Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = hydrodynamic pressure fluctuations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6710 KiB  
Article
Bow Thruster at Normal and Off-Design Conditions
by Mehrdad Kazemi and Nikolai Kornev
J. Mar. Sci. Eng. 2025, 13(8), 1463; https://doi.org/10.3390/jmse13081463 - 30 Jul 2025
Viewed by 155
Abstract
Reliable prediction of tunnel thruster performance under reverse, or off-design, reverse operating direction (ROD) conditions, is crucial for modern vessels that require bidirectional thrust from a single unit—such as yachts and offshore support vessels. Despite the increasing demand for such a capability, there [...] Read more.
Reliable prediction of tunnel thruster performance under reverse, or off-design, reverse operating direction (ROD) conditions, is crucial for modern vessels that require bidirectional thrust from a single unit—such as yachts and offshore support vessels. Despite the increasing demand for such a capability, there remains limited understanding of the unsteady hydrodynamic behavior and performance implications of ROD operation. This study addresses this gap through a scale-resolving computational fluid dynamics (CFD) investigation of a full-scale, fixed-pitch propeller with a diameter of 0.62, installed in a tunnel geometry representative of yacht-class side thrusters. Using advanced turbulence modeling, we compare the thruster’s performance under both the normal operating direction (NOD) and ROD. The results reveal notable differences: in ROD, the upstream separation zone was more compact and elongated, average thrust increases by approximately 3–4%, and torque and pressure fluctuations rise by 15–30%. These findings demonstrate that a single tunnel thruster can meet bidirectional manoeuvring requirements. However, the significantly elevated unsteady loads during ROD operation offer a plausible explanation for the increased noise and vibration frequently observed in practice. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 11515 KiB  
Article
Real-Time Detection of Critical Moisture Levels in Fluidized Bed Drying Using Spectral Analysis
by Matheus Boeira Braga, Carlos Adriano Moreira da Silva, Kaciane Andreola, José Junior Butzge, Osvaldir Pereira Taranto and Carlos Alexandre Moreira da Silva
Powders 2025, 4(2), 16; https://doi.org/10.3390/powders4020016 - 6 Jun 2025
Viewed by 465
Abstract
The drying process of microcrystalline cellulose and adipic acid particles in a cylindrical fluidized bed was investigated using the Gaussian spectral technique to monitor fluid–dynamic regime transitions associated with surface moisture loss. Pressure fluctuation signals were recorded and analyzed to assess hydrodynamic behavior. [...] Read more.
The drying process of microcrystalline cellulose and adipic acid particles in a cylindrical fluidized bed was investigated using the Gaussian spectral technique to monitor fluid–dynamic regime transitions associated with surface moisture loss. Pressure fluctuation signals were recorded and analyzed to assess hydrodynamic behavior. Excess moisture significantly alters the bubbling characteristics of the bed, leading to instability in the fluidization regime. The results demonstrated that the Gaussian spectral technique effectively captured these hydrodynamic changes, particularly at the critical moisture content threshold, when compared with the drying rate curves of the materials. For microcrystalline cellulose and adipic acid particles, it is reasonable to conclude that a mean central frequency above 5.75–6.0 Hz and a standard deviation exceeding 3.7–3.8 Hz correspond to a bubbling regime, indicating that the critical drying point has been reached. This approach provides a non-intrusive and sensitive method for identifying transitions in the drying process, offering a valuable tool for real-time monitoring and control. The ability to track fluidization regime changes with high precision reinforces the potential of this technique for optimizing drying operations in the pharmaceutical, food, and chemical industries. Full article
Show Figures

Graphical abstract

16 pages, 3209 KiB  
Article
Low-Cost, Open-Source, High-Precision Pressure Controller for Multi-Channel Microfluidics
by Mart Ernits, Olavi Reinsalu, Andreas Kyritsakis, Veikko Linko and Veronika Zadin
Biosensors 2025, 15(3), 154; https://doi.org/10.3390/bios15030154 - 2 Mar 2025
Viewed by 1363
Abstract
Microfluidics is a technology that manipulates liquids on the scales ranging from microliters to femtoliters. Such low volumes require precise control over pressures that drive their flow into the microfluidic chips. This article describes a custom-built pressure controller for driving microfluidic chips. The [...] Read more.
Microfluidics is a technology that manipulates liquids on the scales ranging from microliters to femtoliters. Such low volumes require precise control over pressures that drive their flow into the microfluidic chips. This article describes a custom-built pressure controller for driving microfluidic chips. The pressure controller features piezoelectrically controlled pressure regulation valves. As an open-source system, it offers high customizability and allows users to modify almost every aspect. The cost is roughly a third of what similar, alternative, commercially available piezoelectrically controlled pressure regulators could be purchased for. The measured output pressure values of the device vary less than 0.7% from the device’s reported pressure values when the requested pressure is between −380 and 380 mbar. Importantly, the output pressure the device creates fluctuates only ±0.2 mbar when the pressure is cycled between 10 and 500 mbar. The pressure reading accuracy and stability validation suggest that the device is highly feasible for many advanced (low-pressure) microfluidic applications. Here, we compare the main features of our device to commercially and non-commercially available alternatives and further demonstrate the device’s performance and accessibility in successful microfluidic hydrodynamic focusing (MHF)-based synthesis of large unilamellar vesicles (LUVs). Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

33 pages, 2411 KiB  
Review
Advances in the Application of Intelligent Algorithms to the Optimization and Control of Hydrodynamic Noise: Improve Energy Efficiency and System Optimization
by Maosen Xu, Bokai Fan, Renyong Lin, Rong Lin, Xian Wu, Shuihua Zheng, Yunqing Gu and Jiegang Mou
Appl. Sci. 2025, 15(4), 2084; https://doi.org/10.3390/app15042084 - 17 Feb 2025
Viewed by 729
Abstract
Hydrodynamic noise is induced by hydrodynamic phenomena, such as pressure fluctuations, shear layers, and eddy currents, which have a significant impact on ship performance, pumping equipment efficiency, detection accuracy, and the living environment of marine organisms. Specifically, hydrodynamic noise increases fluid resistance around [...] Read more.
Hydrodynamic noise is induced by hydrodynamic phenomena, such as pressure fluctuations, shear layers, and eddy currents, which have a significant impact on ship performance, pumping equipment efficiency, detection accuracy, and the living environment of marine organisms. Specifically, hydrodynamic noise increases fluid resistance around the hull, reduces speed and fuel efficiency, and affects the stealthiness of military vessels; whereas, in pumping equipment, noise generation is usually accompanied by energy loss and mechanical vibration, resulting in reduced efficiency and accelerated wear and tear of the equipment. Traditional physical experiments, theoretical modeling, and numerical simulation methods occupy a key position in hydrodynamic noise research, but each have their own limitations: physical experiments are limited by experimental conditions, which make it difficult to comprehensively reproduce the characteristics of the complex flow field; theoretical modeling appears to be simplified and idealized to cope with the multiscale noise mechanism; and numerical simulation methods, although accurate, are deficient in the sense that they are computationally expensive and difficult to adapt to complex boundary conditions. In recent years, intelligent algorithms represented by data-driven algorithms and heuristic algorithms have gradually emerged, showing great potential for development in hydrodynamic noise optimization applications. To this end, this paper systematically reviews progress in the application of intelligent algorithms in hydrodynamic noise research, focusing on their advantages in the optimal design of noise sources, noise prediction, and control strategy optimization. Meanwhile, this paper analyzes the problems of data scarcity, computational efficiency, and model interpretability faced in the current research, and looks forward to the possible improvements brought by hybrid methods, including physical information neural networks, in future research directions. It is hoped that this review can provide useful references for theoretical research and practical engineering applications involving hydrodynamic noise, and point the way toward further exploration in related fields. Full article
Show Figures

Figure 1

22 pages, 4847 KiB  
Article
Extracting the Spatial Correlation of Wall Pressure Fluctuations Using Physically Driven Artificial Neural Network
by Jian Sun, Xinyuan Chen, Yiqian Zhang, Jinan Lv and Xiaojian Zhao
Aerospace 2025, 12(2), 112; https://doi.org/10.3390/aerospace12020112 - 31 Jan 2025
Viewed by 905
Abstract
The spatial correlation of wall pressure fluctuations is a crucial parameter that affects the structural vibration caused by a turbulent boundary layer (TBL). Although the phase-array technique is commonly used in industry applications to obtain this correlation, it has proven to be effective [...] Read more.
The spatial correlation of wall pressure fluctuations is a crucial parameter that affects the structural vibration caused by a turbulent boundary layer (TBL). Although the phase-array technique is commonly used in industry applications to obtain this correlation, it has proven to be effective only for moderate frequencies. In this study, an artificial neural network (ANN) method was developed to calculate the convective speed, indicating the spatial correlation of wall pressure fluctuations and extending the frequency range of the conventional phase-array technique. The developed ANN system, based on a radial basis function (RBF), has been trained using discrete simulated data that follow the physical essence of wall pressure fluctuations. Moreover, a normalization method and a multi-parameter average (MPA) method have been employed to improve the training of the ANN system. The results of the investigation demonstrate that the MPA method can expand the frequency range of the ANN, enabling the maximum analysis frequency of convective velocity for aircraft wall pressure fluctuations to reach over 10 kHz. Furthermore, the results reveal that the ANN technique is not always effective and can only accurately calculate the wavenumber when the standard wavelength is less than four times the width of the sensor array along the flow direction. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

29 pages, 11467 KiB  
Article
Improvement of Propeller Hydrodynamic Prediction Model Based on Multitask ANN and Its Application in Optimization Design
by Liang Li, Yihong Chen, Lu Huang, Qing Hai, Denghai Tang and Chao Wang
J. Mar. Sci. Eng. 2025, 13(1), 183; https://doi.org/10.3390/jmse13010183 - 20 Jan 2025
Viewed by 1183
Abstract
A multitask learning (MTL) model based on artificial neural networks (ANNs) is proposed in this study to improve the prediction accuracy and physical reliability of marine propeller hydrodynamic performance. The propeller’s comprehensive geometric features are used as inputs, and the coefficients of quadratic [...] Read more.
A multitask learning (MTL) model based on artificial neural networks (ANNs) is proposed in this study to improve the prediction accuracy and physical reliability of marine propeller hydrodynamic performance. The propeller’s comprehensive geometric features are used as inputs, and the coefficients of quadratic polynomials for the thrust coefficient (KT) and torque coefficient (10KQ) curves are predicted as outputs. The loss function is customized through a positive gradient penalty of the curves to accelerate training. When the single-task and multitask models were compared, the prediction errors were reduced; KT decreased from 2.61% to 2.07%, 10 KQ decreased from 3.58% to 2.31%, and the efficiency (η) decreased from 3.04% to 2.00%. Non-physical fluctuations in the performance curves were effectively mitigated by the multitask model, yielding predicted curvatures which closely matched the experimental data. Strong generalization was demonstrated when the model was tested on unseen propellers, with deviations of 2.2% for KT, 4.6% for 10 KQ, and 3.8% for η. Finally, the model was applied to optimize the propeller design for a 325,000 ton very large ore carrier ship, where a Pareto front with 58 non-dominant solutions for the maximum speed and fluctuating pressure was successfully generated and effectively verified by the model’s test results. The model enhanced the prediction of the propeller performance and contributed to optimization in the propeller’s design. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 2090 KiB  
Article
Study of Non-Newtonian Fluids’ Load-Carrying Capacity for Polyoxyethylene Oxide Water-Based Lubricants
by Huaping Yao, Jimei Niu, Ruihua Zhang and Ping Huang
Adhesives 2025, 1(1), 2; https://doi.org/10.3390/adhesives1010002 - 24 Dec 2024
Cited by 1 | Viewed by 1058
Abstract
Water-based lubricants have become increasingly prevalent across various fields due to their accessibility, cooling properties, and environmentally friendly characteristics. This study investigated the non-Newtonian properties of polyoxyethylene oxide (PEO) aqueous solutions. The rheological behaviors of 1%, 2%, and 3% PEO aqueous solutions were [...] Read more.
Water-based lubricants have become increasingly prevalent across various fields due to their accessibility, cooling properties, and environmentally friendly characteristics. This study investigated the non-Newtonian properties of polyoxyethylene oxide (PEO) aqueous solutions. The rheological behaviors of 1%, 2%, and 3% PEO aqueous solutions were assessed using a flat plate rheometer. Shear strain responses were comprehensively analyzed, resulting in the derivation of the corresponding power law functions. The total loads of 1%, 2%, and 3% PEO aqueous solutions can be obtained by the numerical integration of Reynolds equations. Results indicate that at high shear strain rates, load-carrying capacity increased; however, the rate of increase gradually diminished as the shear strain rate rose. In practical applications, shear stress is subject to fluctuations; negative viscosity occurs resulting in reduced hydrodynamic pressure and potential lubrication failure. Full viscosity and incremental viscosity are introduced, with the latter being identified as a crucial factor that provides a more direct characterization of the relationship between shear stress and shear strain rate. This factor significantly influences the load-bearing capacity of the lubrication film in non-Newtonian fluids. Full article
Show Figures

Figure 1

28 pages, 15257 KiB  
Article
Influence of Free Surface on the Hydrodynamic and Acoustic Characteristics of a Highly Skewed Propeller
by Duo Yu, Youbin Yu and Suoxian Yang
J. Mar. Sci. Eng. 2024, 12(12), 2208; https://doi.org/10.3390/jmse12122208 - 2 Dec 2024
Viewed by 1008
Abstract
The noise analysis of a large-scale aquaculture vessel reveals that during its navigation, the primary equipment noise, particularly from the propeller, exerts a notable influence on the aquaculture environment for large yellow croaker. The free surface greatly impacts the noise performance of propellers, [...] Read more.
The noise analysis of a large-scale aquaculture vessel reveals that during its navigation, the primary equipment noise, particularly from the propeller, exerts a notable influence on the aquaculture environment for large yellow croaker. The free surface greatly impacts the noise performance of propellers, which is a significant factor affecting the fish’s habitat. This study adopts the numerical simulation method to analyze the hydrodynamic and acoustic characteristics of the E1619 propeller operating near the free surface. The open-water performance and noise calculations of the propeller are verified through experiments, and the effects of different immersion depths and advance coefficients on the propeller are explored. The results demonstrate that the free surface significantly affects the thrust, torque, and noise of the propeller, especially at shallow immersion depths and low advance coefficients. Surface wave pattern causes the instability and breakup of tip vortices, causing increased thrust and torque fluctuations, reduced efficiency, and significant overall sound pressure levels in the entire flow field. As immersion depth and advance coefficients increase, the interaction between tip vortices and the free surface weakens, wake vortex instability decreases, and noise levels gradually reduce. These analyses and conclusions can guide the design of next-generation propellers for aquaculture vessels to optimize performance near the free surface. Full article
Show Figures

Figure 1

23 pages, 11941 KiB  
Article
Investigation of the Effects of Hydrogen Addition on Explosion Characteristics and Pressure Fluctuations of Ethyl Acetate
by Ce Liang, Xiaolu Li, Cangsu Xu, Francis Oppong, Yangan Bao, Yuan Chen, Yuntang Li, Bingqing Wang and Jiangqin Ge
Energies 2024, 17(23), 5970; https://doi.org/10.3390/en17235970 - 27 Nov 2024
Cited by 1 | Viewed by 820
Abstract
This study systematically explored the characteristics of explosion and pressure fluctuations of ethyl acetate (EA)/hydrogen (H2)/air mixtures under different initial pressures (1–3 bar), H2 fractions (4%, 8%, 12%), and equivalence ratios of EA (0.5–1.4). The flame images indicated that a [...] Read more.
This study systematically explored the characteristics of explosion and pressure fluctuations of ethyl acetate (EA)/hydrogen (H2)/air mixtures under different initial pressures (1–3 bar), H2 fractions (4%, 8%, 12%), and equivalence ratios of EA (0.5–1.4). The flame images indicated that a higher pressure, a higher H2 fraction, and a higher equivalence ratio could cause flame instability. An analysis of the dimensionless growth rate indicated that the flame instability was impacted by both thermal diffusion and hydrodynamic effects. The results also indicated that a higher initial pressure or H2 fraction could accelerate the combustion reaction and increase the explosion pressure and deflagration index. The maximum values were observed at 21.841 bar and 184.153 bar·m/s. However, their effects on explosion duration and heat release characteristics differed between lean and rich mixtures. Additionally, this study examined pressure fluctuations in both the time and frequency domains. The findings indicated a strong correlation between pressure fluctuation and flame instability. Modifying the H2 fraction and equivalence ratio to enhance flame stability proved effective in reducing pressure fluctuation amplitude. This study offers guidance for evaluating explosion risks associated with EA/H2/air mixtures and for designing related combustion devices. Full article
(This article belongs to the Special Issue Recent Advances in Energy Combustion and Flame)
Show Figures

Figure 1

21 pages, 6374 KiB  
Article
Habitat Assessment of Bocachico (Prochilodus magdalenae) in Ciénaga de Betancí, Colombia, Using a Habitat Suitability Index Model
by Karol Vellojín-Muñoz, José Lorduy-González, Franklin Torres-Bejarano, Gabriel Campo-Daza and Ana Carolina Torregroza-Espinosa
Water 2024, 16(22), 3312; https://doi.org/10.3390/w16223312 - 18 Nov 2024
Viewed by 1594
Abstract
This study evaluates the habitat of the Bocachico fish (Prochilodus magdalenae) in the Ciénaga de Betancí, Colombia, using a habitat suitability index (HSI) model. Wetlands like the Ciénaga de Betancí are under significant pressure from anthropogenic activities, affecting biodiversity and ecosystem [...] Read more.
This study evaluates the habitat of the Bocachico fish (Prochilodus magdalenae) in the Ciénaga de Betancí, Colombia, using a habitat suitability index (HSI) model. Wetlands like the Ciénaga de Betancí are under significant pressure from anthropogenic activities, affecting biodiversity and ecosystem health. The Bocachico, a species of immense cultural and economic importance, faces habitat degradation and fragmentation. Using hydrodynamic and water quality data, a numerical model (EFDC+ Explorer 11.5), and field data collected from multiple sampling campaigns, we assessed habitat suitability based on five key parameters: water temperature, dissolved oxygen, ammonia nitrogen, velocity, and depth. The model results indicated that environmental conditions in the wetland remained relatively stable during the dry season, with an average HSI score of 0.67, where 9% of the wetland area displayed acceptable conditions, and the remaining 91% displayed medium conditions. The wet season, on the other hand, had an average HSI score of 0.64, with 7.2% of the area in the acceptable suitability range, and the remaining 92.8% in the medium category. Variations in HSI were primarily driven by ammonia nitrogen levels, water velocity, and depth. Despite limited fluctuations in the HSI, areas of low suitability were identified, particularly in regions impacted by human activities. These findings have practical implications for conservation strategies, providing valuable insights for the sustainable management and conservation of the Ciénaga de Betancí, informing strategies for improving habitat conditions for the Bocachico, and supporting wetland restoration efforts. Full article
Show Figures

Figure 1

22 pages, 7260 KiB  
Article
Seismic Response Characteristics of a Utility Tunnel Crossing a River Considering Hydrodynamic Pressure Effects
by Yuanhong Wang, Yang Zhang, Ziyuan Huang, Konghao Wang and Aiping Tang
Buildings 2024, 14(11), 3434; https://doi.org/10.3390/buildings14113434 - 29 Oct 2024
Viewed by 1158
Abstract
As a long lifeline system of buried structures, the utility tunnel (UT) is vulnerable to earthquake invasion. For utility tunnels with inverted siphon arrangements crossing rivers, the seismic response is more complex due to the basin effect of acceleration in the topography and [...] Read more.
As a long lifeline system of buried structures, the utility tunnel (UT) is vulnerable to earthquake invasion. For utility tunnels with inverted siphon arrangements crossing rivers, the seismic response is more complex due to the basin effect of acceleration in the topography and the influence of fluctuating hydrodynamic pressure, but there is currently a gap in targeted seismic response analyses and references. Based on a UT project in Haikou, this paper studied seismic responses of a cast-in-place UT considering the coupled model of water–soil–tunnel structure on ABAQUS software. Herein, the dynamic fluctuation of hydrodynamic pressure is simulated using an acoustic–solid interaction model. A viscoelastic artificial boundary was used to simulate the soil boundary effect, and seismic loads were equivalent to nodal forces. Considering seismic invading direction and varying water elevation, this paper investigates the dynamic response characteristics and damage mechanisms of river-crossing utility tunnels. This study shows that the basin effect causes the soil acceleration around the UT to show variability in different sections, and the amplification factor of the peak acceleration at the central location is almost doubled. The damage and dynamic water pressure of the UT are intensified under bidirectional seismic excitation, and the damage location is concentrated at the junction of the horizontal section and the vertical section. Bending moments and axial forces are the main mechanical behaviors along the axial direction. Changes in river levels have a certain positive effect on the UT peak MISES, DAMAGEC, and SDEG, and it exhibits a certain degree of energy dissipation and seismic damping effect. For the aseismic design of cross-river cast-in-place utility tunnels, bidirectional seismic calculations should be performed, and the influence of river hydrodynamic pressure should not be neglected. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 4688 KiB  
Article
Numerical Investigation of Hydrodynamic Characteristics of a Rim-Driven Thruster Coupled with an Underwater Vehicle
by Bao Liu, Wu Ouyang, Xinping Yan and Maarten Vanierschot
J. Mar. Sci. Eng. 2024, 12(10), 1838; https://doi.org/10.3390/jmse12101838 - 14 Oct 2024
Cited by 2 | Viewed by 1441
Abstract
In this paper, the hydrodynamic characteristics of a rim-driven thruster (RDT) behind the hull of an underwater vehicle are investigated. The studied underwater vehicle is the benchmark DARPA (Defense Advanced Research Projects Agency) suboff model, with and without full appendages. In order to [...] Read more.
In this paper, the hydrodynamic characteristics of a rim-driven thruster (RDT) behind the hull of an underwater vehicle are investigated. The studied underwater vehicle is the benchmark DARPA (Defense Advanced Research Projects Agency) suboff model, with and without full appendages. In order to verify and validate the numerical model, a grid sensitivity analysis is made for the AFF-1, AFF-8 and the ducted propeller cases, respectively. Then, the resistance and pressure distribution over the surface of the suboff with and without appendages are compared with available experimental measurements and good correlations were observed. As for the propeller, a well-studied ducted propeller, the 19A duct in combination with Ka-47 blades, is employed, and the numerical results exhibit a close relationship with the available experimental data under a wide range of advance coefficients. Afterwards, the self-propulsion characteristics of the suboff models propelled by RDTs using different duct configurations are studied, more specifically, the unsteady effects of the flow field induced by the interactions between propeller and hull under various working conditions. The results indicate that due to the influence of the hull, the RDTs operate in different working conditions compared to open water and exhibit distinct hydrodynamic characteristics. Moreover, the duct profile can have a significant effect on the unsteady pressure fluctuations in the flow field, especially in the vicinity of the propeller. Full article
Show Figures

Figure 1

27 pages, 9994 KiB  
Article
Research on a Strategy for Prediction Methods of Submarine Self-Propulsion Hydrodynamic Performance
by Pei Xu, Yingchun Guo and Yin Zhang
Appl. Sci. 2024, 14(20), 9294; https://doi.org/10.3390/app14209294 - 12 Oct 2024
Viewed by 2067
Abstract
To investigate the impact of different computational strategies on the self-propulsion hydrodynamic performance of a submarine model, a study was conducted using the RANS method, employing both the steady-state Moving Reference Frame (MRF) method and the unsteady Rigid Body Motion (RBM) method. Numerical [...] Read more.
To investigate the impact of different computational strategies on the self-propulsion hydrodynamic performance of a submarine model, a study was conducted using the RANS method, employing both the steady-state Moving Reference Frame (MRF) method and the unsteady Rigid Body Motion (RBM) method. Numerical simulations of the self-propulsion hydrodynamic performance of the submarine model were performed under different computational strategies, including submarine with propeller, submarine first and propeller second, and propeller rotational speed iteration. The differences between these strategies were analyzed from various perspectives, such as submarine resistance, propeller hydrodynamic performance, total solver actual runtime, propeller unsteady bearing forces, and induced fluctuating pressure. The results indicated that when conducting numerical simulations of the self-propulsion hydrodynamic performance of the submarine with a propeller, the fluctuation ranges of the submarine resistance, propeller thrust, and torque obtained by the steady MRF method were within 0.1% to 0.8%, compared with the three strategies in the unsteady state. In terms of computational efficiency, strategy 3 (RBM—submarine with a propeller) had the lowest computational efficiency, and the time to obtain a self-propulsion curve was 11.9 times, 4.4 times, and 3.1 times that of strategy 1 (MRF + RBM—submarine with a propeller), strategy 2 (RBM—submarine first, then propeller), and strategy 4 (RBM—propeller rotational speed iteration). When analyzing the propeller excitation forces under the submarine’s self-propulsion state using the steady-state MRF method combined with the unsteady RBM method, the frequency domain peak fluctuations were within 5% compared with the three strategies in the unsteady state, making this method suitable for numerical simulations of propeller excitation forces. These findings provide methodological support for evaluating the performance of the submarine’s hydrodynamic propulsion system. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

29 pages, 21121 KiB  
Article
Hydrodynamic Characteristics of Preloading Spiral Case and Concrete in Turbine Mode with Emphasis on Preloading Clearance
by Yutong Luo, Zonghua Li, Shaozheng Zhang, Qingfeng Ren and Zhengwei Wang
Processes 2024, 12(9), 2056; https://doi.org/10.3390/pr12092056 - 23 Sep 2024
Cited by 1 | Viewed by 1039
Abstract
A pump-turbine may generate high-amplitude hydraulic excitations during operation, wherein the flow-induced response of the spiral case and concrete is a key factor affecting the stable and safe operation of the unit. The preloading spiral case can enhance the combined bearing capacity of [...] Read more.
A pump-turbine may generate high-amplitude hydraulic excitations during operation, wherein the flow-induced response of the spiral case and concrete is a key factor affecting the stable and safe operation of the unit. The preloading spiral case can enhance the combined bearing capacity of the entire structure, yet there is still limited research on the impact of the preloading pressure on the hydrodynamic response. In this study, the pressure fluctuation characteristics and dynamic behaviors of preloading a steel spiral case and concrete under different preloading pressures at rated operating conditions are analyzed based on fluid–structure interaction theory and contact model. The results show that the dominant frequency of pressure fluctuations in the spiral case is 15 fn, which is influenced by the rotor–stator interaction with a runner rotation of short and long blades. Under preloading pressures of 0.5, 0.7, and 1 times the maximum static head, higher preloading pressures reduce the contact regions, leading to uneven deformation and stress distributions with a near-positive linear correlation. The maximum deformation of the PSSC can reach 2.6 mm, and the stress is within the allowable range. The preloading pressure has little effect on the dominant frequency of the dynamic behaviors in the spiral case (15 fn), but both the maximum and amplitudes of deformation and stress increase with higher preloading pressure. The high-amplitude regions of deformation and stress along the axial direction are located near the nose vane, with maximum values of 0.003 mm and 0.082 MPa, respectively. The contact of concrete is at risk of stress concentrations and cracking under high preloading pressure. The results can provide references for optimizing the structural design and the selection of preloading pressure, which improves operation reliability. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

16 pages, 3632 KiB  
Article
Numerical Study of High-g Combustion Characteristics in a Channel with Backward-Facing Steps
by Zhen Gong and Hao Tang
Aerospace 2024, 11(9), 767; https://doi.org/10.3390/aerospace11090767 - 19 Sep 2024
Cited by 2 | Viewed by 946
Abstract
High gravity (high-g) combustion can significantly increase flame propagation speed, thereby potentially shortening the axial length of aero-engines and increasing their thrust-to-weight ratio. In this study, we utilized the large eddy simulation model to investigate the combustion characteristics and flame morphology evolution of [...] Read more.
High gravity (high-g) combustion can significantly increase flame propagation speed, thereby potentially shortening the axial length of aero-engines and increasing their thrust-to-weight ratio. In this study, we utilized the large eddy simulation model to investigate the combustion characteristics and flame morphology evolution of premixed propane–air flames in a channel with a backward-facing step. The study reveals that both the increase in centrifugal force and flow velocity can enhance pressure fluctuations during combustion and increase the turbulence intensity. The presence of centrifugal force promotes the occurrence of Rayleigh–Taylor instability (RTI) between hot and cold fluids. The combined effects of RTI and Kelvin–Helmholtz instability (KHI) enhance the disturbance between hot and cold fluids, shorten the fuel combustion time, and intensify the dissipation of large-scale vortices. The increase in fluid flow velocity can raise the flame front’s hydrodynamic stretch rate, thereby enhancing the turbulence level during combustion to a certain extent and increasing the fuel consumption rate. When a strong centrifugal force is applied, the global flame propagation speed can be more than doubled. Within a certain range, the increase in high-g field strength can enhance the intensity of RTI and accelerate the transition of RTI to the nonlinear stage. Full article
Show Figures

Figure 1

Back to TopTop