Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = hydro-pneumatic tank

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 5015 KiB  
Article
Water Hammer Mitigation Using Hydro-Pneumatic Tanks: A Multi-Criteria Evaluation of Simulation Tools and Machine Learning Modelling
by Óscar J. Burgos-Méndez, Oscar E. Coronado-Hernández, Helena M. Ramos, Alfonso Arrieta-Pastrana and Modesto Pérez-Sánchez
Water 2025, 17(13), 1883; https://doi.org/10.3390/w17131883 - 24 Jun 2025
Viewed by 992
Abstract
The water hammer phenomenon represents a significant challenge to the safe and efficient operation of pressurised water systems. This study investigates the application of hydro-pneumatic tanks (HPTs) as protective devices against transient flow events, with a particular focus on their integration into simplified [...] Read more.
The water hammer phenomenon represents a significant challenge to the safe and efficient operation of pressurised water systems. This study investigates the application of hydro-pneumatic tanks (HPTs) as protective devices against transient flow events, with a particular focus on their integration into simplified modelling frameworks. Rigid and elastic water column models are examined, and their performance is evaluated through a representative case study. A multi-criteria decision matrix was employed to select a suitable simulation tool, leading to the adoption of the ALLIEVI software for implementing both modelling approaches. Comparative results indicate that the rigid water column model offers a favourable compromise between accuracy and computational efficiency under appropriate conditions. This supports its practical application in installing HPTs in design and operational scenarios. To further assess the predictive capacity of each model, a confusion matrix analysis was conducted across 57 scenarios. This approach proved effective in evaluating the models’ ability to anticipate pipeline rupture based on the initial configuration of the hydraulic installation. The elastic model achieved accuracy levels ranging from 90.7% to 100%, whereas the rigid water column model exhibited a slightly broader accuracy range, from 76.7% to 97.7%. These findings suggest that integrating machine learning techniques could enhance the rapid assessment of failure risks in water utility networks. Such tools may enable operators to determine in advance whether a given operating condition will likely lead to system failure, thus improving resilience and decision-making in managing pressurised pipeline systems. Full article
Show Figures

Figure 1

24 pages, 7819 KiB  
Article
Dynamic Modeling and Simulation of a Discrete Incremental Hydraulic Positioning System Controlled by Binary Valves
by Ryszard Dindorf
Appl. Sci. 2024, 14(7), 2973; https://doi.org/10.3390/app14072973 - 1 Apr 2024
Cited by 2 | Viewed by 1710
Abstract
This article presents the conceptual design, operation principle, dynamic modeling, and simulation results of a discrete incremental hydraulic positioning system (DIHPS) intended for use in high-precision, heavy-load industrial automation solutions. An original solution for precise incremental step positioning using DIHPS is proposed, comprising [...] Read more.
This article presents the conceptual design, operation principle, dynamic modeling, and simulation results of a discrete incremental hydraulic positioning system (DIHPS) intended for use in high-precision, heavy-load industrial automation solutions. An original solution for precise incremental step positioning using DIHPS is proposed, comprising an n-step linear double-acting hydraulic actuator (HA) with a double rod, cylinder sleeve with outflow gaps, binary valves (BVs) bleed-off into the tank, and fixed throttle valves (TRVs) at the inlets of the actuator chambers. The discrete incremental shift of the HA is determined by controlling the opening and closing of the individual BVs, and the step shift of the HA piston stops at the opening location of the BV. A dynamic model of incremental step shift for DIHPS is developed, considering the behavior and relationships of its individual elements. A dynamic model of HA with and without a hydropneumatic accumulator (HPA) is presented. HPA has been shown to effectively dampen piston vibrations and pressure peaks at the HA stop position. The design assumptions, dynamic models, and discrete incremental positioning of the DIHPS are verified by simulation tests and assessed with quantitative indicators. Innovative DIHPSs have significant practical potential in the discrete incremental positioning of heavy loads. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

12 pages, 6220 KiB  
Article
Rapid Filling Analysis with an Entrapped Air Pocket in Water Pipelines Using a 3D CFD Model
by Duban A. Paternina-Verona, Oscar E. Coronado-Hernández, Hector G. Espinoza-Román, Vicente S. Fuertes-Miquel and Helena M. Ramos
Water 2023, 15(5), 834; https://doi.org/10.3390/w15050834 - 21 Feb 2023
Cited by 11 | Viewed by 4006
Abstract
A filling operation generates continuous changes over the shape of an air–water interface, which can be captured using a 3D CFD model. This research analyses the influence of different hydro-pneumatic tank pressures and air pocket sizes as initial conditions for studying rapid filling [...] Read more.
A filling operation generates continuous changes over the shape of an air–water interface, which can be captured using a 3D CFD model. This research analyses the influence of different hydro-pneumatic tank pressures and air pocket sizes as initial conditions for studying rapid filling operations in a 7.6 m long PVC pipeline with an irregular profile, using the OpenFOAM software. The analysed scenarios were validated using experimental measurements, where the 3D CFD model was suitable for simulating them. In addition, a mesh sensitivity analysis was performed. Air pocket pressure patterns, water velocity oscillations, and the different shapes of the air–water interface were analysed. Full article
(This article belongs to the Special Issue About an Important Phenomenon—Water Hammer)
Show Figures

Figure 1

22 pages, 8696 KiB  
Article
Numerical Study of Constant Pressure Systems with Variable Speed Electric Pumps
by Rogger José Andrade-Cedeno, Jesús Alberto Pérez-Rodríguez, Carlos David Amaya-Jaramillo, Ciaddy Gina Rodríguez-Borges, Yolanda Eugenia Llosas-Albuerne and José David Barros-Enríquez
Energies 2022, 15(5), 1918; https://doi.org/10.3390/en15051918 - 6 Mar 2022
Cited by 4 | Viewed by 4606
Abstract
This work focuses on the modeling and simulation of constant pressure systems based on variable speed pumps, with the aim of studying and evaluating their performance from a multidisciplinary approach. Using the physical models of the Simscape library, from MATLAB/Simulink R2019b, two study [...] Read more.
This work focuses on the modeling and simulation of constant pressure systems based on variable speed pumps, with the aim of studying and evaluating their performance from a multidisciplinary approach. Using the physical models of the Simscape library, from MATLAB/Simulink R2019b, two study cases are assembled consisting of: piping system, a hydropneumatic tank, centrifugal pumps with an induction motor, variable speed drives, and a control system. Case one is comprised of one pump at a fixed speed and another at variable speed, and case two with both pumps at variable speed. For the parameterization of the models, data from manufacturers and process requirements are used. The different stages of the control system are integrated and configured; these are constant V/f control, slip compensation, space vector modulation (SVM,) and pressure controller. The dynamic response of the system, power saving, transient current at startup, and harmonic distortion are evaluated. The results showed that both cases kept the pressure constant in the face of variable flow demand and smoothed out the current during startup. Case two saved more energy (between 28 and 49%) but generated more harmonic distortion. In addition, both cases have better performance compared with traditional fixed-speed technologies. Full article
(This article belongs to the Topic Energy Efficiency, Environment and Health)
Show Figures

Figure 1

14 pages, 2171 KiB  
Article
2D CFD Modeling of Rapid Water Filling with Air Valves Using OpenFOAM
by Andres M. Aguirre-Mendoza, Sebastián Oyuela, Héctor G. Espinoza-Román, Oscar E. Coronado-Hernández, Vicente S. Fuertes-Miquel and Duban A. Paternina-Verona
Water 2021, 13(21), 3104; https://doi.org/10.3390/w13213104 - 4 Nov 2021
Cited by 20 | Viewed by 4169
Abstract
The rapid filling process in pressurized pipelines has been extensively studied using mathematical models. On the other hand, the application of computational fluid dynamics models has emerged during the last decade, which considers the development of CFD models that simulate the filling of [...] Read more.
The rapid filling process in pressurized pipelines has been extensively studied using mathematical models. On the other hand, the application of computational fluid dynamics models has emerged during the last decade, which considers the development of CFD models that simulate the filling of pipes with entrapped air, and without air expulsion. Currently, studies of CFD models representing rapid filling in pipes with entrapped air and with air expulsion are scarce in the literature. In this paper, a two-dimensional model is developed using OpenFOAM software to evaluate the hydraulic performance of the rapid filling process in a hydraulic installation with an air valve, considering different air pocket sizes and pressure impulsion by means of a hydro-pneumatic tank. The two-dimensional CFD model captures the pressure evolution in the air pocket very well with respect to experimental and mathematical model results, and produces improved results with respect to existing mathematical models. Full article
(This article belongs to the Special Issue Hydraulic Transients in Water Distribution Systems)
Show Figures

Figure 1

24 pages, 6071 KiB  
Article
Geometric Analysis through the Constructal Design of a Sea Wave Energy Converter with Several Coupled Hydropneumatic Chambers Considering the Oscillating Water Column Operating Principle
by Yuri Theodoro Barbosa de Lima, Mateus das Neves Gomes, Liércio André Isoldi, Elizaldo Domingues dos Santos, Giulio Lorenzini and Luiz Alberto Oliveira Rocha
Appl. Sci. 2021, 11(18), 8630; https://doi.org/10.3390/app11188630 - 16 Sep 2021
Cited by 12 | Viewed by 2332
Abstract
The work presents a numerical study of a wave energy converter (WEC) device based on the oscillating water column (OWC) operating principle with a variation of one to five coupled chambers. The main objective is to evaluate the influence of the geometry and [...] Read more.
The work presents a numerical study of a wave energy converter (WEC) device based on the oscillating water column (OWC) operating principle with a variation of one to five coupled chambers. The main objective is to evaluate the influence of the geometry and the number of coupled chambers to maximize the available hydropneumatic power converted in the energy extraction process. The results were analyzed using the data obtained for hydropneumatic power, pressure, mass flow rate, and the calculated performance indicator’s hydropneumatic power. The Constructal Design method associated with the Exhaustive Search optimization method was used to maximize the performance indicator and determine the optimized geometric configurations. The degrees of freedom analyzed were the ratios between the height and length of the hydropneumatic chambers. A wave tank represents the computational domain. The OWC device is positioned inside it, subject to the regular incident waves. Conservation equations of mass and momentum and one equation for the transport of the water volume fraction are solved with the finite volume method (FVM). The multiphase model volume of fluid (VOF) is used to tackle the water–air mixture. The analysis of the results took place by evaluating the performance indicator in each chamber separately and determining the accumulated power, which represents the sum of all the powers calculated in all chambers. The turbine was ignored, i.e., only the duct without it was analyzed. It was found that, among the cases examined, the device with five coupled chambers converts more energy than others and that there is an inflection point in the performance indicator, hydropneumatic power, as the value of the degree of freedom increases, characterizing a decrease in the value of the performance indicator. With the results of the hydropneumatic power, pressure, and mass flow rate, it was possible to determine a range of geometry values that maximizes the energy conversion, taking into account the cases of one to five coupled chambers and the individual influence of each one. Full article
Show Figures

Figure 1

Back to TopTop