Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (166)

Search Parameters:
Keywords = hydraulic jets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2659 KiB  
Article
Experimental Study on the Distribution of Boundary Shear Stress at an Overfall
by Zhangxin Qi, Zenghui Wang, Yue Pan and Pengbo Chu
Processes 2025, 13(8), 2652; https://doi.org/10.3390/pr13082652 - 21 Aug 2025
Abstract
Overfall flow, characterized by high Froude numbers and intense turbulence, generates boundary shear stress on vertical surfaces, which is considered the direct cause of headcut erosion. This study aims to analyze the hydraulic characteristics of nappe flow over a vertical or near-vertical overfall. [...] Read more.
Overfall flow, characterized by high Froude numbers and intense turbulence, generates boundary shear stress on vertical surfaces, which is considered the direct cause of headcut erosion. This study aims to analyze the hydraulic characteristics of nappe flow over a vertical or near-vertical overfall. Detailed experiments using hot-film anemometry were conducted in an indoor flume to examine the shear stress distribution on vertical surfaces under varying flow rates, overfall heights, and backwater depths. The results show that when the jet dynamic pressure head is less than the backwater depth, the dimensionless relative shear stress and relative depth relationship can be fitted with a beta probability density function. When the dynamic pressure head exceeds the backwater depth, the distribution follows a cubic polynomial form. Dimensional analysis and flow trajectory calculation methods were used to establish shear stress distribution formulas, with determination coefficients of 0.829 and 0.652, and the mean absolute percentage error (MAPE) between the measured and predicted values being 0.106 and 0.081, respectively. The findings provide valuable insights into the effects of complex flow structures on shear stress and offer essential support for the development of scour models for overfall structures. Full article
(This article belongs to the Special Issue Advances in Hydrodynamics, Pollution and Bioavailable Transfers)
Show Figures

Figure 1

21 pages, 5044 KiB  
Article
Numerical Study of Downstream Sediment Scouring of the Slotted Roller Bucket System
by Payam Heidarian, Seyed Ali Akbar Salehi Neyshabouri, Alireza Khoshkonesh, Rouzbeh Nazari, Saeid Okhravi and Silvia Di Francesco
Water 2025, 17(16), 2471; https://doi.org/10.3390/w17162471 - 20 Aug 2025
Viewed by 148
Abstract
Slotted roller buckets are energy dissipator structures designed to reduce the destructive power of high-velocity water flows in spillways, protecting downstream environments. This study aimed to estimate the critical role of slotted roller bucket design in downstream scour mitigation and hydraulic energy dissipation. [...] Read more.
Slotted roller buckets are energy dissipator structures designed to reduce the destructive power of high-velocity water flows in spillways, protecting downstream environments. This study aimed to estimate the critical role of slotted roller bucket design in downstream scour mitigation and hydraulic energy dissipation. The three-dimensional Navier–Stokes (N-St) equations were solved to simulate the jet flow over the roller bucket using CFD software. The free surface volume tracking using the volume of fluid (VOF) and non-equilibrium sediment transport equations was coupled with N-St to model the local scour downstream of the roller bucket system. Subsequently, the impact of bucket tooth lip angles, tailwater depth, and bucket radius on downstream scour were examined in a numerical 3D framework. The results showed that the 45- to 55-degree lip angle configuration significantly reduced the maximum scour depth by approximately 36%. Furthermore, the study quantified the effects of tailwater depth and bucket radius on scour dimensions and flow patterns. The optimal tailwater depth reduced scour depth by approximately 20% compared with the worst case, while variations in bucket radius led to more than a 50% difference in scour depth. We identified specific ranges for these parameters that further minimized erosion potential. The research also underscored the influence of transverse mixing on surging depth, revealing a crucial mechanism for energy dissipation. These findings contributed to a deeper understanding of the complex interplay between design parameters and scour. It offered practical insights for optimizing and operating hydraulic structures sustainably and understanding the scouring processes downstream of the dams. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

14 pages, 3505 KiB  
Article
The Influence of Operating Pressure Oscillations on the Machined Surface Topography in Abrasive Water Jet Machining
by Dejan Ž. Veljković, Jelena Baralić, Predrag Janković, Nedeljko Dučić, Borislav Savković and Aleksandar Jovičić
Materials 2025, 18(15), 3570; https://doi.org/10.3390/ma18153570 - 30 Jul 2025
Viewed by 316
Abstract
The aim of this study was to determine the connection between oscillations in operating pressure values and the appearance of various irregularities on machined surfaces. Such oscillations are a consequence of the high water pressure generated during abrasive water jet machining. Oscillations in [...] Read more.
The aim of this study was to determine the connection between oscillations in operating pressure values and the appearance of various irregularities on machined surfaces. Such oscillations are a consequence of the high water pressure generated during abrasive water jet machining. Oscillations in the operating pressure values are periodic, namely due to the cyclic operation of the intensifier and the physical characteristics of water. One of the most common means of reducing this phenomenon is installing an attenuator in the hydraulic system or a phased intensifier system. The main hypothesis of this study was that the topography of a machined surface is directly influenced by the inability of the pressure accumulator to fully absorb water pressure oscillations. In this study, we monitored changes in hydraulic oil pressure values at the intensifier entrance and their connection with irregularities on the machined surface—such as waviness—when cutting aluminum AlMg3 of different thicknesses. Experimental research was conducted in order to establish this connection. Aluminum AlMg3 of different thicknesses—from 6 mm to 12 mm—was cut with different traverse speeds while hydraulic oil pressure values were monitored. The pressure signals thus obtained were analyzed by applying the fast Fourier transform (FFT) algorithm. We identified a single-sided pressure signal amplitude spectrum. The frequency axis can be transformed by multiplying inverse frequency data with traverse speed; in this way, a single-sided amplitude spectrum can be obtained, examined against the period in which striations are expected to appear (in millimeters). In the lower zone of the analyzed samples, striations are observed at intervals determined by the dominant hydraulic oil pressure harmonics, which are transferred to the operating pressure. In other words, we demonstrate how the machined surface topography is directly induced by water jet pressure frequency characteristics. Full article
(This article belongs to the Special Issue High-Pressure Water Jet Machining in Materials Engineering)
Show Figures

Figure 1

24 pages, 5864 KiB  
Article
Deformation Characteristics and Base Stability of a Circular Deep Foundation Pit with High-Pressure Jet Grouting Reinforcement
by Xiaoliang Zhu, Wenqing Zhao, Junchen Zhao, Guoliang Dai, Ruizhe Jin, Zhiwei Chen and Wenbo Zhu
Appl. Sci. 2025, 15(12), 6825; https://doi.org/10.3390/app15126825 - 17 Jun 2025
Cited by 1 | Viewed by 539
Abstract
This study investigates the deformation characteristics and base stability of a circular diaphragm wall support system (external diameter: 90 m, wall thickness: 1.5 m) with pit bottom reinforcement for the South Anchorage deep foundation pit of the Zhangjinggao Yangtze River Bridge, which uses [...] Read more.
This study investigates the deformation characteristics and base stability of a circular diaphragm wall support system (external diameter: 90 m, wall thickness: 1.5 m) with pit bottom reinforcement for the South Anchorage deep foundation pit of the Zhangjinggao Yangtze River Bridge, which uses layered and partitioned top-down excavation combined with lining construction. Through field monitoring (deep horizontal displacement of the diaphragm wall, vertical displacement at the wall top, and earth pressure) and numerical simulations (PLAXIS Strength Reduction Method), we systematically analyzed the deformation evolution and failure mechanisms during construction. The results indicate the following: (1) Under the synergistic effect of the circular diaphragm wall, lining, and pit bottom reinforcement, the maximum horizontal displacement at the wall top was less than 30 mm and the vertical displacement was 0.04%H, both significantly below code-specified thresholds, verifying the effectiveness of the support system and pit bottom reinforcement. (2) Earth pressure exhibited a “decrease-then-increase” trend during the excavation proceeds. High-pressure jet grouting pile reinforcement at the pit base significantly enhanced basal constraints, leading to earth pressure below the Rankine active limit during intermediate stages and converging toward theoretical values as deformation progressed. (3) Without reinforcement, hydraulic uplift failure manifested as sand layer suspension and soil shear. After reinforcement, failure modes shifted to basal uplift and wall-external soil sliding, demonstrating that high-pressure jet grouting pile reinforcement had positive contribution basal heave stability by improving soil shear strength. (4) Improved stability verification methods for anti-heave and anti-hydraulic-uplift were proposed, incorporating soil shear strength contributions to overcome the underestimation of reinforcement effects in traditional pressure equilibrium and Terzaghi bearing capacity models. This study provides theoretical and practical references for similar deep foundation pit projects and offers systematic solutions for the safety design and deformation characteristics of circular diaphragm walls with pit bottom reinforcement. Full article
Show Figures

Figure 1

20 pages, 5645 KiB  
Article
Experimental Study and Numerical Simulation of Sediment’s Promoting Effect on Cavitation Based on Flow Field Analysis
by Zeyuan Yang, Gang Yu and Qin Zhao
Processes 2025, 13(5), 1299; https://doi.org/10.3390/pr13051299 - 24 Apr 2025
Viewed by 436
Abstract
Sediment-laden water significantly exacerbates the cavitation damage in hydraulic machinery compared to clear water, underscoring the importance of investigating the effects of sediment on cavitation. This study examines cavitation in sediment-laden water using a Venturi flow channel and a high-speed camera system. Natural [...] Read more.
Sediment-laden water significantly exacerbates the cavitation damage in hydraulic machinery compared to clear water, underscoring the importance of investigating the effects of sediment on cavitation. This study examines cavitation in sediment-laden water using a Venturi flow channel and a high-speed camera system. Natural river sand samples with a median diameter of 0.05, 0.07, and 0.09 mm are selected, and sediment-laden water with a concentration of 10, 30, and 50 g/L is prepared. The results indicate that increasing the sediment concentration or reducing the sediment size intensifies cavitation, and the influence of the sediment concentration is significantly greater than that of the sediment size. Meanwhile, the numerical simulation is conducted based on a gas–liquid–solid phase mixing model. The findings indicate that a higher sediment concentration corresponds to a greater shearing effect near the wall, which raises the drag on the attached sheet-like cavitation clouds and enhances the re-entrant jet which can intensify the shedding of cavitation clouds. Furthermore, sediment particles contribute to more vortices. Therefore, for hydraulic machinery operating in sediment-laden water of high concentration, the relative velocity should be reduced to mitigate the shearing effect, thereby weakening the synergy of cavitation and sediment erosion at the turbine runner. Full article
(This article belongs to the Special Issue CFD Applications in Renewable Energy Systems)
Show Figures

Figure 1

18 pages, 7042 KiB  
Article
Turbulence Statistical Characteristics and Energy Dissipation Rate Analysis of Vertical Jet Energy Dissipators
by Haijun Ma, Xihuan Sun and Yongye Li
Appl. Sci. 2025, 15(7), 3560; https://doi.org/10.3390/app15073560 - 25 Mar 2025
Viewed by 590
Abstract
The energy dissipation of hydraulic structures is crucial to the overall safety and stability of hydraulic engineering projects. In order to isolate energy dissipators from hydraulic engineering projects and address the issues of vibration damage caused by the discharge structures, a new type [...] Read more.
The energy dissipation of hydraulic structures is crucial to the overall safety and stability of hydraulic engineering projects. In order to isolate energy dissipators from hydraulic engineering projects and address the issues of vibration damage caused by the discharge structures, a new type of vertical jet energy dissipator was developed by placing crushing needles at the nozzle of the vertical jet pipeline. The crushing needles were mainly used to break the high-energy jet into several smaller jets. As the air is mixed with the water flow, the mechanical energy of the water flow is converted into internal energy and dissipated in the air. The structural parameters of the vertical jet energy dissipators include the size and number of crushing needles. In this paper, the first-order and second-order statistical characteristics and energy dissipation rate of vertical jet energy dissipators under different structural parameters are studied by means of numerical simulation and a physical model test. The results show that, within the scope of this study, the energy dissipation rate of a vertical jet increases with the increase in Reynolds number, the number of crushing needles, and the size of crushing needles; and the energy dissipation rate of the vertical jet increases by 1.04 to 4.89 times compared with that without crushing needles. Under the same Reynolds number, the height of the jet decreases with the increase in the number of crushing needles and the size of the crushing needles. With the vertical development of the flow, the vertical average velocity of the vertical jet energy dissipator is getting smaller and smaller. Adding crushing needles will hinder the upward diffusion of the jet, reduce the height of the jet, and accelerate the attenuation of the jet velocity. As a statistic result regarding the fluid stress, the Reynolds stress along the axis shows a slow upward trend at the potential core, soars at the shear layer, and finally decreases at the end of the jet. The flow has a higher convective transportation intensity in the lateral direction than in other directions. The addition of crushing needles can, to some extent, affect the fluid transport in that area, thereby altering the pressure in the region and dissipating the mechanical energy of the flow-induced vibrations when the jet impacts the crushing needles. The vertical jet-type energy dissipator proposed in this study addresses key engineering challenges, such as terrain constraints and the need for flexible design solutions. Its ability to efficiently dissipate energy while maintaining adaptability makes it a valuable tool for hydraulic engineers designing energy dissipation systems. The conclusions of this study provide a theoretical basis for the application of vertical jet energy dissipators. Full article
Show Figures

Figure 1

18 pages, 4360 KiB  
Article
Comparison of Hydraulic Measures for Improving Coal Seam Permeability: A Case Study
by Yuxi Huang, Xiaoyang Cheng and Huan Zhang
Processes 2025, 13(3), 626; https://doi.org/10.3390/pr13030626 - 22 Feb 2025
Viewed by 502
Abstract
Hydraulic measures are widely used to improve coal seam permeability, but not all hydraulic measures have a positive effect on coal permeability in soft coal seams, and the permeability-enhancing effect of hydraulic measures in soft coal seams is not clear. To further study [...] Read more.
Hydraulic measures are widely used to improve coal seam permeability, but not all hydraulic measures have a positive effect on coal permeability in soft coal seams, and the permeability-enhancing effect of hydraulic measures in soft coal seams is not clear. To further study the permeability-enhancing mechanism of hydraulic measures and compare the effect of hydraulic punching and reaming in soft coal seams, this study takes Changping Mine, China, as its case study. A comparative analysis was conducted on the influence range and gas extraction effect of hydraulic reaming and punching on coal seam permeability enhancement. The following conclusions were mainly drawn: A mathematical calculation model was established for the strength and impact velocity of high-pressure water jet damage to the coal body, and the critical theoretical pressure threshold and jet velocity were obtained. During the implementation of hydraulic measures at the Changping Mine, the effective radius of hydraulic reaming is around 4.5 m, and the influence radius of hydraulic reaming is approximately 7.5 m; the effective radius of hydraulic punching is about 6.5 m, and the influence radius of hydraulic punching is approximately 7–9 m. The gas data from field monitoring show that hydraulic measures have significantly improved the extraction gas concentration and purity, and hydraulic punching has a more significant effect on enhancing permeability in soft coal seams. Full article
(This article belongs to the Topic Advances in Coal Mine Disaster Prevention Technology)
Show Figures

Figure 1

27 pages, 5999 KiB  
Article
Modeling and Analysis of Actuators in Multi-Pump Waterjet Propulsion Systems
by Shuli Jia, Yinuo Guo, Yuxue Liu, Dali Wei, Chong Qu and Liyong Ma
J. Mar. Sci. Eng. 2025, 13(1), 154; https://doi.org/10.3390/jmse13010154 - 17 Jan 2025
Viewed by 1067
Abstract
Waterjet propulsion, which generates thrust by ejecting water jets, has attracted significant attention in modern high-performance vessels due to its efficiency, superior cavitation resistance, and excellent maneuverability. While previous research has primarily concentrated on optimizing the overall performance of waterjet propulsion systems, insufficient [...] Read more.
Waterjet propulsion, which generates thrust by ejecting water jets, has attracted significant attention in modern high-performance vessels due to its efficiency, superior cavitation resistance, and excellent maneuverability. While previous research has primarily concentrated on optimizing the overall performance of waterjet propulsion systems, insufficient attention has been paid to the detailed dynamic modeling of actuators in multi-pump systems, a critical component for improving system control precision. This paper addresses this gap by developing dynamic models for the reversing bucket and rudder angle actuators in marine waterjet propulsion systems. Based on an in-depth analysis of their working principles and operational parameters, transfer function models are established to simulate actuator performance under various conditions, including wear, hydraulic oil leakage, and external disturbances. Key influencing factors for each condition are identified, and corresponding parameter-setting models are constructed. The models’ response speed and steady-state accuracy are validated through step and ramp tests, confirming their effectiveness and reliability. The proposed model is verified with real measurement experiments and comparisons. The findings of this study contribute new insights into the dynamic behavior of multi-pump waterjet propulsion systems and provide a solid theoretical foundation for the future development of optimized control strategies in complex marine propulsion environments. Full article
(This article belongs to the Special Issue Intelligent Measurement and Control System of Marine Robots)
Show Figures

Figure 1

13 pages, 8209 KiB  
Article
Effect of Injector Needle Tip Shape on Jet Flow for Pelton Turbine
by Chun Zhang, Chao Wang, Qianhe Tian, Quanwei Liang, Yilin Zhu, Yexiang Xiao, Yong Bai, Zhaoning Wang, Hengte Zhou and Xianwu Luo
Energies 2025, 18(1), 102; https://doi.org/10.3390/en18010102 - 30 Dec 2024
Viewed by 873
Abstract
The Pelton turbine has been widely applied for the advantages of its simple structure, flexible mass flow rate, wide range of applicable heads and high efficiency. The nozzle and needle are a core part of the Pelton turbine injector. In this paper, the [...] Read more.
The Pelton turbine has been widely applied for the advantages of its simple structure, flexible mass flow rate, wide range of applicable heads and high efficiency. The nozzle and needle are a core part of the Pelton turbine injector. In this paper, the VOF (Volume of Fluid) model was used to simulate the jet flow behaviors and hydraulic performance for a Pelton injector with a needle tip with different breakage losses. Three types of needle tip breakage loss combined with normal needle tip were selected for numerical calculation and analysis, focusing on the influence of needle tip on the high-speed jet flow characteristics. An injector with normal needle tip hydraulic performance is compared with the model test. Finally, the injector hydraulic performance and the jet flow behavior changes with the needle tip shape were comprehensively analyzed. Results show that the needle tip shape almost does not affect the flow rate; when the tip breakage loss is larger than 0.1 of nozzle diameter, the jet efficiency will decrease rapidly and the jet will diffuse rapidly after outflow from the injector. The investigation provides a basis for the operation, maintenance and stability of the Pelton turbine. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

26 pages, 30479 KiB  
Article
Experimental Investigation of T-Jump Stabilization Using Water Jets and Sinusoidal Corrugated Beds
by Maryam Tahmasbipour, Hossein Azizi Nadian, Javad Ahadiyan, Giuseppe Oliveto, Seyed Mohsen Sajjadi and Amir Mohammad Kiyani
Water 2024, 16(23), 3513; https://doi.org/10.3390/w16233513 - 6 Dec 2024
Viewed by 1191
Abstract
Hydraulic jump is a phenomenon that occurs in open channels with a sudden and rapid transition of the flow regime from supercritical to subcritical. One of the common approaches in controlling the energy dissipation of hydraulic jumps aims to expand the section of [...] Read more.
Hydraulic jump is a phenomenon that occurs in open channels with a sudden and rapid transition of the flow regime from supercritical to subcritical. One of the common approaches in controlling the energy dissipation of hydraulic jumps aims to expand the section of the stilling basin with the development of T-jumps. However, T-jumps without additional baffle and terminal elements are unacceptable for thorough energy dissipation. Therefore, this study investigates the main characteristics of T-jumps in an abruptly expanding channel and in the presence of bed water jets and sinusoidal roughness elements. Such complex configurations are hardly found in the literature. Inflow Froude numbers from 6.2 to 10.85, five relative jet flow rates from 0.10 to 0.27, and three rough beds with roughness wave slopes from 0.33 to 0.60 were selected. Experimental results revealed that increasing the bed corrugation would decrease the length of the jump, the length of the roller, and the sequent depth ratio. The same results were found in presence of bed water jets and sinusoidal roughness elements, but the T-jump would appear to be better stabilized. In fact, it was also observed that increasing the relative flow rate of the jet had a significant effect in controlling the T-jump and reducing its relative length. The simultaneous presence of bed water jets and sinusoidal roughness elements decreased the relative length of the T-jump by about 81% and the tailwater depth by about 42% in comparison with the classic hydraulic jumps on smooth beds. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

18 pages, 21998 KiB  
Article
Piano Key Weir (PKW)—Improvement in Conventional Geometry for Augmented Discharge Capacity
by James Yang and Shicheng Li
Water 2024, 16(23), 3375; https://doi.org/10.3390/w16233375 - 24 Nov 2024
Cited by 1 | Viewed by 1204
Abstract
The conventional piano key weir (PKW), characterized by a rectangularly cranked planform, is an effective discharge structure. Its hydraulic performance is primarily influenced by several geometrical parameters, including crest length, key width, and weir height. To enhance its hydraulic efficiency, each key is [...] Read more.
The conventional piano key weir (PKW), characterized by a rectangularly cranked planform, is an effective discharge structure. Its hydraulic performance is primarily influenced by several geometrical parameters, including crest length, key width, and weir height. To enhance its hydraulic efficiency, each key is modified with an isosceles triangle at both the crest and the vertical base surface. In this way, the weir crest is extended both up and downstream; the key floor is lowered accordingly, resulting in a triangular prism-shaped floor. Laboratory tests are conducted to compare the hydraulic performance of this modified weir with that of the standard design. The results demonstrate that the geometrical adjustments noticeably improve the overflow discharge. With an equilateral triangle extending the crest length by ~23%, the discharge capacity is enhanced by 16–20% within the examined flow conditions. The modified weir outperforms the conventional design in terms of hydraulic performance. The improvements can be attributed to several factors: elongated crest length enhancing the flow capacity; triangular upstream overhangs improving the inflow condition along the inlet key’s height; lowered inlet key floor increasing the flow volume, promoting better flow movement towards the crest; lowered outlet key floor reducing the submergence effect under high flow conditions; and the triangular crest of the inlet key facilitating jet spreading and promoting air entrainment. These modifications make the redesigned PKW a promising option for improved hydraulic performance in engineering applications. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

25 pages, 31111 KiB  
Article
Experimental Analysis of Cavitation Erosion: Parameter Sensitivity and Testing Protocols
by SeyedMehdi Mohammadizadeh, José Gilberto Dalfré Filho, Cassiano Sampaio Descovi, Ana Inés Borri Genovez and Thomaz Eduardo Teixeira Buttignol
Coatings 2024, 14(10), 1288; https://doi.org/10.3390/coatings14101288 - 9 Oct 2024
Cited by 8 | Viewed by 2198
Abstract
The scientific goal of this study was to investigate the effects of various parameters on cavitation-induced erosion, with the aim to enhance the understanding and assessment of cavitation resistance in hydraulic systems. Cavitation erosion poses significant challenges to the durability and efficiency of [...] Read more.
The scientific goal of this study was to investigate the effects of various parameters on cavitation-induced erosion, with the aim to enhance the understanding and assessment of cavitation resistance in hydraulic systems. Cavitation erosion poses significant challenges to the durability and efficiency of hydraulic components, such as those found in hydropower plants and pumping stations. Prompted by the need to improve the reliability of cavitation testing and material assessment, this research conducted a comprehensive sensitivity analysis of a cavitation jet apparatus (CJA). This study employed an experimental platform that consisted of a vertical cylindrical test tank, a submerged nozzle, and an aluminum sample. By examining a range of orifice diameters, this research identified that smaller diameters led to increased erosion intensity, with the most pronounced effects observed at a diameter of 2 mm. Furthermore, various standoff distances (SoDs) were tested, which revealed that shorter distances resulted in greater erosion, with the highest impact noted at an SoD of 5 cm. This study also evaluated different nozzle geometries, where it was found that a 132° conical sharped edges nozzle, combined with an orifice diameter of 2 mm and an SoD of 5 cm, produced the most severe erosion. Conversely, chamfered edges nozzles and a commercial nozzle (MEG2510) with an SoD of 10 cm or greater showed reduced erosion. These results highlight that by standardizing the testing duration to 1200 s, the CJA could reliably assess the cavitation resistance of materials. This study established a clear relationship between increased pressure and higher impact forces, which led to more severe erosion. The findings underscore the effectiveness of the CJA in evaluating material resistance under various cavitation conditions, thus addressing a critical need for reliable cavitation testing tools. Full article
Show Figures

Figure 1

20 pages, 8190 KiB  
Article
Evaluation of Peripheral Milling and Abrasive Water Jet Cutting in CFRP Manufacturing: Analysis of Defects and Surface Quality
by Alejandro Sambruno, Álvaro Gómez-Parra, Pablo Márquez, Iñaki Tellaeche-Herrera and Moisés Batista
Fibers 2024, 12(10), 78; https://doi.org/10.3390/fib12100078 - 25 Sep 2024
Cited by 2 | Viewed by 1595
Abstract
The use of carbon fiber reinforced polymers (CFRP) is crucial in industries, such as aerospace, automotive, and marine, due to their excellent strength-to-weight ratio and corrosion resistance. However, machining CFRP is challenging due to its abrasive nature, which can cause premature tool wear. [...] Read more.
The use of carbon fiber reinforced polymers (CFRP) is crucial in industries, such as aerospace, automotive, and marine, due to their excellent strength-to-weight ratio and corrosion resistance. However, machining CFRP is challenging due to its abrasive nature, which can cause premature tool wear. Some of the commonly used processes for machining these materials are dry milling and abrasive water jet machining (AWJM), which offer the best alternatives from an environmental point of view. This article presents an analysis of the defects and surface quality obtained in CFRP after machining by AWJM and milling. For this purpose, combinations of relevant parameters have been chosen for each process: cutting speed and tool wear in milling and traverse feed rate and hydraulic pressure in AWJM. The results obtained have been evaluated from two points of view: macroscopically, through the evaluation of delamination, and microscopically, through the study of the roughness in terms of Ra. Furthermore, a discussion on functional, environmental, economic, and social terms has been made between both processes. In summary, each machining process generates a specific type of delamination: Type II in milling and Type I in AWJM. In addition, the best Ra results are obtained for pressures of 1200 bar in AWJM. Full article
(This article belongs to the Collection Feature Papers in Fibers)
Show Figures

Figure 1

20 pages, 12712 KiB  
Article
Experimental Research on Pressure Pulsation and Flow Structures of the Low Specific Speed Centrifugal Pump
by Weiling Lv, Yang Zhang, Wenbin Zhang, Ping Ni, Changjiang Li, Jiaqing Chen and Bo Gao
Energies 2024, 17(18), 4730; https://doi.org/10.3390/en17184730 - 23 Sep 2024
Viewed by 1342
Abstract
The low specific speed centrifugal pump plays a crucial role in industrial applications, and ensuring its efficient and stable operation is extremely important for the safety of the whole system. The pump must operate with an extremely high head, an extremely low flow [...] Read more.
The low specific speed centrifugal pump plays a crucial role in industrial applications, and ensuring its efficient and stable operation is extremely important for the safety of the whole system. The pump must operate with an extremely high head, an extremely low flow rate, and a very fast speed. The internal flow structure is complex and there is a strong interaction between dynamic and static components; consequently, the hydraulic excitation force produced becomes a significant factor that triggers abnormal vibrations in the pump. Therefore, this study focuses on a low specific speed centrifugal pump and uses a single-stage model pump to conduct PIV and pressure pulsation tests. The findings reveal that the PIV tests successfully captured the typical jet-wake structure at the outlet of the impeller, as well as the flow separation structure at the leading edge of the guide vanes and the suction surface. On the left side of the discharge pipe, large-scale flow separation and reverse flow happen as a result of the flow-through effect, producing a strong vortex zone. The flow field on the left side of the pressure chamber is relatively uniform, and the low-speed region on the suction surface of the guide vanes is reduced due to the reverse flow. The results of the pressure pulsation test showed that the energy of pressure pulsation in the flow passage of the guide vane occurs at the fBPF and its harmonics, and the interaction between the rotor and stator is significant. Under the same operating condition, the RMS value distribution and amplitude at fBPF of each measurement point are asymmetric in the circumferential direction. The amplitude of fBPF near the discharge pipe is lower, while the RMS value is higher. A complex flow structure is shown by the larger amplitude and RMS value of the fBPF on the left side of the pressure chamber. With the flow rate increasing, the energy at fBPF of each measurement point increases first and then decreases, while the RMS value decreases, indicating a more uniform flow field inside the pump. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

15 pages, 5267 KiB  
Article
Investigating the Energy Dissipation Mechanism of Piano Key Weir: An Integrated Approach Using Physical and Numerical Modeling
by Zixiang Li, Fan Yang, Changhai Han, Ziwu Fan, Kaiwen Yu, Kang Han and Jingxiu Wu
Water 2024, 16(18), 2620; https://doi.org/10.3390/w16182620 - 15 Sep 2024
Cited by 3 | Viewed by 1197
Abstract
The enormous energy carried by discharged water poses a serious threat to the Piano Key Weir (PKW) and its downstream hydraulic structures. However, previous research on energy dissipation in PKWs has mainly focused downstream effects, and the research methods have been largely limited [...] Read more.
The enormous energy carried by discharged water poses a serious threat to the Piano Key Weir (PKW) and its downstream hydraulic structures. However, previous research on energy dissipation in PKWs has mainly focused downstream effects, and the research methods have been largely limited to physical model experiments. To deeply investigate the discharge capacity and hydraulic characteristics of PKW, this study established a PKW model with universally applicable geometric parameters. By combining physical model experiments and numerical simulations, the flow pattern of the PKW, the discharge at the overflow edges, and the variation in the energy dissipation were revealed for different water heads. The results showed that the discharge of the side wall constitutes the majority of the total discharge at low water heads, resulting in a relatively high overall discharge efficiency. As the water head increases, the proportion of discharge from the inlet and outlet keys increases, while the proportion from the side wall decreases. This change results in less discharge from the side wall and a consequent reduction in the overall discharge efficiency. The PKW exhibits superior energy dissipation efficiency under low water heads. However, this efficiency exhibits an inverse relationship with an increasing water head. The overall energy dissipation efficiency can reach 40% to 70%. Additionally, the collision of the water flows inside the outlet chamber and the mixing of the overflow jet play a primary role in energy dissipation. The findings of this study have significant implications for hydraulic engineering construction and PKW operational safety. Full article
Show Figures

Figure 1

Back to TopTop