Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hybrid islanding detection method (IDM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1577 KB  
Article
Multivariable Algorithm Using Signal-Processing Techniques to Identify Islanding Events in Utility Grid with Renewable Energy Penetration
by Ming Li, Anqing Chen, Peixiong Liu, Wenbo Ren and Chenghao Zheng
Energies 2024, 17(4), 877; https://doi.org/10.3390/en17040877 - 14 Feb 2024
Cited by 2 | Viewed by 1431
Abstract
This paper designs a multi-variable hybrid islanding-detection method (HIDM) using signal-processing techniques. The signals of current captured on a test system where the renewable energy (RE) penetration level is between 50% and 100% are processed by the application of the Stockwell transform (ST) [...] Read more.
This paper designs a multi-variable hybrid islanding-detection method (HIDM) using signal-processing techniques. The signals of current captured on a test system where the renewable energy (RE) penetration level is between 50% and 100% are processed by the application of the Stockwell transform (ST) to compute the Stockwell islanding-detection factor (SIDF) and the co-variance islanding-detection factor (CIDF). The signals of current are processed by the application of the Hilbert transform (HT), and the Hilbert islanding-detection factor (HIDF) is computed. The signals of current are also processed by the application of the Alienation Coefficient (ALC), and the Alienation Islanding Detection Factor (AIDF) is computed. A hybrid islanding-detection indicator (HIDI) is derived by multiplying the SIDF, CIDF, AIDF, and an islanding weight factor (IWF) element by element. Two thresholds, designated as the hybrid islanding-detection indicator threshold (HIDIT) and the hybrid islanding-detection indicator fault threshold (HIDIFT), are selected to detect events of islanding and also to discriminate such events from fault events and operational events. The HIDM is effectively tested using an IEEE-13 bus power network, where solar generation plants (SGPs) and wind generation plants (WGPs) are integrated. The HIDM effectively identified and discriminated against events such as islanding, faults, and operational. The HIDM is also effective at identifying islanding events on a real-time distribution feeder. The HIDM is also effective at detecting islanding events in the scenario of a 20 dB signal-to-noise ratio (SNR). It is established that the HIDM has a small non-detection zone (NDZ). The effectiveness of the HIDM is better relative to the islanding-detection method (IDM) supported by the discrete wavelet transform (DWT), an IDM using a hybridization of the slantlet transform, and the Ridgelet probabilistic neural network (RPNN). An IDM using wavelet transform multi-resolution (WT-MRA)-based image data and an IDM based on the use of a deep neural network (DNN) were used. The study was performed using the MATLAB software (2017a) and validated in real-time using the data collected from a practical distribution power system network. Full article
Show Figures

Figure 1

27 pages, 42317 KB  
Article
A Novel Approach for Secure Hybrid Islanding Detection Considering the Dynamic Behavior of Power and Load in Electrical Distribution Networks
by Umme Kulsum Jhuma, Shameem Ahmad and Tofael Ahmed
Sustainability 2022, 14(19), 12821; https://doi.org/10.3390/su141912821 - 8 Oct 2022
Cited by 10 | Viewed by 2349
Abstract
In the arena of modern electrical power distribution systems, distributed generators (DGs) are emerging as a manifestation of electric power personalization. Even though DGs have various advantages, unintentional islanding phenomena caused by DGs during abnormal grid operations can damage equipment connected to the [...] Read more.
In the arena of modern electrical power distribution systems, distributed generators (DGs) are emerging as a manifestation of electric power personalization. Even though DGs have various advantages, unintentional islanding phenomena caused by DGs during abnormal grid operations can damage equipment connected to the grid. Therefore, islanding detection mechanisms are essential for DGs in grid-connected mode to disconnect the DG from the grid in case of grid abnormalities by obeying to specific grid codes. In this regard, a novel approach to develop a secure hybrid islanding detection method (IDM) is presented in this paper. The proposed hybrid IDM is developed by combining two passive IDMs known as rate of change of active power and rate of change of reactive power with an active IDM called load connecting strategy. An 11 kV Malaysian distribution system integrated with three types of DGs, namely synchronous generator, photovoltaic, and biomass, has been chosen as a testbed for the verification of the proposed hybrid IDM. Seven different case studies have been conducted in the PSCAD/EMTDC platform to validate the performance of the proposed IDM for islanding and non-islanding events. The simulation results confirm that the proposed IDM can detect islanding within 0.09 s, which is within 2 s complying with IEEE and IEC standards. Further, a comparative study based on the detection time and non-detection zone has been carried out, which has confirmed that the proposed IDM demonstrates better performance compared to the previously developed hybrid IDMs. Full article
Show Figures

Figure 1

15 pages, 6115 KB  
Article
Hybrid Islanding Detection Method of Photovoltaic-Based Microgrid Using Reference Current Disturbance
by Reza Bakhshi-Jafarabadi and Marjan Popov
Energies 2021, 14(5), 1390; https://doi.org/10.3390/en14051390 - 3 Mar 2021
Cited by 14 | Viewed by 3252
Abstract
This paper proposes a new hybrid islanding detection method for grid-connected photovoltaic system (GCPVS)-based microgrid. In the presented technique, the suspicious islanding event is initially recognized whilst the absolute deviation of the point of common coupling (PCC) voltage surpasses a threshold. After an [...] Read more.
This paper proposes a new hybrid islanding detection method for grid-connected photovoltaic system (GCPVS)-based microgrid. In the presented technique, the suspicious islanding event is initially recognized whilst the absolute deviation of the point of common coupling (PCC) voltage surpasses a threshold. After an intentional delay, a transient disturbance is injected into the voltage source inverter’s d-axis reference current to decline the active power output. As a result, the PCC voltage reduces in islanding operating mode whilst its variation is negligible in the grid presence. Therefore, the simultaneous drop of PCC voltage and active power output is used as an islanding detection criterion. The effectiveness of the proposed algorithm is investigated for various islanding and non-islanding scenarios for a practical distribution network with three GCPVSs. The simulation results in MATLAB/Simulink show successful islanding detection with a small non-detection zone within 300 ms without false tripping during non-islanding incidents. In addition to the precise and fast islanding classification, the presented scheme is realized inexpensively; its thresholds are determined self-standing, and its output power quality degradation is eminently small. Moreover, the active power output is restored to the nominal set after islanding recognition, enhancing the chance of GCPVS generation at its highest possible level in the autonomous microgrid. Full article
(This article belongs to the Special Issue Power Converter Control Applications in Low-Inertia Power Systems)
Show Figures

Figure 1

18 pages, 10568 KB  
Article
Islanding Detection Method Based on Injecting Perturbation Signal and Rate of Change of Output Power in DC Grid-Connected Photovoltaic System
by Thanh Son Tran, Duc Tuyen Nguyen and Goro FUJITA
Energies 2018, 11(5), 1313; https://doi.org/10.3390/en11051313 - 21 May 2018
Cited by 18 | Viewed by 5461
Abstract
The emergence of Distributed Generation (DG) in the electric system has brought about the appearance of the islanding phenomenon. In AC networks, there are a lot of Islanding Detection Methods (IDMs) have been studied. However, not too much IDMs in DC networks have [...] Read more.
The emergence of Distributed Generation (DG) in the electric system has brought about the appearance of the islanding phenomenon. In AC networks, there are a lot of Islanding Detection Methods (IDMs) have been studied. However, not too much IDMs in DC networks have been published because of the absence of frequency and reactive power. The hybrid IDM based on injected perturbation signal and rate of change of power output is proposed. This IDM can detect islanding condition not only in the worst case (the power of load and PV are equal) but also in another case (the power of load is greater than the power of PV). It can be applicable to both single and multi-PV operation scenarios. Besides, the effectiveness of the proposed method is verified by simulation in Matlab/Simulink. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop