Whole Genome Sequencing (WGS) Analysis of Virulence and AMR Genes in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Animal and Environmental Samples in Four Italian Swine Farms
Abstract
:1. Introduction
2. Results
2.1. ESBL-Producing E. coli Detection
2.2. Antimicrobial Susceptibility Testing (AST) on Animal Samples
2.3. Presence of AMR Genes
2.4. Virulence Gene Detection
2.5. Genetic Relationship between ESBL-Producing Isolates
2.6. Prediction of Plasmid Replicons
3. Discussion
4. Materials and Methods
4.1. Animal and Environmental Sampling
4.2. Bacterial Strains and Antimicrobial Susceptibility Testing
4.3. PCR Methods and Analysis of PCR Products
4.4. Whole Genome Sequencing and Analysis of Sequences
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leimbach, A.; Hacker, J.; Dobrindt, U. E. coli as an all-rounder: The thin line between commensalism and pathogenicity. In Between Pathogenicity and Commensalism; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 358, pp. 3–32. [Google Scholar] [CrossRef]
- Croxen, M.A.; Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 2010, 8, 26–38, Erratum in Nat. Rev. Microbiol. 2013, 11, 141. [Google Scholar] [CrossRef] [PubMed]
- Vila, J.; Sáez-López, E.; Johnson, J.R.; Römling, U.; Dobrindt, U.; Cantón, R.; Giske, C.G.; Naas, T.; Carattoli, A.; Martínez-Medina, M.; et al. Escherichia coli: An old friend with new tidings. FEMS Microbiol. Rev. 2016, 40, 437–463. [Google Scholar] [CrossRef] [Green Version]
- Desvaux, M.; Dalmasso, G.; Beyrouthy, R.; Barnich, N.; Delmas, J.; Bonnet, R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front. Microbiol. 2020, 11, 2065. [Google Scholar] [CrossRef] [PubMed]
- Bernreiter-Hofer, T.; Schwarz, L.; Müller, E.; Cabal-Rosel, A.; Korus, M.; Misic, D.; Frankenfeld, K.; Abraham, K.; Grünzweil, O.; Weiss, A.; et al. The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates. Microorganisms 2021, 9, 1676. [Google Scholar] [CrossRef] [PubMed]
- Lalhruaipuii, K.; Dutta, T.K.; Roychoudhury, P.; Chakraborty, S.; Subudhi, P.K.; Samanta, I.; Bandyopadhayay, S.; Singh, S.B. Multidrug-Resistant Extended-Spectrum β-Lactamase-Producing Escherichia coli Pathotypes in North Eastern Region of India: Backyard Small Ruminants-Human-Water Interface. Microb. Drug Resist. 2021, 27, 1664–1671. [Google Scholar] [CrossRef]
- Massella, E.; Reid, C.J.; Cummins, M.L.; Anantanawat, K.; Zingali, T.; Serraino, A.; Piva, S.; Giacomett, I.F.; Djordjevic, S.P. Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Antibiotics 2020, 9, 782. [Google Scholar] [CrossRef]
- O’Neill, J. Review on Antimicrobial Resistance. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. HM Government, Welcome Trust Eds. 2014, p. 20. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 2 December 2022).
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Merker, M.; Tueffers, L.; Vallier, M.; Groth, E.E.; Sonnenkalb, L.; Unterweger, D.; Baines, J.F.; Niemann, S.; Schulenburg, H. Evolutionary Approaches to Combat Antibiotic Resistance: Opportunities and Challenges for Precision Medicine. Front. Immunol. 2020, 11, 1938. [Google Scholar] [CrossRef]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef]
- European Medicines Agency. European Surveillance of Veterinary Antimicrobial Consumption, 2021. ‘Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2019 and 2020’. (EMA/58183/2021). Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2019-2020-trends-2010-2020-eleventh_en.pdf (accessed on 28 March 2022).
- Stefani, S.; Giovanelli, I.; Anacarso, I.; Condò, C.; Messi, P.; de Niederhäusern, S.; Bondi, M.; Iseppi, R.; Sabia, C. Prevalence and characterization of extended-spectrum β-lactamase-producing Enterobacteriaceae in food-producing animals in Northern Italy. New Microbiol. 2014, 37, 551–555. [Google Scholar]
- Alba, P.; Leekitcharoenphon, P.; Franco, A.; Feltrin, F.; Ianzano, A.; Caprioli, A.; Stravino, F.; Hendriksen, R.S.; Bortolaia, V.; Battisti, A. Molecular Epidemiology of mcr-Encoded Colistin Resistance in Enterobacteriaceae From Food-Producing Animals in Italy Revealed Through the EU Harmonized Antimicrobial Resistance Monitoring. Front. Microbiol. 2018, 9, 1217. [Google Scholar] [CrossRef]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021, 19, 6490. [Google Scholar] [CrossRef]
- Kraemer, J.C.; Pires, J.; Kueffer, M.; Semaani, E.; Endimiani, A.; Hilty, M.; Oppliger, A. Prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae and Methicillin-Resistant Staphylococcus aureus in pig farms in Switzerland. Sci. Total Environ. 2017, 603–604, 401–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentin, L.; Sharp, H.; Hille, K.; Seibt, U.; Fischer, J.; Pfeifer, Y.; Michael, G.B.; Nickel, S.; Schmiedel, J.; Falgenhauer, L.; et al. Subgrouping of ESBL-producing Escherichia coli from animal and human sources: An approach to quantify the distribution of ESBL types between different reservoirs. Int. J. Med. Microbiol. 2014, 304, 805–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dohmen, W.; Dorado-García, A.; Bonten, M.J.M.; Wagenaar, J.A.; Mevius, D.; Heederik, D.J.J. Risk factors for ESBL-producing Escherichia coli on pig farms: A longitudinal study in the context of reduced use of antimicrobials. PLoS ONE 2017, 12, e0174094. [Google Scholar] [CrossRef] [Green Version]
- Duggett, N.; AbuOun, M.; Randall, L.; Horton, R.; Lemma, F.; Rogers, J.; Crook, D.; Teale, C.; Anjum, M.F. The importance of using whole genome sequencing and extended spectrum beta-lactamase selective media when monitoring antimicrobial resistance. Sci. Rep. 2020, 10, 19880. [Google Scholar] [CrossRef] [PubMed]
- Report of the 21st WHO Expert Committee on the Selection and Use of Essential Medicines. Available online: https://www.who.int/medicines/publications/essentialmedicines/EML_2017_ExecutiveSummary.pdf (accessed on 31 March 2022).
- Jacoby, G.A.; Strahilevitz, J.; Hooper, D.C. Plasmid-mediated quinolone resistance. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.T.; Shu, H.Y.; Li, L.H.; Liao, T.L.; Wu, K.M.; Shiau, Y.R.; Yan, J.J.; Su, I.J.; Tsai, S.F.; Lauderdale, T.L. Complete nucleotide sequence of pK245, a 98-kilobase plasmid conferring quinolone resistance and extended-spectrum-beta-lactamase activity in a clinical Klebsiella pneumoniae isolate. Antimicrob. Agents Chemother. 2006, 50, 3861–3866. [Google Scholar] [CrossRef] [Green Version]
- Prendergast, D.M.; O’Doherty, Á.; Burgess, C.M.; Howe, N.; McMahon, F.; Murphy, D.; Leonard, F.; Morris, D.; Harrington, C.; Carty, A.; et al. Critically important antimicrobial resistant Enterobacteriaceae in Irish farm effluent and their removal in integrated constructed wetlands. Sci. Total Environ. 2022, 806 Pt 3, 151269. [Google Scholar] [CrossRef]
- Hayer, S.S.; Casanova-Higes, A.; Paladino, E.; Elnekave, E.; Nault, A.; Johnson, T.; Bender, J.; Perez, A.; Alvarez, J. Global Distribution of Extended Spectrum Cephalosporin and Carbapenem Resistance and Associated Resistance Markers in Escherichia coli of Swine Origin—A Systematic Review and Meta-Analysis. Front. Microbiol. 2022, 13, 853810. [Google Scholar] [CrossRef]
- Ceccarelli, D.; Hesp, A.; van der Goot, J.; Joosten, P.; Sarrazin, S.; Wagenaar, J.A.; Dewulf, J.; Mevius, D.J.; Effort Consortium, O. Antimicrobial resistance prevalence in commensal Escherichia coli from broilers, fattening turkeys, fattening pigs and veal calves in European countries and association with antimicrobial usage at country level. J. Med. Microbiol. 2020, 69, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Burow, E.; Rostalski, A.; Harlizius, J.; Gangl, A.; Simoneit, C.; Grobbel, M.; Kollas, C.; Tenhagen, B.A.; Käsbohrer, A. Antibiotic resistance in Escherichia coli from pigs from birth to slaughter and its association with antibiotic treatment. Prev. Vet. Med. 2019, 165, 52–62. [Google Scholar] [CrossRef]
- Johnson, J.R.; Murray, A.C.; Gajewski, A.; Sullivan, M.; Snippes, P.; Kuskowski, M.A.; Smith, K.E. Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob. Agents Chemother. 2003, 47, 2161–2168. [Google Scholar] [CrossRef] [Green Version]
- Spurbeck, R.R.; Dinh, P.C., Jr.; Walk, S.T.; Stapleton, A.E.; Hooton, T.M.; Nolan, L.K.; Kim, K.S.; Johnson, J.R.; Mobley, H.L. Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary tract. Infect. Immun. 2012, 80, 4115–4122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakin, A.; Noelting, C.; Schubert, S.; Heesemann, J. Common and specific characteristics of the high-pathogenicity island of Yersinia enterocolitica. Infect. Immun. 1999, 67, 5265–5274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frömmel, U.; Lehmann, W.; Rödiger, S.; Böhm, A.; Nitschke, J.; Weinreich, J.; Groß, J.; Roggenbuck, D.; Zinke, O.; Ansorge, H.; et al. Adhesion of human and animal Escherichia coli strains in association with their virulence-associated genes and phylogenetic origins. Appl. Environ. Microbiol. 2013, 79, 5814–5829. [Google Scholar] [CrossRef] [Green Version]
- Smajs, D.; Micenková, L.; Smarda, J.; Vrba, M.; Sevčíková, A.; Vališová, Z.; Woznicová, V. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: Colicin E1 is a potential virulence factor. BMC Microbiol. 2010, 10, 288. [Google Scholar] [CrossRef] [Green Version]
- Tu, J.; Xue, T.; Qi, K.; Shao, Y.; Huang, B.; Wang, X.; Zhou, X. The irp2 and fyuA genes in High Pathogenicity Islands are involved in the pathogenesis of infections caused by avian pathogenic Escherichia coli (APEC). Pol. J. Vet. Sci. 2016, 19, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Malberg Tetzschner, A.M.; Johnson, J.R.; Johnston, B.D.; Lund, O.; Scheutz, F. In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2020, 58, e01269-20. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Yassin, A.K.; Zhang, J.; Gong, J.; Qi, K.; Ganta, R.R.; Zhang, Y.; Yang, Y.; Han, X.; et al. Genetic characterization of extraintestinal Escherichia coli isolates from chicken, cow and swine. AMB Express 2018, 8, 117. [Google Scholar] [CrossRef]
- Ewers, C.; de Jong, A.; Prenger-Berninghoff, E.; El Garch, F.; Leidner, U.; Tiwari, S.K.; Semmler, T. Genomic Diversity and Virulence Potential of ESBLand AmpC-β-Lactamase-Producing Escherichia coli Strains From Healthy Food Animals Across Europe. Front. Microbiol. 2021, 12, 626774. [Google Scholar] [CrossRef]
- Johnson, T.J.; Wannemuehler, Y.; Doetkott, C.; Johnson, S.J.; Rosenberger, S.C.; Nolan, L.K. Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. J. Clin. Microbiol. 2008, 46, 3987–3996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, A.; Nagy, B.; Kugler, R.; Szmolka, A. Pathogenic potential and virulence genotypes of intestinal and faecal isolates of porcine post-weaning enteropathogenic Escherichia coli. Res. Vet. Sci. 2017, 115, 102–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galarce, N.; Sánchez, F.; Escobar, B.; Lapierre, L.; Cornejo, J.; Alegría-Morán, R.; Neira, V.; Martínez, V.; Johnson, T.; Fuentes-Castillo, D.; et al. Genomic Epidemiology of Shiga Toxin-Producing Escherichia coli Isolated from the Livestock-Food-Human Interface in South America. Animals 2021, 11, 1845. [Google Scholar] [CrossRef] [PubMed]
- Maluta, R.P.; Leite, J.L.; Rojas, T.; Scaletsky, I.; Guastalli, E.; Ramos, M.C.; Dias da Silveira, W. Variants of astA gene among extra-intestinal Escherichia coli of human and avian origin. FEMS Microbiol. Lett. 2017, 364, fnw285. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yuan, C.; Meng, X.; Du, Y.; Gao, R.; Tang, J.; Shi, D. Frequency of virulence factors in Escherichia coli isolated from suckling pigs with diarrhoea in China. Vet. J. 2014, 199, 286–289. [Google Scholar] [CrossRef]
- Mohlatlole, R.P.; Madoroba, E.; Muchadeyi, F.C.; Chimonyo, M.; Kanengoni, A.T.; Dzomba, E.F. Virulence profiles of enterotoxigenic, shiga toxin and enteroaggregative Escherichia coli in South African pigs. Trop. Anim. Health Prod. 2013, 45, 1399–1405. [Google Scholar] [CrossRef]
- Kashima, K.; Sato, M.; Osaka, Y.; Sakakida, N.; Kando, S.; Ohtsuka, K.; Doi, R.; Chiba, Y.; Takase, S.; Fujiwara, A.; et al. An outbreak of food poisoning due to Escherichia coli serotype O7, H4 carrying astA for enteroaggregative E. coli heat-stable enterotoxin1 (EAST1). Epidemiol. Infect. 2021, 149, e244. [Google Scholar] [CrossRef]
- García, V.; Gambino, M.; Pedersen, K.; Haugegaard, S.; Olsen, J.E.; Herrero-Fresno, A. F4- and F18-Positive Enterotoxigenic Escherichia coli Isolates from Diarrhea of Postweaning Pigs: Genomic Characterization. Appl. Environ. Microbiol. 2020, 86, e01913-20. [Google Scholar] [CrossRef]
- Müller, D.; Greune, L.; Heusipp, G.; Karch, H.; Fruth, A.; Tschäpe, H.; Schmidt, M.A. Identification of unconventional intestinal pathogenic Escherichia coli isolates expressing intermediate virulence factor profiles by using a novel single-step multiplex PCR. Appl. Environ. Microbiol. 2007, 73, 3380–3390. [Google Scholar] [CrossRef]
- Vu-Khac, H.; Holoda, E.; Pilipcinec, E.; Blanco, M.; Blanco, J.E.; Dahbi, G.; Mora, A.; López, C.; González, E.A.; Blanco, J. Serotypes, virulence genes, intimin types and PFGE profiles of Escherichia coli isolated from piglets with diarrhoea in Slovakia. Vet. J. 2007, 174, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.; Blanco, M.; Garabal, J.I.; González, E.A. Enterotoxins, colonization factors and serotypes of enterotoxigenic Escherichia coli from humans and animals. Microbiologia 1991, 7, 57–73. [Google Scholar]
- Hall, R.M.; Vockler, C. The region of the IncN plasmid R46 coding for resistance to beta-lactam antibiotics, streptomycin/spectinomycin and sulphonamides is closely related to antibiotic resistance segments found in IncW plasmids and in Tn21-like transposons. Nucleic. Acids Res. 1987, 15, 7491–7501. [Google Scholar] [CrossRef] [PubMed]
- Dolejska, M.; Villa, L.; Hasman, H.; Hansen, L.; Carattoli, A. Characterization of IncN plasmids carrying bla CTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans. J. Antimicrob. Chemother. 2013, 68, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Szmolka, A.; Fortini, D.; Villa, L.; Carattoli, A.; Anjum, M.F.; Nagy, B. First report on IncN plasmid-mediated quinolone resistance gene qnrS1 in porcine Escherichia coli in Europe. Microb. Drug Resist. 2011, 17, 567–573. [Google Scholar] [CrossRef]
- García-Fernández, A.; Villa, L.; Carta, C.; Venditti, C.; Giordano, A.; Venditti, M.; Mancini, C.; Carattoli, A. Klebsiella pneumoniae ST258 producing KPC-3 identified in italy carries novel plasmids and OmpK36/OmpK35 porin variants. Antimicrob. Agents Chemother. 2012, 56, 2143–2145. [Google Scholar] [CrossRef] [Green Version]
- Norman, A.; Hansen, L.H.; She, Q.; Sørensen, S.J. Nucleotide sequence of pOLA52, a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid 2008, 60, 59–74. [Google Scholar] [CrossRef]
- Zhang, W.; Robertson, D.C.; Zhang, C.; Bai, W.; Zhao, M.; Francis, D.H. Escherichia coli constructs expressing human or porcine enterotoxins induce identical diarrheal diseases in a piglet infection model. Appl. Environ. Microbiol. 2008, 74, 5832–5837. [Google Scholar] [CrossRef] [Green Version]
- Hasman, H.; Agersø, Y.; Cavaco, L.; Svendsen, C.A.; San Jose, M.; Fisher, J.; Schmoger, S.; Jahn, S.; Guerra, B.; Peran, R. Validation of methods for enrichment of ESBL and AmpC producing E. coli in meat and cecal samples: P0995. In Proceedings of the 25th European Congress of Clinical Microbiology and Infectious Diseases, Copenhagen, Denmark, 25–28 April 2015. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 4th ed.; CLSI supplement VET08; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 11.0. 2021. Available online: http://www.eucast.org (accessed on 15 July 2021).
- Bonvegna, M.; Grego, E.; Sona, B.; Stella, M.C.; Nebbia, P.; Mannelli, A.; Tomassone, L. Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy. Antibiotics 2021, 10, 676. [Google Scholar] [CrossRef]
- Gryp, T.; Glorieux, G.; Joossens, M.; Vaneechoutte, M. Comparison of five assays for DNA extraction from bacterial cells in human faecal samples. J. Appl. Microbiol. 2020, 129, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Hasman, H.; Mevius, D.; Veldman, K. beta-Lactamases among extended-spectrum beta-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J. Antimicrob. Chemother. 2005, 56, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.F.; Ni, Y.X.; Jiang, Y.Q. Outbreak of infection caused by Enterobacter cloacae producing the novel VEB-3 beta-lactamase in China. J. Clin. Microbiol. 2005, 43, 826–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colman, R.E.; Mace, A.; Seifert, M.; Hetzel, J.; Mshaiel, H.; Suresh, A.; Lemmer, D.; Engelthaler, D.M.; Catanzaro, D.G.; Young, A.G.; et al. Whole-genome and targeted sequencing of drug-resistant Mycobacterium tuberculosis on the iSeq100 and MiSeq: A performance, ease-of-use, and cost evaluation. PLoS Med. 2019, 16, e1002794, Erratum in PLoS Med. 2019, 16, e1002823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Center for Genomic Epidemiology. Available online: https://cge.cbs.dtu.dk/services/ (accessed on 25 November 2021).
- Francisco, A.P.; Vaz, C.; Monteiro, P.T.; Melo-Cristino, J.; Ramirez, M.; Carriço, J.A. PHYLOViZ: Phylogenetic inference and data visualization for sequence based typing methods. BMC BioInform. 2012, 13, 87. [Google Scholar] [CrossRef]
Farm ID | Animal | Environment |
---|---|---|
n positive samples/n tested (%; 95% CI) | ||
G | 12/30 (40%; 22.5, 57.5) | 2/6 (33.3%; 0, 71) |
P | 11/30 (36.7%; 19.4, 53.9) | 0/6 (0%; 0, 39.3) |
S | 0/10 (0%; 0, 25.9) | 1/2 (50%; 0, 100) |
T | 5/30 (16.7%; 8.2, 38.5) | 0/6 (0%; 0, 39.3) |
Total | 28/100 (28%; 19.2, 36.8) | 3/20 (15%; 0, 30.6) |
Isolate | MLST Type | O-Serotype | CH-Type | β-Lactamase (bla) Genes | AMR Genes | AMR Phenotype | Plasmid Replicon | Virulence Genes |
---|---|---|---|---|---|---|---|---|
G1PAE2 | ST101 | O153 | 41-86 | CTX-M-1 TEM-1C | aadA1, aadA2b catA1, cmlA1, mdf(A), sitABCD, sul3, tet(A) | DOX, FLO, TET, SXT | IncFlB (AP001918), IncFIA, IncFIC (FII), Incl1-l (Alpha), IncX1 | cma, cvaC etsC hlyF iroN iss iucC iutA lpfA mchF ompT sitA terC traT |
G1PAE3 | ST101 | O153 | 41-86 | CTX-M-1, TEM-1C | aadA1, aadA2b catA1, cmlA1, mdf(A), sitABCD, sul3, tet(A) | DOX, FLO, TET, SXT | IncFlB (AP00118), IncFIA, IncFIC (FII), Incl1-l (Alpha), IncX1, Col (MG828) | cvaC etsC hlyF iroN iss iucC iutA lpfA mchF ompT sitA terC, traT |
G1PAE4 | ST101 | O153 | 41-86 | CTX-M-1, TEM-1C | aadA1, catA1, cmlA1, aadA2b, mdf(A), sitABCD, sul3, tet(A) | DOX, FLO, TET, SXT | IncFlB (AP001918), IncFIA, IncFIC (FII), Incl1-l (Alpha), IncX1, Col (MG828) | cma cvaC etsC hlyF iroN iss iucC iutA lpfA mchF ompT sitA terC traT |
G1PAE7 | ST11006 | O17 | 3-143 | CTX-M-14, TEM-1B | aac(6′)-lb-cr, aac(6′)-lb3, cmlA1, erm(B), mdf(A), mph(A), tet(B) | DOX, ENR, FLO, GEN, TET, SXT | IncB/O/K/Z, IncFlB (AP001918), IncFII (pHN7A8) | asta chuA eilA kpsE kpsMII stb terC traT |
G1PAE8 | ST1079 | O6 | 19-32 | CTX-M-1, TEM-1B | aacA1, aadA2b, aph(3′′)-lb, aph(6)-lb, catA1, cmlA1, mdf(A),sitABCD,sul3, sul2, tet(A) | DOX, ENR, FLO, TET, SXT | IncFlB (AP001918), IncFIC(FII), Incl1-l (Alpha), IncY | asta cea, cvaC etsC hlyF, hra iroN iss iucC iutA lpfA mchF ompT sitA terC traT |
G1PAE9 | ST23 | O78 | 4-402 | CTX-M-1 | aadA1, catA1, cmlA1, aadA2b, mdf(A), sitABCD, sul3 | ENR, FLO, SXT | IncFlB (AP001918), IncFIC(FII), Incl1-l (Alpha) | fyuA, hlyF, irp2 iss iucC iutA lpfA ompT sitA terC |
G1PHE1 | ST10 | unknown | 11-54 | CTX-M-15 | mdf(A), qnrS1, tet(B) | na | Col (MG828), IncFIB (pHCM2), Incl1-l (Alpha) | cea gad terC |
G1PHE2 | ST23 | O8 | 4-35 | CTX-M-1 | aadA1, dfrA12 catA1, cmlA1, mdf(A), sitABCD, sul3 | na | Col440ll, IncFlB (AP001918), IncFIC(FII), Incl1-l (Alpha), IncY | cea cia cvaC etsC hlyF iroN iss iucC iutA lpfA mchF ompT sitA terC traT |
G1SAE2 | ST877 | unknown | 175-25 | CTX-M-1 | aadA1, catA1, cmlA1, dfrA12, mdf(A), sul3, sul1, tet(B) | DOX, ENR, FLO, TET, SXT | IncR, IncFII, Col (pHAD28) | cea, hra ompT terC, traT, tsh |
G1SAE4 | ST877 | O45 | 175-25 | CTX-M-1 | aph(3′′)-lb, aph(6′)-ld, cmlA1, aadA1, aadA2b, mdf(A), sul3, tet(A) | DOX, ENR, FLO, TET, SXT | IncR, IncFII, Col (pHAD28), IncFIB (pHCM2) | lpfA ompT terC, traT, tsh |
G1SAE8 | ST877 | O45 | 175-25 | CTX-M-1 | aph(3′’)-lb, aph(6′)-ld, cmlA1, aadA1, aadA2b, mdf(A), sul3, tet(A) | DOX, ENR, FLO, TET | IncR, IncFII, Col (pHAD28), IncFIB (pHCM2) | lpfA ompT terC, traT, tsh |
G1SAE7 | ST877 | O45 | 175-25 | CTX-M-1 | aph(3′’)-lb, aph(6′)-ld, cmlA1, aadA1, aadA2b, mdf(A), sul3, tet(A) | DOX, ENR, FLO, TET, SXT | IncR, Col (pHAD28), IncFIB (pHCM2) | lpfA ompT terC |
G1SAE10 | ST877 | O45 | 175-25 | CTX-M-1 | aph(3′’)-lb, aph(6′)-ld, cmlA1, aadA1, aadA2b, mdf(A), sul3, tet(A) | DOX, ENR, FLO, TET, SXT | IncR, IncFII, Col (pHAD28), IncFIB (pHCM2) | lpfA ompT terC, traT, tsh |
P1FAE1 | ST101 | O88 | 41-86 | CTX-M-14, TEM-1B | aac(6′)-Ib3, aac(6′)-Ib-cr, aadA1, cmlA1, ermB, dfrA1, mdf(A), mph(A), sitABCD, sul3, tet(A) | DOX, ENR, FLO, TET, SXT | IncB/O/K/Z, IncFlB (AP001918), IncFIC(FII), Incl1-l (Alpha) | cvaC etsC hlyF iroN iss iucC iutA lpfA mchF ompT sitA terC, traT tsh |
P1FAE3 | ST117 | O9 | 45-97 | CTX-M-14 | aac(6′)-ib3, aac(6′)-Ib-cr aph(3′’)-lb, aph(6)-ld, cmlA1, ermB, dfrA1, mdf(A), mph(A), sitABCD, sul2, tet(B) | DOX, FLO, TET, SXT | IncB/O/K/Z, IncFlB (AP001918) | chuA, cia, cvaC etsC fyuA hlyF, ireA iroN, irp2 iss iucC iutA, katP, lpfA mchF ompT papC, sitA terC, traT, vat |
P1FAE7 | ST446 | unknown | 7-41 | CTX-M-1, TEM-1A | aac(3)-IV, aadA1, aadA2b, aadA5, aph(3′)-la, aph(4)-la, catA1, cmlA1, dfrA12, dfrA17, mdf(A), mph(B), sul3, tet(B) | DOX, ENR, FLO, TET, | IncB/O/K/Z, IncFlB (AP001918), Incl1-l(Alpha) | terC |
P1PAE2 | ST23 | O8 | 4-35 | CTX-M-14, TEM-1B | aac(6′)-ib-cr, aac(6′)-Ib3, aadA1, aadA5, cmlA1, dfrA17, ermB, mdf(A), mph(A), qnrS1, sitABCD, sul2, tet(A) | DOX, ENR, FLO, TET, SXT | IncB/O/K/Z, IncFlB (AP001918), Incl1-l (Alpha), IncX1, IncY, Col156, Col (MG828) | cea, celb cia cib cvaC etsC hlyF iroN iss iucC iutA lpfA mchF ompT sitA terC traT |
P1PAE3 | ST3933 | O7 | 506-544 | CTX-M-14, TEM-1B | aac(6′)-Ib-cr, aac(6′)-Ib3, cmlA1, ermB, mdf(A), mph(A), qnrS1, sitABCD, tet(M) | DOX, ENR, FLO, TET, SXT | IncB/O/K/Z, IncFlB (AP001918), IncFIA, IncFIC(FII), IncX1 | astA chuA eilA kpsE kpsMII_K5 ltcA sitA stB terC traT |
P1PAE4 | ST23 | O8 | 4-35 | CTX-M-14, TEM-1B | aac(6′)-Ib-cr, aac(6′)-Ib3, aadA1, aadA5, cmlA1, ermB1, dfrA17, mdf(A), mph(A), qnrS1, sitABCD, sul2, tet(A) | DOX, ENR, FLO, TET, SXT | IncB/O/K/Z, IncFlB (AP001918), Incl1-l (Alpha), IncX1, IncY, Col156, Col (MG828) | cea celb cia cib cvaC etsC gad hlyF iroN iss iucC iutA lpfA mchF ompT sitA terC traT |
P1PAE6 | ST23 | O8 | 4-35 | CTX-M-14, TEM-1B | aac(6′)-Ib-cr, Aac(6′)-Ib3, aadA1, aadA5, cmlA1, ermB, dfrA17, mdf(A), mph(A), qnrS1, sitABCD, sul2 | DOX, ENR, FLO, TET, SXT | IncB/O/K/Z, IncFlB (AP001918), Incl1-l (Alpha), IncX1, IncY, Col156, Col (MG828) | cea celb cia cib cvaC etsC hlyF iroN iss iucC iutA lpfA mchF ompT sitA terC traT |
P1PAE7 | ST23 | O8 | 4-35 | CTX-M-14, TEM-1B | aac(6′)-Ib3, Aac(6′)-Ib-cr aadA1, aadA5, cmlA1, ermB, dfrA17, mdf(A), mph(A),qnrS1,sitABCD, sul2, tet(A) | DOX, ENR, FLO, TET, SXT | IncB/O/K/Z, IncFlB (AP001918), Incl1-l (Alpha), IncX1, IncY, Col156 | cea celb cia cvaC etsC, gad hlyF iroN iss iucC iutA lpfA mchF ompT sitA terC traT |
P1PAE8 | ST23 | O8 | 4-35 | CTX-M-14, TEM-1B | aac(6′)-Ib3, aac(6′)-Ib-cr aadA1, aadA5, cmlA1, ermB, dfrA17, mdf(A), mph(A), qnrS1, sitABCD, sul2, tet(A) | DOX, ENR, FLO, TET, SXT | IncB/O/K/Z, IncFlB (AP001918), Incl1-l (Alpha), IncX1, IncY, Col156, Col (MG828) | cea celb cia cib cvaC etsC hlyF iroN iss iucC iutA lpfA mchF ompT ompT sitA terC traT |
P1PAE9 | ST23 | O8 | 4-35 | CTX-M-14, TEM-1B | aac(6′)-Ib3, aac(6′)-Ib-cr, aadA1, aadA5, cmlA1, ermB, dfrA17, mdf(A), mph(A), qnrS1, sitABCD, sul2, tet(A) | DOX, ENR, FLO, TET, SXT | IncB/O/K/Z, IncFlB (AP001918), Incl1-l (Alpha), IncX, Col156, Col (MG828) | cea celb cia cib cvaC etsC hlyF iroN iss iucC iutA lpfA mchF ompT sitA terC traT |
P1PAE10 | ST23 | O8 | 4-35 | CTX-M-14, TEM-1B | aac(6′)-Ib3, aac(6′)-Ib-cr aadA1, aadA5, cmlA1, ermB, dfrA17, mdf(A), mph(A), qnrS1, sitABCD, sul2, tet(A) | DOX, ENR, FLO, TET, SXT | IncB/O/K/Z, IncFlB (AP001918), Incl1-l (Alpha), IncX1, Col156, Col (MG828) | cea celb cia cvaC etsC hlyF iroN iss iucC iutA lpfA mchF ompT sitA terC, traT |
S1FHE2 | ST1380 | O17 | 35-47 | CTX-M-14 | aadA2 cmlA1, dfrA12, dfrA36, floR, mdf(A), qnrS1, sul1, sul2 | na | Col8282, IncQ1, IncFlB (AP001918), IncFlC (Fll), IncFll (pCoo), IncY | astA chuA eilA hra kpsE kpsMII lpfA ltcA stb terC traT |
T1SAE6 | ST4761 | O107 | 252-27 | CTX-M-1 | aadA1, aadA2 cmlA1, dfrA12, mdf(A), mph(A), sul3, tet(A) | DOX, FLO, TET, SXT | IncN, IncX1 | kpsE kpsMII terC |
T1SAE7 | ST48 | O61 | 11-0 | CTX-M-1, TEM-1B | aadA1, aadA2 cmlA1, dfrA12, mdf(A), mph(A), sul3, tet(A) | DOX, ENR, FLO, TET, SXT | IncN, Col (MG28, IncFIA (Hl1), Inc FIB (K), IncX1 | astA gadA hra iss neuC papC terC |
T1SAE8 | ST48 | O8 | 11-54 | SHV-12, TEM-1A | mdf(A), mph(B), qnrS1, tet(B) | DOX, ENR, TET, | IncX3, IncY, Col440l | astA gad terC |
T1SAE9 | ST410 | O25 | 4-24 | CTX-M-1 | aadA1, aadA2 cmlA1, dfrA12, mdf(A), mph(A), sul3, tet(A) | DOX, ENR, FLO, TET, SXT | IncN, IncX1 | lpfA terC |
T1SAE10 | ST4767 * | O107 | 252-27 | CTX-M-1 | aadA1, aadA2 cmlA1, dfrA12, mdf(A), mph(A), sul3, tet(A) | DOX, ENR, FLO, TET, SXT | IncN, IncX1 | gad kpsE kpsMII terC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonvegna, M.; Tomassone, L.; Christensen, H.; Olsen, J.E. Whole Genome Sequencing (WGS) Analysis of Virulence and AMR Genes in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Animal and Environmental Samples in Four Italian Swine Farms. Antibiotics 2022, 11, 1774. https://doi.org/10.3390/antibiotics11121774
Bonvegna M, Tomassone L, Christensen H, Olsen JE. Whole Genome Sequencing (WGS) Analysis of Virulence and AMR Genes in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Animal and Environmental Samples in Four Italian Swine Farms. Antibiotics. 2022; 11(12):1774. https://doi.org/10.3390/antibiotics11121774
Chicago/Turabian StyleBonvegna, Miryam, Laura Tomassone, Henrik Christensen, and John Elmerdahl Olsen. 2022. "Whole Genome Sequencing (WGS) Analysis of Virulence and AMR Genes in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Animal and Environmental Samples in Four Italian Swine Farms" Antibiotics 11, no. 12: 1774. https://doi.org/10.3390/antibiotics11121774
APA StyleBonvegna, M., Tomassone, L., Christensen, H., & Olsen, J. E. (2022). Whole Genome Sequencing (WGS) Analysis of Virulence and AMR Genes in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Animal and Environmental Samples in Four Italian Swine Farms. Antibiotics, 11(12), 1774. https://doi.org/10.3390/antibiotics11121774