenergy recovery. This study applied a biorefinery approach to BSG, extracting protein hydrolysates (PH) through mild alkaline hydrolysis and nanostructured lignin (LN) via the Ionic Liquid Method. The objective was to assess biogas production from the residual biorefinery biomass and evaluate the co-digestion of BSG with Olive Mill Wastewater (OMWW) and Olive Pomace (OP), by-products of the olive oil industry. Biogas was produced in lab-scale batch reactors and the quantity of biogas produced was measured via the volumetric method. Conversely, the amount of biomethane obtained was evaluated by introducing, in the production chain, an alkaline trap. Biogas yields were the highest for untreated BSG (1075.6 mL), co-digested BSG with OMWW (1130.1 mL), and BSG residue after PH extraction (814.9 mL). The concentration of biomethane obtained in the various samples ranged from 54.5 vol % (OMWW + BSG) to 76.59 vol % (BSG). An energy balance analysis considering both the theoretical energy consumed by a semi-continuous anaerobic digestion bioreactor and the energy produced as bio-CH4 revealed that BSG after PH extraction was the most energy-efficient treatment, producing a net energy gain of 5.36 kJ. For the scope, the energy consumption was calculated by considering a PEIO index equal to 33% of the energy produced during the day, showing the highest biogas production. In contrast, the co-digested BSG with OMWW yielded the lowest net energy gain of 1.96 kJ. This comprehensive analysis highlights the energy efficiency of different treatments, identifying which process should be improved. Full article
(This article belongs to the Special Issue Biogas and Biomethane Production from Pretreated Waste Biomasses)
Show Figures

Figure 1

13 pages, 1681 KiB  
Article
Comparison Among Thermal Pre-Treatments’ Effectiveness in Increasing Anaerobic Digestibility of Organic Fraction in Municipal Solid Wastes
by Marco De Sanctis, Valerio Guido Altieri, Emanuele Barca, Luigi di Bitonto, Francesco Tedeschi and Claudio Di Iaconi
Energies 2024, 17(24), 6293; https://doi.org/10.3390/en17246293 - 13 Dec 2024
Viewed by 823
Abstract
The organic fraction of municipal solid waste (OFMSW) is widely recognized as a possible substrate for anaerobic digestion processes. However, the heterogeneity of this matrix and the presence of slowly biodegradable compounds can slow down anaerobic digestion and reduce its performance. This study [...] Read more.
The organic fraction of municipal solid waste (OFMSW) is widely recognized as a possible substrate for anaerobic digestion processes. However, the heterogeneity of this matrix and the presence of slowly biodegradable compounds can slow down anaerobic digestion and reduce its performance. This study compares the effectiveness of different thermal pre-treatments in increasing OFMSW anaerobic digestibility. Thermal pre-treatments were compared with OFMSW shredding, considered as the minimum pre-treatment required in order to reduce particles size of the OFMSW. The pre-treatments were performed in autoclave (121 °C and 1.4 bar for 20 min) or in an ad hoc hydrolysis reactor designed for the experimental trial (140 °C and 7 bar for 30 min) with air or nitrogen as gas phase. The thermal pre-treatments affected methane yield (NmLCH4/gVS), depending on the pre-treatment strategy, with autoclaving allowing for an 80% increase with respect to the control run, and leading to a methane yield of 476 ± 194 NmLCH4/gVS. The pre-treatments in the hydrolysis reactor caused a loss of organic matter (due to its volatilization) reducing the organic loading rate of the digester. Nevertheless, the digester performance in terms of COD (chemical oxygen demand) and VSS (volatile suspended solid) removal showed limited differences among the pre-treatments applied and ranged on average 79–94%. Full article
Show Figures

Figure 1

Back to TopTop