Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = hybrid pathotype

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 12203 KB  
Article
Reoviral Hepatitis in Young Turkey Poults—An Emerging Problem
by Rahul Kumar, Mohamed Selim, Anibal G. Armien, Sagar M. Goyal, Fabio A. Vannucci, Sidhartha Deshmukh, Robert E. Porter and Sunil K. Mor
Pathogens 2025, 14(9), 865; https://doi.org/10.3390/pathogens14090865 - 1 Sep 2025
Viewed by 682
Abstract
From January 2019 to April 2020, the Minnesota Veterinary Diagnostic Laboratory (MVDL) received cases of hepatitis and spiking mortality in young turkey poults (average age 15.5 days) from multiple turkey-producing states. Meat-type turkeys were mainly affected, with a few cases in breeders. Of [...] Read more.
From January 2019 to April 2020, the Minnesota Veterinary Diagnostic Laboratory (MVDL) received cases of hepatitis and spiking mortality in young turkey poults (average age 15.5 days) from multiple turkey-producing states. Meat-type turkeys were mainly affected, with a few cases in breeders. Of 188 cases, 88 (47.5%) tested positive for reovirus by virus isolation, with most of the positive cases from 7 to 14-day-old birds (n = 42). Gross lesions consisted of hepatosplenomegaly with acute, multifocal necrosis in both liver and spleen. Microscopically, liver sections showed congestion of hepatic sinusoids and necrotizing hepatitis with infiltration of lymphocytes, plasma cells, and macrophages. Reovirus was detected in liver samples by electron microscopy and in situ hybridization (ISH). Sections of spleen showed areas of necrosis with infiltration of the mixed population of inflammatory cells and depletion of lymphocytes. We consistently isolated reoviruses from livers and tentatively named the virus “Turkey Hepatitis Reovirus” (THRV). Phylogenetic analysis of the newly emerged THRVs revealed their clustering into four distinct groups. This study also highlighted the close antigenic relation between TARV and THRV compared to turkey enteritis reoviruses (TERVs), which shed light on the probable origin of this newly emerged pathotype. In summary, further molecular and pathogenicity studies are recommended on THRVs to help diagnose and control this serious variant. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

10 pages, 1183 KB  
Article
Evaluation of Potato Varieties for Yield, Quality, and Late Blight Resistance
by Rita Asakaviciute, Avrelia Zelya, Tatiana Andriychuk and Almantas Razukas
Life 2025, 15(9), 1378; https://doi.org/10.3390/life15091378 - 1 Sep 2025
Viewed by 866
Abstract
This study provides the first long-term, cross-border evaluation of Lithuanian potato (Solanum tuberosum L.) cultivars, integrating agronomic performance, tuber quality, and resistance to major pathogens across diverse environments. Field and controlled trials conducted in Lithuania and Ukraine from 2014 to 2024 revealed [...] Read more.
This study provides the first long-term, cross-border evaluation of Lithuanian potato (Solanum tuberosum L.) cultivars, integrating agronomic performance, tuber quality, and resistance to major pathogens across diverse environments. Field and controlled trials conducted in Lithuania and Ukraine from 2014 to 2024 revealed substantial genetic variability among 14 national cultivars, enabling their classification into five distinct maturity groups. Maincrop cultivars outperformed others in yield and starch accumulation, with ‘VB Meda’, ‘Goda’, and ‘VB Aista’ exhibiting a superior balance of productivity (up to 49 t ha−1), starch content (>19%), and moderate-to-high resistance to Phytophthora infestans. A broader genetic screening of 287 accessions—including varieties, breeding lines, and hybrids—demonstrated wide diversity in phenological development, disease resistance, and reproductive traits. Notably, Ro1 pathotype resistance was identified in 85 genotypes, predominantly with yellow-skinned tubers, while genotypic sterility in flowering and berry set was associated with both parental lineage and elevated temperatures. Although no complete immunity to P. infestans was detected, several genotypes displayed stable polygenic field resistance, suggesting the presence of horizontally inherited defense mechanisms effective under variable agroclimatic conditions. These results underscore the strategic breeding potential of Lithuanian potato germplasm for developing high-performing cultivars with enhanced resilience to late blight and nematodes and offer valuable insights for climate-adapted potato breeding in Northern and Eastern Europe. Full article
(This article belongs to the Section Diversity and Ecology)
Show Figures

Figure 1

24 pages, 10260 KB  
Article
Functional Characterization of Deubiquitinase UBP Family and Proteomic Analysis of Aaubp14-Mediated Pathogenicity Mechanism in Alternaria alternata
by Jiejing Tang, Hang Zhou, Chen Jiao and Hongye Li
J. Fungi 2025, 11(7), 495; https://doi.org/10.3390/jof11070495 - 29 Jun 2025
Viewed by 750
Abstract
The Alternaria alternata tangerine pathotype causes Alternaria brown spot, a devastating disease of susceptible tangerine varieties and their hybrids. Alternaria citri toxin (ACT) is the primary virulence factor, but the regulatory mechanisms governing ACT synthesis remain unclear. Deubiquitinating enzymes maintain ubiquitination homeostasis and [...] Read more.
The Alternaria alternata tangerine pathotype causes Alternaria brown spot, a devastating disease of susceptible tangerine varieties and their hybrids. Alternaria citri toxin (ACT) is the primary virulence factor, but the regulatory mechanisms governing ACT synthesis remain unclear. Deubiquitinating enzymes maintain ubiquitination homeostasis and regulate fungal pathogenicity, yet their role in A. alternata remains unexplored. We characterized 13 ubiquitin-specific protease (UBP) family members in A. alternata tangerine pathotype. Six UBP genes (Aaubp2, Aaubp3, Aaubp4, Aaubp6, Aaubp14, and Aaubp15) regulated mycelial growth. Aaubp14 deletion abolished sporulation, while mutations of Aaubp3, Aaubp4, Aaubp6, Aaubp8, and Aaubp15 altered conidial morphology. qRT-PCR demonstrated distinct host-induced expression patterns among Aaubp genes. Pathogenicity tests showed that ΔAaubp6, ΔAaubp14, and ΔAaubp15 mutants failed to produce lesions on Citrus reticulata cv. Hongjv leaves. Moreover, Aaubp14 deletion significantly suppressed ACT biosynthesis gene expression and blocked ACT production. Comparative proteomics showed Aaubp14 regulates ACT biosynthesis by modulating protein ubiquitination in metabolic pathways and controls pathogenicity via a complex network. Our findings elucidate Aaubp gene function in development and pathogenicity, particularly the Aaubp14-mediated regulation mechanism, providing insights into ubiquitination-mediated pathogenicity in phytopathogenic fungi. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Graphical abstract

16 pages, 803 KB  
Article
Virulence and Antibiotic Resistance of aEPEC/STEC Escherichia coli Pathotypes with Serotype Links to Shigella boydii 16 Isolated from Irrigation Water
by Yessica Enciso-Martínez, Edwin Barrios-Villa, Manuel G. Ballesteros-Monrreal, Armando Navarro-Ocaña, Dora Valencia, Gustavo A. González-Aguilar, Miguel A. Martínez-Téllez, Julián Javier Palomares-Navarro and Fernando Ayala-Zavala
Pathogens 2025, 14(6), 549; https://doi.org/10.3390/pathogens14060549 - 1 Jun 2025
Viewed by 1306
Abstract
Irrigation water can serve as a reservoir and transmission route for pathogenic Escherichia coli, posing a threat to food safety and public health. This study builds upon a previous survey conducted in Hermosillo, Sonora (Mexico), where 445 samples were collected from a [...] Read more.
Irrigation water can serve as a reservoir and transmission route for pathogenic Escherichia coli, posing a threat to food safety and public health. This study builds upon a previous survey conducted in Hermosillo, Sonora (Mexico), where 445 samples were collected from a local Honeydew melon farm and associated packing facilities. Among the 32 E. coli strains recovered, two strains, A34 and A51, were isolated from irrigation water and selected for further molecular characterization by PCR, due to their high pathogenic potential. Both strains were identified as hybrid aEPEC/STEC pathotypes carrying bfpA and stx1 virulence genes. Adhesion assays in HeLa cells revealed aggregative and diffuse patterns, suggesting enhanced colonization capacity. Phylogenetic analysis classified A34 within group B2 as associated with extraintestinal pathogenicity and antimicrobial resistance, while A51 was unassigned to any known phylogroup. Serotyping revealed somatic antigens shared with Shigella boydii 16, suggesting possible horizontal gene transfer or antigenic convergence. Antibiotic susceptibility testing showed resistance to multiple β-lactam antibiotics, including cephalosporins, linked to the presence of blaCTX-M-151 and blaCTX-M-9. Although no plasmid-mediated quinolone resistance genes were detected, resistance may involve efflux pumps or mutations in gyrA and parC. These findings are consistent with previous reports of E. coli adaptability in agricultural environments, suggesting potential genetic adaptability. While our data support the presence of virulence and resistance markers, further studies would be required to demonstrate mechanisms such as horizontal gene transfer or adaptive evolution. Full article
Show Figures

Graphical abstract

25 pages, 719 KB  
Review
Diagnostic Assays for Avian Influenza Virus Surveillance and Monitoring in Poultry
by Shahan Azeem and Kyoung-Jin Yoon
Viruses 2025, 17(2), 228; https://doi.org/10.3390/v17020228 - 6 Feb 2025
Cited by 1 | Viewed by 4292
Abstract
Diagnostic testing plays a key role in a surveillance program as diagnostic testing aims to accurately determine the infection or disease status of an individual animal. Diagnostic assays for AIV can be categorized into four broad types: tests for detecting the virus, its [...] Read more.
Diagnostic testing plays a key role in a surveillance program as diagnostic testing aims to accurately determine the infection or disease status of an individual animal. Diagnostic assays for AIV can be categorized into four broad types: tests for detecting the virus, its antigen, its genomic material, and antibodies to the virus. Virus characterization almost always follows virus detection. The present article surveys the current literature on the goals, principles, test performance, advantages, and disadvantages of these diagnostic assays. Virus isolation can be achieved using embryonating eggs or cell cultures in a lab setting. Virus antigens can be detected by antigen-capturing immunoassays or tissue immunoassays. Viral RNA can be detected by PCR-based assays (gel-based reverse transcription–polymerase chain reaction (RT-PCR), or probe or SYBR® Green-based real-time RT-PCR), loop-mediated isothermal amplification, in situ hybridization, and nucleic acid sequence-based amplification. Antibodies to AIV can be detected by ELISA, agar gel immunodiffusion, hemagglutination inhibition, and microneutralization. Avian influenza virus can be characterized by hemagglutination inhibition, neuraminidase inhibition, sequencing (dideoxynucleotide chain-termination sequencing, next-generation sequencing), genetic sequence-based pathotype prediction, and pathogenicity testing. Novel and variant AIVs can be recognized by DNA microarrays, electron microscopy, mass spectroscopy, and Biological Microelectromechanical Systems. A variety of diagnostic tests are employed in AIV surveillance and monitoring. The choice of their use depends on the goal of testing (fit for purpose), the time of testing during the disease, the assay target, the sample matrix, assay performance, and the advantages and disadvantages of the assay. The article concludes with authors’ perspective of the use of diagnostic assays in the surveillance and monitoring of AIV in poultry. Full article
Show Figures

Figure 1

13 pages, 1298 KB  
Communication
Comparative Genomics of Three Hybrid-Pathogen Multidrug-Resistant Escherichia coli Strains Isolated from Healthy Donors’ Feces
by Judith Z. Ortega-Enríquez, Claudia Martínez-de la Peña, Cristina Lara-Ochoa, Rosa del Carmen Rocha-Gracia, Edwin Barrios-Villa and Margarita M. P. Arenas-Hernández
Microbiol. Res. 2024, 15(3), 1412-1424; https://doi.org/10.3390/microbiolres15030095 - 2 Aug 2024
Cited by 1 | Viewed by 2855
Abstract
The present study shows the genomic characterization of three pathogenic Escherichia coli hybrid strains. All strains were previously characterized as diarrheagenic pathotypes (DEC), obtained from feces. The three sequenced strains have genes that encode adhesins (fimH and iha) and iron uptake [...] Read more.
The present study shows the genomic characterization of three pathogenic Escherichia coli hybrid strains. All strains were previously characterized as diarrheagenic pathotypes (DEC), obtained from feces. The three sequenced strains have genes that encode adhesins (fimH and iha) and iron uptake systems (iucC and iutA). Antibiotic resistance genes were also found for fluoroquinolone and aminoglycoside families in the three strains. The presence of genomic islands (GIs) in the sequenced study strains presented 100% identity (Ec-25.2) and 99% identity (Ec-36.1) with previously reported Extraintestinal Pathogenic E. coli (ExPEC) strains. The Ec-36.4 strain shared a 99% identity with GI from the Enterotoxigenic E. coli (ETEC) pathotype of the diarrheagenic E. coli strain. Ec-25.2 belongs to ST69 and harbors a FimH27 variant, while Ec-36.1 and Ec-36.4 belong to ST4238 and share a FimH54 variant. Four incompatibility groups associated with conjugative plasmids were identified (IncFIB, IncF11, IncI1, and IncB/O/K/Z), as well as Insertion Sequences and MITEs elements. Full article
Show Figures

Figure 1

20 pages, 2441 KB  
Article
Uropathogenic E. coli and Hybrid Pathotypes in Mexican Women with Urinary Tract Infections: A Comprehensive Molecular and Phenotypic Overview
by Manuel G. Ballesteros-Monrreal, Pablo Mendez-Pfeiffer, Bryan Ortíz, Enrique Bolado-Martínez, Maritza Lizeth Álvarez-Ainza, Yessica Enciso-Martínez, Margarita M. P. Arenas-Hernández, Betsaida Diaz-Murrieta, Edwin Barrios-Villa and Dora Valencia
Curr. Issues Mol. Biol. 2024, 46(6), 5909-5928; https://doi.org/10.3390/cimb46060353 - 13 Jun 2024
Cited by 3 | Viewed by 3180
Abstract
Uropathogenic Escherichia coli (UPEC) is the main cause of urinary tract infections (UTIs) and carries virulence and resistance factors often found in mobilizable genetic elements, such as plasmids or pathogenicity islands (PAIs). UPEC is part of the extraintestinal pathogenic E. coli (ExPEC), but [...] Read more.
Uropathogenic Escherichia coli (UPEC) is the main cause of urinary tract infections (UTIs) and carries virulence and resistance factors often found in mobilizable genetic elements, such as plasmids or pathogenicity islands (PAIs). UPEC is part of the extraintestinal pathogenic E. coli (ExPEC), but hybrid strains possessing both diarrheagenic E. coli (DEC) and ExPEC traits, termed “hypervirulent”, present a significant health threat. This study assessed the prevalence of UPEC PAIs, ExPEC sequence types (ST), DEC genes, carbapenemase and extended-spectrum β-lactamase (ESBL) phenotypes, resistance genotypes, and plasmids in 40 clinical isolates of UPEC. Results showed that 72.5% of isolates had PAIs, mainly PAI IV536 (53%). ESBL phenotypes were found in 65% of β-lactam-resistant isolates, with 100% of carbapenem-resistant isolates producing carbapenemase. The predominant ESBL gene was blaCTX-M-2 (60%), and the most common resistance gene in fluoroquinolone and aminoglycoside-resistant isolates was aac(6′)Ib (93%). Plasmids were present in 57% of isolates, and 70% belonged to the ST131 clonal group. Molecular markers for DEC pathotypes were detected in 20 isolates, with 60% classified as hybrid pathotypes. These findings indicate significant pathogenic potential and the presence of hybrid pathotypes in E. coli UTI clinical isolates in the Mexican population. Full article
Show Figures

Figure 1

27 pages, 6496 KB  
Article
Deciphering the Genomic Landscape and Virulence Mechanisms of the Wheat Powdery Mildew Pathogen Blumeria graminis f. sp. tritici Wtn1: Insights from Integrated Genome Assembly and Conidial Transcriptomics
by Perumal Nallathambi, Chandrasekaran Umamaheswari, Bhaskar Reddy, Balakrishnan Aarthy, Mohammed Javed, Priya Ravikumar, Santosh Watpade, Prem Lal Kashyap, Govindaraju Boopalakrishnan, Sudheer Kumar, Anju Sharma and Aundy Kumar
J. Fungi 2024, 10(4), 267; https://doi.org/10.3390/jof10040267 - 3 Apr 2024
Cited by 4 | Viewed by 5158
Abstract
A high-quality genome sequence from an Indian isolate of Blumeria graminis f. sp. tritici Wtn1, a persistent threat in wheat farming, was obtained using a hybrid method. The assembly of over 9.24 million DNA-sequence reads resulted in 93 contigs, totaling a 140.61 Mb [...] Read more.
A high-quality genome sequence from an Indian isolate of Blumeria graminis f. sp. tritici Wtn1, a persistent threat in wheat farming, was obtained using a hybrid method. The assembly of over 9.24 million DNA-sequence reads resulted in 93 contigs, totaling a 140.61 Mb genome size, potentially encoding 8480 genes. Notably, more than 73.80% of the genome, spanning approximately 102.14 Mb, comprises retro-elements, LTR elements, and P elements, influencing evolution and adaptation significantly. The phylogenomic analysis placed B. graminis f. sp. tritici Wtn1 in a distinct monocot-infecting clade. A total of 583 tRNA anticodon sequences were identified from the whole genome of the native virulent strain B. graminis f. sp. tritici, which comprises distinct genome features with high counts of tRNA anticodons for leucine (70), cysteine (61), alanine (58), and arginine (45), with only two stop codons (Opal and Ochre) present and the absence of the Amber stop codon. Comparative InterProScan analysis unveiled “shared and unique” proteins in B. graminis f. sp. tritici Wtn1. Identified were 7707 protein-encoding genes, annotated to different categories such as 805 effectors, 156 CAZymes, 6102 orthologous proteins, and 3180 distinct protein families (PFAMs). Among the effectors, genes like Avra10, Avrk1, Bcg-7, BEC1005, CSEP0105, CSEP0162, BEC1016, BEC1040, and HopI1 closely linked to pathogenesis and virulence were recognized. Transcriptome analysis highlighted abundant proteins associated with RNA processing and modification, post-translational modification, protein turnover, chaperones, and signal transduction. Examining the Environmental Information Processing Pathways in B. graminis f. sp. tritici Wtn1 revealed 393 genes across 33 signal transduction pathways. The key pathways included yeast MAPK signaling (53 genes), mTOR signaling (38 genes), PI3K-Akt signaling (23 genes), and AMPK signaling (21 genes). Additionally, pathways like FoxO, Phosphatidylinositol, the two-component system, and Ras signaling showed significant gene representation, each with 15–16 genes, key SNPs, and Indels in specific chromosomes highlighting their relevance to environmental responses and pathotype evolution. The SNP and InDel analysis resulted in about 3.56 million variants, including 3.45 million SNPs, 5050 insertions, and 5651 deletions within the whole genome of B. graminis f. sp. tritici Wtn1. These comprehensive genome and transcriptome datasets serve as crucial resources for understanding the pathogenicity, virulence effectors, retro-elements, and evolutionary origins of B. graminis f. sp. tritici Wtn1, aiding in developing robust strategies for the effective management of wheat powdery mildew. Full article
(This article belongs to the Special Issue Genomics of Fungal Plant Pathogens, 2nd Edition)
Show Figures

Figure 1

15 pages, 851 KB  
Article
Occurrence of Mobile Colistin Resistance Genes mcr-1mcr-10 including Novel mcr Gene Variants in Different Pathotypes of Porcine Escherichia coli Isolates Collected in Germany from 2000 to 2021
by Lisa Göpel, Ellen Prenger-Berninghoff, Silver A. Wolf, Torsten Semmler, Rolf Bauerfeind and Christa Ewers
Appl. Microbiol. 2024, 4(1), 70-84; https://doi.org/10.3390/applmicrobiol4010005 - 28 Dec 2023
Cited by 7 | Viewed by 2681
Abstract
In the European Union, gastrointestinal disease in pigs is the main indication for the use of colistin, but large-scale epidemiologic data concerning the frequency of mobile colistin resistance (mcr) genes in pig-associated pathotypes of Escherichia coli (E. coli) are [...] Read more.
In the European Union, gastrointestinal disease in pigs is the main indication for the use of colistin, but large-scale epidemiologic data concerning the frequency of mobile colistin resistance (mcr) genes in pig-associated pathotypes of Escherichia coli (E. coli) are lacking. Multiplex polymerase chain reactions were used to detect virulence-associated genes (VAGs) and mcr-1mcr-10 genes in 10,573 porcine E. coli isolates collected in Germany from July 2000 to December 2021. Whole genome sequencing was performed on 220 representative mcr-positive E. coli strains. The total frequency of mcr genes was 10.2%, the most frequent being mcr-1 (8.4%) and mcr-4 (1.6%). All other mcr genes were rarely identified (mcr-2, mcr-3, mcr-5) or absent (mcr-6 to mcr-10). The highest frequencies of mcr genes were found in enterotoxigenic and shiga toxin-encoding E. coli (ETEC/STEC hybrid) and in edema disease E. coli (EDEC) strains (21.9% and 17.7%, respectively). We report three novel mcr variants, mcr-1.36, mcr-4.8, and mcr-5.5. In 39 attaching and effacing E. coli (AEEC) isolates analyzed in our study, the eae subtype β1 was the most prevalent (71.8%). Constant surveillance for the presence of mcr genes in various sectors should consider the different frequency of mcr-positive isolates in pathogenic E. coli. Full article
Show Figures

Figure 1

14 pages, 1828 KB  
Article
Prevalence and Antimicrobial Resistance Profile of Diarrheagenic Escherichia coli from Fomites in Rural Households in South Africa
by Phathutshedzo Rakhalaru, Lutendo Munzhedzi, Akebe Luther King Abia, Jean Pierre Kabue, Natasha Potgieter and Afsatou Ndama Traore
Antibiotics 2023, 12(8), 1345; https://doi.org/10.3390/antibiotics12081345 - 21 Aug 2023
Cited by 7 | Viewed by 3110
Abstract
Diarrheagenic Escherichia coli (DEC) pathotypes are the leading cause of mortality and morbidity in South Asia and sub-Saharan Africa. Daily interaction between people contributes to the spreading of Escherichia coli (E. coli), and fomites are a common source of community-acquired bacterial [...] Read more.
Diarrheagenic Escherichia coli (DEC) pathotypes are the leading cause of mortality and morbidity in South Asia and sub-Saharan Africa. Daily interaction between people contributes to the spreading of Escherichia coli (E. coli), and fomites are a common source of community-acquired bacterial infections. The spread of bacterial infectious diseases from inanimate objects to the surrounding environment and humans is a serious problem for public health, safety, and development. This study aimed to determine the prevalence and antibiotic resistance of diarrheagenic E. coli found in toilets and kitchen cloths in the Vhembe district, South Africa. One hundred and five samples were cultured to isolate E. coli: thirty-five samples were kitchen cloths and seventy-five samples were toilet swabs. Biochemical tests, API20E, and the VITEK®-2 automated system were used to identify E. coli. Pathotypes of E. coli were characterised using Multiplex Polymerase Chain Reaction (mPCR). Nine amplified gene fragments were sequenced using partial sequencing. A total of eight antibiotics were used for the antibiotic susceptibility testing of E. coli isolates using the Kirby–Bauer disc diffusion method. Among the collected samples, 47% were positive for E. coli. DEC prevalence was high (81%), with ETEC (51%) harboring lt and st genes being the most dominant pathotype found on both kitchen cloths and toilet surfaces. Diarrheagenic E. coli pathotypes were more prevalent in the kitchen cloths (79.6%) compared with the toilet surfaces. Notably, hybrid pathotypes were detected in 44.2% of the isolates, showcasing the co-existence of multiple pathotypes within a single E. coli strain. The antibiotic resistance testing of E. coli isolates from kitchen cloths and toilets showed high resistance to ampicillin (100%) and amoxicillin (100%). Only E. coli isolates with hybrid pathotypes were found to be resistant to more than three antibiotics. This study emphasizes the significance of fomites as potential sources of bacterial contamination in rural settings. The results highlight the importance of implementing proactive measures to improve hygiene practices and antibiotic stewardship in these communities. These measures are essential for reducing the impact of DEC infections and antibiotic resistance, ultimately safeguarding public health. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Environmental Health)
Show Figures

Figure 1

14 pages, 3712 KB  
Article
Molecular and Genomic Analysis of the Virulence Factors and Potential Transmission of Hybrid Enteropathogenic and Enterotoxigenic Escherichia coli (EPEC/ETEC) Strains Isolated in South Korea
by Woojung Lee, Soohyun Sung, Jina Ha, Eiseul Kim, Eun Sook An, Seung Hwan Kim, Soon Han Kim and Hae-Yeong Kim
Int. J. Mol. Sci. 2023, 24(16), 12729; https://doi.org/10.3390/ijms241612729 - 12 Aug 2023
Cited by 8 | Viewed by 2678
Abstract
Hybrid strains Escherichia coli acquires genetic characteristics from multiple pathotypes and is speculated to be more virulent; however, understanding their pathogenicity is elusive. Here, we performed genome-based characterization of the hybrid of enteropathogenic (EPEC) and enterotoxigenic E. coli (ETEC), the strains that cause [...] Read more.
Hybrid strains Escherichia coli acquires genetic characteristics from multiple pathotypes and is speculated to be more virulent; however, understanding their pathogenicity is elusive. Here, we performed genome-based characterization of the hybrid of enteropathogenic (EPEC) and enterotoxigenic E. coli (ETEC), the strains that cause diarrhea and mortality in children. The virulence genes in the strains isolated from different sources in the South Korea were identified, and their phylogenetic positions were analyzed. The EPEC/ETEC hybrid strains harbored eae and est encoding E. coli attaching and effacing lesions and heat-stable enterotoxins of EPEC and ETEC, respectively. Genome-wide phylogeny revealed that all hybrids (n = 6) were closely related to EPEC strains, implying the potential acquisition of ETEC virulence genes during ETEC/EPEC hybrid emergence. The hybrids represented diverse serotypes (O153:H19 (n = 3), O49:H10 (n = 2), and O71:H19 (n = 1)) and sequence types (ST546, n = 4; ST785, n = 2). Furthermore, heat-stable toxin-encoding plasmids possessing estA and various other virulence genes and transporters, including nleH2, hlyA, hlyB, hlyC, hlyD, espC, espP, phage endopeptidase Rz, and phage holin, were identified. These findings provide insights into understanding the pathogenicity of EPEC/ETEC hybrid strains and may aid in comparative studies, virulence characterization, and understanding evolutionary biology. Full article
Show Figures

Figure 1

15 pages, 4350 KB  
Article
Genome-Based Characterization of Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains Isolated in South Korea, 2016–2020
by Woojung Lee, Min-Hee Kim, Soohyun Sung, Eiseul Kim, Eun Sook An, Seung Hwan Kim, Soon Han Kim and Hae-Yeong Kim
Microorganisms 2023, 11(5), 1285; https://doi.org/10.3390/microorganisms11051285 - 15 May 2023
Cited by 20 | Viewed by 2664
Abstract
The global emergence of hybrid diarrheagenic E. coli strains incorporating genetic markers from different pathotypes is a public health concern. Hybrids of Shiga toxin-producing and enterotoxigenic E. coli (STEC/ETEC) are associated with diarrhea and hemolytic uremic syndrome (HUS) in humans. In this study, [...] Read more.
The global emergence of hybrid diarrheagenic E. coli strains incorporating genetic markers from different pathotypes is a public health concern. Hybrids of Shiga toxin-producing and enterotoxigenic E. coli (STEC/ETEC) are associated with diarrhea and hemolytic uremic syndrome (HUS) in humans. In this study, we identified and characterized STEC/ETEC hybrid strains isolated from livestock feces (cattle and pigs) and animal food sources (beef, pork, and meat patties) in South Korea between 2016 and 2020. The strains were positive for genes from STEC and ETEC, such as stx (encodes Shiga toxins, Stxs) and est (encodes heat-stable enterotoxins, ST), respectively. The strains belong to diverse serogroups (O100, O168, O8, O155, O2, O141, O148, and O174) and sequence types (ST446, ST1021, ST21, ST74, ST785, ST670, ST1780, ST1782, ST10, and ST726). Genome-wide phylogenetic analysis revealed that these hybrids were closely related to certain ETEC and STEC strains, implying the potential acquisition of Stx-phage and/or ETEC virulence genes during the emergence of STEC/ETEC hybrids. Particularly, STEC/ETEC strains isolated from livestock feces and animal source foods mostly exhibited close relatedness with ETEC strains. These findings allow further exploration of the pathogenicity and virulence of STEC/ETEC hybrid strains and may serve as a data source for future comparative studies in evolutionary biology. Full article
(This article belongs to the Special Issue Escherichia coli and Food Safety 2.0)
Show Figures

Figure 1

14 pages, 1881 KB  
Article
Canola with Stacked Genes Shows Moderate Resistance and Resilience against a Field Population of Plasmodiophora brassicae (Clubroot) Pathotype X
by Nazmoon Naher Tonu, Rui Wen, Tao Song, Xiaowei Guo, Lee Anne Murphy, Bruce Dean Gossen, Fengqun Yu and Gary Peng
Plants 2023, 12(4), 726; https://doi.org/10.3390/plants12040726 - 6 Feb 2023
Cited by 5 | Viewed by 2416
Abstract
Genetic resistance is a cornerstone for managing clubroot (Plasmodiophora brassicae). However, when used repeatedly, a clubroot resistance (CR) gene can be broken rapidly. In this study, canola inbred/hybrid lines carrying one or two CR genes (Rcr1/CRaM and Crr1rutb [...] Read more.
Genetic resistance is a cornerstone for managing clubroot (Plasmodiophora brassicae). However, when used repeatedly, a clubroot resistance (CR) gene can be broken rapidly. In this study, canola inbred/hybrid lines carrying one or two CR genes (Rcr1/CRaM and Crr1rutb) were assessed against P. brassicae pathotype X by repeated exposure to the same inoculum source under a controlled environment. Lines carrying two CR genes, either Rcr1 + Crr1rutb or CRaM + Crr1rutb, showed partial resistance. Selected lines were inoculated with a field pathotype X population (L-G3) at 5 × 106 resting spores/g soil, and all clubs were returned to the soil they came from six weeks after inoculation. The planting was repeated for five cycles, with diseased roots being returned to the soil after each cycle. The soil inoculum was quantified using qPCR before each planting cycle. All lines with a single CR gene were consistently susceptible, maintaining high soil inoculum levels over time. The lines carrying two CR genes showed much lower clubroot severity, resulting in a 10-fold decline in soil inoculum. These results showed that the CR-gene stacking provided moderate resistance against P. brassicae pathotype X, which may also help reduce the pathogen inoculum buildup in soil. Full article
(This article belongs to the Collection Feature Papers in Plant Protection)
Show Figures

Figure 1

19 pages, 499 KB  
Article
Whole Genome Sequencing (WGS) Analysis of Virulence and AMR Genes in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Animal and Environmental Samples in Four Italian Swine Farms
by Miryam Bonvegna, Laura Tomassone, Henrik Christensen and John Elmerdahl Olsen
Antibiotics 2022, 11(12), 1774; https://doi.org/10.3390/antibiotics11121774 - 8 Dec 2022
Cited by 15 | Viewed by 4256
Abstract
Whole genome sequencing (WGS) is a powerful tool to analyze bacterial genomes rapidly, and can be useful to study and detect AMR genes. We carried out WGS on a group of Escherichia coli (n = 30), sampled from healthy animals and farm [...] Read more.
Whole genome sequencing (WGS) is a powerful tool to analyze bacterial genomes rapidly, and can be useful to study and detect AMR genes. We carried out WGS on a group of Escherichia coli (n = 30), sampled from healthy animals and farm environment in four pigsties in northern Italy. Two × 250bp paired end sequencing strategy on Illumina MiSeq™ was used. We performed in silico characterization of E. coli isolates through the web tools provided by the Center for Genomic Epidemiology (cge.cbs.dtu.dk/services/) to study AMR and virulence genes. Bacterial strains were further analyzed to detect phenotypic antimicrobial susceptibility against several antimicrobials. Data obtained from WGS were compared to phenotypic results. All 30 strains were MDR, and they were positive for the genes blaCTX-M and blaTEM as verified by PCR. We observed a good concordance between phenotypic and genomic results. Different AMR determinants were identified (e.g., qnrS, sul, tet). Potential pathogenicity of these strains was also assessed, and virulence genes were detected (e.g., etsC, gad, hlyF, iroN, iss), mostly related to extraintestinal E. coli pathotypes (UPEC/APEC). However, enterotoxin genes, such as astA, ltcA and stb were also identified, indicating a possible hybrid pathogenic nature. Various replicons associated to plasmids, previously recovered in pathogenic bacteria, were identified (e.g., IncN and IncR plasmid), supporting the hypothesis that our strains were pathogenic. Eventually, through WGS it was possible to confirm the phenotypic antibiotic resistance results and to appreciate the virulence side of our ESBL-producing E. coli. These findings highlight the need to monitor commensal E. coli sampled from healthy pigs considering a One Health perspective. Full article
Show Figures

Figure 1

15 pages, 774 KB  
Article
Virulence Diversity of Puccinia striiformis f. sp. Tritici in Common Wheat in Russian Regions in 2019–2021
by Elena Gultyaeva, Ekaterina Shaydayuk and Evsey Kosman
Agriculture 2022, 12(11), 1957; https://doi.org/10.3390/agriculture12111957 - 20 Nov 2022
Cited by 18 | Viewed by 2612
Abstract
Yellow (stripe) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a major disease of common wheat worldwide. Disease epidemics in Russia have been frequent and destructive, mostly in the North Caucasus. However, over the last 5 years, the significance [...] Read more.
Yellow (stripe) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a major disease of common wheat worldwide. Disease epidemics in Russia have been frequent and destructive, mostly in the North Caucasus. However, over the last 5 years, the significance of Pst has markedly increased in other Russian regions. Therefore, the Pst virulence diversity was investigated in Triticum aestivum in six geographically distant regions of the European (North Caucasus, North-West, Low Volga, Central Black Earth region, and Volga-Vyatka) and Asian (West Siberia) parts of Russia, with strongly different climates, environmental conditions, and growing wheat genotypes. Seventy-nine virulence pathotypes among 117 isolates were identified using the 12 Avocet Yr gene lines (Yr1, Yr5, Yr6, Yr7, Yr8, Yr9, Yr10, Yr15, Yr17, Yr24, Yr27, and YrSp) and eight supplemental wheat differentials (Heines VII, Vilmorin 23, Hybrid 46, Strubes Dickkopf, Carstens V, Suwon 92/Omar, Nord Desprez, and Heines Peko). Only four pathotypes occurred in two or more regions. High variability was detected within Pst populations from Dagestan, Central, North-West, and West Siberia that postulated to form an intrapopulation subdivision of each of them into several subgroups. Most regional virulence groups of pathotypes were closely related, except for several small subgroups of pathotypes from West Siberia, Dagestan, North-West, and Central European regions. All Pst isolates were avirulent in lines with Yr5, Yr10, Yr15, and Yr24 genes. Virulence to Yr17 was detected for several isolates of two pathotypes, one each from the North-West and Low Volga regions. Variation in virulence frequency was observed in other differential lines. Full article
(This article belongs to the Special Issue Genetic Diversity of Wheat Fungal Diseases)
Show Figures

Figure 1

Back to TopTop