Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = hybrid domain attention unit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Viewed by 214
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

21 pages, 5527 KiB  
Article
SGNet: A Structure-Guided Network with Dual-Domain Boundary Enhancement and Semantic Fusion for Skin Lesion Segmentation
by Haijiao Yun, Qingyu Du, Ziqing Han, Mingjing Li, Le Yang, Xinyang Liu, Chao Wang and Weitian Ma
Sensors 2025, 25(15), 4652; https://doi.org/10.3390/s25154652 - 27 Jul 2025
Viewed by 317
Abstract
Segmentation of skin lesions in dermoscopic images is critical for the accurate diagnosis of skin cancers, particularly malignant melanoma, yet it is hindered by irregular lesion shapes, blurred boundaries, low contrast, and artifacts, such as hair interference. Conventional deep learning methods, typically based [...] Read more.
Segmentation of skin lesions in dermoscopic images is critical for the accurate diagnosis of skin cancers, particularly malignant melanoma, yet it is hindered by irregular lesion shapes, blurred boundaries, low contrast, and artifacts, such as hair interference. Conventional deep learning methods, typically based on UNet or Transformer architectures, often face limitations in regard to fully exploiting lesion features and incur high computational costs, compromising precise lesion delineation. To overcome these challenges, we propose SGNet, a structure-guided network, integrating a hybrid CNN–Mamba framework for robust skin lesion segmentation. The SGNet employs the Visual Mamba (VMamba) encoder to efficiently extract multi-scale features, followed by the Dual-Domain Boundary Enhancer (DDBE), which refines boundary representations and suppresses noise through spatial and frequency-domain processing. The Semantic-Texture Fusion Unit (STFU) adaptively integrates low-level texture with high-level semantic features, while the Structure-Aware Guidance Module (SAGM) generates coarse segmentation maps to provide global structural guidance. The Guided Multi-Scale Refiner (GMSR) further optimizes boundary details through a multi-scale semantic attention mechanism. Comprehensive experiments based on the ISIC2017, ISIC2018, and PH2 datasets demonstrate SGNet’s superior performance, with average improvements of 3.30% in terms of the mean Intersection over Union (mIoU) value and 1.77% in regard to the Dice Similarity Coefficient (DSC) compared to state-of-the-art methods. Ablation studies confirm the effectiveness of each component, highlighting SGNet’s exceptional accuracy and robust generalization for computer-aided dermatological diagnosis. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

19 pages, 5415 KiB  
Article
Intelligent Optimized Diagnosis for Hydropower Units Based on CEEMDAN Combined with RCMFDE and ISMA-CNN-GRU-Attention
by Wenting Zhang, Huajun Meng, Ruoxi Wang and Ping Wang
Water 2025, 17(14), 2125; https://doi.org/10.3390/w17142125 - 17 Jul 2025
Viewed by 277
Abstract
This study suggests a hybrid approach that combines improved feature selection and intelligent diagnosis to increase the operational safety and intelligent diagnosis capabilities of hydropower units. In order to handle the vibration data, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is [...] Read more.
This study suggests a hybrid approach that combines improved feature selection and intelligent diagnosis to increase the operational safety and intelligent diagnosis capabilities of hydropower units. In order to handle the vibration data, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used initially. A novel comprehensive index is constructed by combining the Pearson correlation coefficient, mutual information (MI), and Kullback–Leibler divergence (KLD) to select intrinsic mode functions (IMFs). Next, feature extraction is performed on the selected IMFs using Refined Composite Multiscale Fluctuation Dispersion Entropy (RCMFDE). Then, time and frequency domain features are screened by calculating dispersion and combined with IMF features to build a hybrid feature vector. The vector is then fed into a CNN-GRU-Attention model for intelligent diagnosis. The improved slime mold algorithm (ISMA) is employed for the first time to optimize the hyperparameters of the CNN-GRU-Attention model. The experimental results show that the classification accuracy reaches 96.79% for raw signals and 93.33% for noisy signals, significantly outperforming traditional methods. This study incorporates entropy-based feature extraction, combines hyperparameter optimization with the classification model, and addresses the limitations of single feature selection methods for non-stationary and nonlinear signals. The proposed approach provides an excellent solution for intelligent optimized diagnosis of hydropower units. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

33 pages, 5308 KiB  
Review
A Comprehensive Review of Explainable Artificial Intelligence (XAI) in Computer Vision
by Zhihan Cheng, Yue Wu, Yule Li, Lingfeng Cai and Baha Ihnaini
Sensors 2025, 25(13), 4166; https://doi.org/10.3390/s25134166 - 4 Jul 2025
Viewed by 1486
Abstract
Explainable Artificial Intelligence (XAI) is increasingly important in computer vision, aiming to connect complex model outputs with human understanding. This review provides a focused comparative analysis of representative XAI methods in four main categories, attribution-based, activation-based, perturbation-based, and transformer-based approaches, selected from a [...] Read more.
Explainable Artificial Intelligence (XAI) is increasingly important in computer vision, aiming to connect complex model outputs with human understanding. This review provides a focused comparative analysis of representative XAI methods in four main categories, attribution-based, activation-based, perturbation-based, and transformer-based approaches, selected from a broader literature landscape. Attribution-based methods like Grad-CAM highlight key input regions using gradients and feature activation. Activation-based methods analyze the responses of internal neurons or feature maps to identify which parts of the input activate specific layers or units, helping to reveal hierarchical feature representations. Perturbation-based techniques, such as RISE, assess feature importance through input modifications without accessing internal model details. Transformer-based methods, which use self-attention, offer global interpretability by tracing information flow across layers. We evaluate these methods using metrics such as faithfulness, localization accuracy, efficiency, and overlap with medical annotations. We also propose a hierarchical taxonomy to classify these methods, reflecting the diversity of XAI techniques. Results show that RISE has the highest faithfulness but is computationally expensive, limiting its use in real-time scenarios. Transformer-based methods perform well in medical imaging, with high IoU scores, though interpreting attention maps requires care. These findings emphasize the need for context-aware evaluation and hybrid XAI methods balancing interpretability and efficiency. The review ends by discussing ethical and practical challenges, stressing the need for standard benchmarks and domain-specific tuning. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

56 pages, 3118 KiB  
Article
Semantic Reasoning Using Standard Attention-Based Models: An Application to Chronic Disease Literature
by Yalbi Itzel Balderas-Martínez, José Armando Sánchez-Rojas, Arturo Téllez-Velázquez, Flavio Juárez Martínez, Raúl Cruz-Barbosa, Enrique Guzmán-Ramírez, Iván García-Pacheco and Ignacio Arroyo-Fernández
Big Data Cogn. Comput. 2025, 9(6), 162; https://doi.org/10.3390/bdcc9060162 - 19 Jun 2025
Viewed by 752
Abstract
Large-language-model (LLM) APIs demonstrate impressive reasoning capabilities, but their size, cost, and closed weights limit the deployment of knowledge-aware AI within biomedical research groups. At the other extreme, standard attention-based neural language models (SANLMs)—including encoder–decoder architectures such as Transformers, Gated Recurrent Units (GRUs), [...] Read more.
Large-language-model (LLM) APIs demonstrate impressive reasoning capabilities, but their size, cost, and closed weights limit the deployment of knowledge-aware AI within biomedical research groups. At the other extreme, standard attention-based neural language models (SANLMs)—including encoder–decoder architectures such as Transformers, Gated Recurrent Units (GRUs), and Long Short-Term Memory (LSTM) networks—are computationally inexpensive. However, their capacity for semantic reasoning in noisy, open-vocabulary knowledge bases (KBs) remains unquantified. Therefore, we investigate whether compact SANLMs can (i) reason over hybrid OpenIE-derived KBs that integrate commonsense, general-purpose, and non-communicable-disease (NCD) literature; (ii) operate effectively on commodity GPUs; and (iii) exhibit semantic coherence as assessed through manual linguistic inspection. To this end, we constructed four training KBs by integrating ConceptNet (600k triples), a 39k-triple general-purpose OpenIE set, and an 18.6k-triple OpenNCDKB extracted from 1200 PubMed abstracts. Encoder–decoder GRU, LSTM, and Transformer models (1–2 blocks) were trained to predict the object phrase given the subject + predicate. Beyond token-level cross-entropy, we introduced the Meaning-based Selectional-Preference Test (MSPT): for each withheld triple, we masked the object, generated a candidate, and measured its surplus cosine similarity over a random baseline using word embeddings, with significance assessed via a one-sided t-test. Hyperparameter sensitivity (311 GRU/168 LSTM runs) was analyzed, and qualitative frame–role diagnostics completed the evaluation. Our results showed that all SANLMs learned effectively from the point of view of the cross entropy loss. In addition, our MSPT provided meaningful semantic insights: for the GRUs (256-dim, 2048-unit, 1-layer): mean similarity (μsts) of 0.641 to the ground truth vs. 0.542 to the random baseline (gap 12.1%; p<10180). For the 1-block Transformer: μsts=0.551 vs. 0.511 (gap 4%; p<1025). While Transformers minimized loss and accuracy variance, GRUs captured finer selectional preferences. Both architectures trained within <24 GB GPU VRAM and produced linguistically acceptable, albeit over-generalized, biomedical assertions. Due to their observed performance, LSTM results were designated as baseline models for comparison. Therefore, properly tuned SANLMs can achieve statistically robust semantic reasoning over noisy, domain-specific KBs without reliance on massive LLMs. Their interpretability, minimal hardware footprint, and open weights promote equitable AI research, opening new avenues for automated NCD knowledge synthesis, surveillance, and decision support. Full article
Show Figures

Figure 1

18 pages, 4888 KiB  
Article
A Multimodal Fatigue Detection System Using sEMG and IMU Signals with a Hybrid CNN-LSTM-Attention Model
by Soree Hwang, Nayeon Kwon, Dongwon Lee, Jongman Kim, Sumin Yang, Inchan Youn, Hyuk-June Moon, Joon-Kyung Sung and Sungmin Han
Sensors 2025, 25(11), 3309; https://doi.org/10.3390/s25113309 - 24 May 2025
Viewed by 1123
Abstract
Physical fatigue significantly impacts safety and performance across industrial, athletic, and medical domains, yet its detection remains challenging due to individual variability and limited generalizability of existing methods. This study introduces a multimodal fatigue detection system integrating surface electromyography (sEMG) and inertial measurement [...] Read more.
Physical fatigue significantly impacts safety and performance across industrial, athletic, and medical domains, yet its detection remains challenging due to individual variability and limited generalizability of existing methods. This study introduces a multimodal fatigue detection system integrating surface electromyography (sEMG) and inertial measurement unit (IMU) signals, processed through a hybrid convolutional neural network–long short-term memory–attention (CNN-LSTM-Attention) model. Fatigue was induced in 35 healthy participants via step-up-and-down exercises, with gait data collected during natural walking before and after fatigue. The model leverages sEMG from the gastrocnemius lateralis and IMU-derived jerk signals from the tibialis anterior and rectus femoris to classify fatigue states. Evaluated using leave-one-subject-out cross-validation (LOSOCV), the system achieved an accuracy of 87.94% with bilateral EMG signals and a balanced recall of 87.94% for fatigued states using a combined IMU-EMG approach. These results highlight the system’s robustness for personalized fatigue monitoring, surpassing traditional subject-dependent methods by addressing inter-individual differences. Full article
(This article belongs to the Special Issue Wearable Sensing of Medical Condition at Home Environment)
Show Figures

Figure 1

34 pages, 786 KiB  
Review
Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications
by Ibomoiye Domor Mienye, Theo G. Swart and George Obaido
Information 2024, 15(9), 517; https://doi.org/10.3390/info15090517 - 25 Aug 2024
Cited by 144 | Viewed by 42865
Abstract
Recurrent neural networks (RNNs) have significantly advanced the field of machine learning (ML) by enabling the effective processing of sequential data. This paper provides a comprehensive review of RNNs and their applications, highlighting advancements in architectures, such as long short-term memory (LSTM) networks, [...] Read more.
Recurrent neural networks (RNNs) have significantly advanced the field of machine learning (ML) by enabling the effective processing of sequential data. This paper provides a comprehensive review of RNNs and their applications, highlighting advancements in architectures, such as long short-term memory (LSTM) networks, gated recurrent units (GRUs), bidirectional LSTM (BiLSTM), echo state networks (ESNs), peephole LSTM, and stacked LSTM. The study examines the application of RNNs to different domains, including natural language processing (NLP), speech recognition, time series forecasting, autonomous vehicles, and anomaly detection. Additionally, the study discusses recent innovations, such as the integration of attention mechanisms and the development of hybrid models that combine RNNs with convolutional neural networks (CNNs) and transformer architectures. This review aims to provide ML researchers and practitioners with a comprehensive overview of the current state and future directions of RNN research. Full article
(This article belongs to the Special Issue Applications of Machine Learning and Convolutional Neural Networks)
Show Figures

Figure 1

27 pages, 3076 KiB  
Article
Cross-Project Defect Prediction Based on Domain Adaptation and LSTM Optimization
by Khadija Javed, Ren Shengbing, Muhammad Asim and Mudasir Ahmad Wani
Algorithms 2024, 17(5), 175; https://doi.org/10.3390/a17050175 - 24 Apr 2024
Cited by 4 | Viewed by 2694
Abstract
Cross-project defect prediction (CPDP) aims to predict software defects in a target project domain by leveraging information from different source project domains, allowing testers to identify defective modules quickly. However, CPDP models often underperform due to different data distributions between source and target [...] Read more.
Cross-project defect prediction (CPDP) aims to predict software defects in a target project domain by leveraging information from different source project domains, allowing testers to identify defective modules quickly. However, CPDP models often underperform due to different data distributions between source and target domains, class imbalances, and the presence of noisy and irrelevant instances in both source and target projects. Additionally, standard features often fail to capture sufficient semantic and contextual information from the source project, leading to poor prediction performance in the target project. To address these challenges, this research proposes Smote Correlation and Attention Gated recurrent unit based Long Short-Term Memory optimization (SCAG-LSTM), which first employs a novel hybrid technique that extends the synthetic minority over-sampling technique (SMOTE) with edited nearest neighbors (ENN) to rebalance class distributions and mitigate the issues caused by noisy and irrelevant instances in both source and target domains. Furthermore, correlation-based feature selection (CFS) with best-first search (BFS) is utilized to identify and select the most important features, aiming to reduce the differences in data distribution among projects. Additionally, SCAG-LSTM integrates bidirectional gated recurrent unit (Bi-GRU) and bidirectional long short-term memory (Bi-LSTM) networks to enhance the effectiveness of the long short-term memory (LSTM) model. These components efficiently capture semantic and contextual information as well as dependencies within the data, leading to more accurate predictions. Moreover, an attention mechanism is incorporated into the model to focus on key features, further improving prediction performance. Experiments are conducted on apache_lucene, equinox, eclipse_jdt_core, eclipse_pde_ui, and mylyn (AEEEM) and predictor models in software engineering (PROMISE) datasets and compared with active learning-based method (ALTRA), multi-source-based cross-project defect prediction method (MSCPDP), the two-phase feature importance amplification method (TFIA) on AEEEM and the two-phase transfer learning method (TPTL), domain adaptive kernel twin support vector machines method (DA-KTSVMO), and generative adversarial long-short term memory neural networks method (GB-CPDP) on PROMISE datasets. The results demonstrate that the proposed SCAG-LSTM model enhances the baseline models by 33.03%, 29.15% and 1.48% in terms of F1-measure and by 16.32%, 34.41% and 3.59% in terms of Area Under the Curve (AUC) on the AEEEM dataset, while on the PROMISE dataset it enhances the baseline models’ F1-measure by 42.60%, 32.00% and 25.10% and AUC by 34.90%, 27.80% and 12.96%. These findings suggest that the proposed model exhibits strong predictive performance. Full article
(This article belongs to the Special Issue Algorithms in Software Engineering)
Show Figures

Figure 1

17 pages, 3370 KiB  
Article
FC-TFS-CGRU: A Temporal–Frequency–Spatial Electroencephalography Emotion Recognition Model Based on Functional Connectivity and a Convolutional Gated Recurrent Unit Hybrid Architecture
by Xia Wu, Yumei Zhang, Jingjing Li, Honghong Yang and Xiaojun Wu
Sensors 2024, 24(6), 1979; https://doi.org/10.3390/s24061979 - 20 Mar 2024
Cited by 7 | Viewed by 1696
Abstract
The gated recurrent unit (GRU) network can effectively capture temporal information for 1D signals, such as electroencephalography and event-related brain potential, and it has been widely used in the field of EEG emotion recognition. However, multi-domain features, including the spatial, frequency, and temporal [...] Read more.
The gated recurrent unit (GRU) network can effectively capture temporal information for 1D signals, such as electroencephalography and event-related brain potential, and it has been widely used in the field of EEG emotion recognition. However, multi-domain features, including the spatial, frequency, and temporal features of EEG signals, contribute to emotion recognition, while GRUs show some limitations in capturing frequency–spatial features. Thus, we proposed a hybrid architecture of convolutional neural networks and GRUs (CGRU) to effectively capture the complementary temporal features and spatial–frequency features hidden in signal channels. In addition, to investigate the interactions among different brain regions during emotional information processing, we considered the functional connectivity relationship of the brain by introducing a phase-locking value to calculate the phase difference between the EEG channels to gain spatial information based on functional connectivity. Then, in the classification module, we incorporated attention constraints to address the issue of the uneven recognition contribution of EEG signal features. Finally, we conducted experiments on the DEAP and DREAMER databases. The results demonstrated that our model outperforms the other models with remarkable recognition accuracy of 99.51%, 99.60%, and 99.59% (58.67%, 65.74%, and 67.05%) on DEAP and 98.63%, 98.7%, and 98.71% (75.65%, 75.89%, and 71.71%) on DREAMER in a subject-dependent experiment (subject-independent experiment) for arousal, valence, and dominance. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

24 pages, 9475 KiB  
Article
A Hybrid Human Activity Recognition Method Using an MLP Neural Network and Euler Angle Extraction Based on IMU Sensors
by Yaxin Mao, Lamei Yan, Hongyu Guo, Yujie Hong, Xiaocheng Huang and Youwei Yuan
Appl. Sci. 2023, 13(18), 10529; https://doi.org/10.3390/app131810529 - 21 Sep 2023
Cited by 12 | Viewed by 2641
Abstract
Inertial measurement unit (IMU) technology has gained popularity in human activity recognition (HAR) due to its ability to identify human activity by measuring acceleration, angular velocity, and magnetic flux in key body areas like the wrist and knee. It has propelled the extensive [...] Read more.
Inertial measurement unit (IMU) technology has gained popularity in human activity recognition (HAR) due to its ability to identify human activity by measuring acceleration, angular velocity, and magnetic flux in key body areas like the wrist and knee. It has propelled the extensive application of HAR across various domains. In the healthcare sector, HAR finds utility in monitoring and assessing movements during rehabilitation processes, while in the sports science field, it contributes to enhancing training outcomes and preventing exercise-related injuries. However, traditional sensor fusion algorithms often require intricate mathematical and statistical processing, resulting in higher algorithmic complexity. Additionally, in dynamic environments, sensor states may undergo changes, posing challenges for real-time adjustments within conventional fusion algorithms to cater to the requirements of prolonged observations. To address these limitations, we propose a novel hybrid human pose recognition method based on IMU sensors. The proposed method initially calculates Euler angles and subsequently refines them using magnetometer and gyroscope data to obtain the accurate attitude angle. Furthermore, the application of FFT (Fast Fourier Transform) feature extraction facilitates the transition of the signal from its time-based representation to its frequency-based representation, enhancing the practical significance of the data. To optimize feature fusion and information exchange, a group attention module is introduced, leveraging the capabilities of a Multi-Layer Perceptron which is called the Feature Fusion Enrichment Multi-Layer Perceptron (GAM-MLP) to effectively combine features and generate precise classification results. Experimental results demonstrated the superior performance of the proposed method, achieving an impressive accuracy rate of 96.13% across 19 different human pose recognition tasks. The proposed hybrid human pose recognition method is capable of meeting the demands of real-world motion monitoring and health assessment. Full article
(This article belongs to the Special Issue Novel Approaches for Human Activity Recognition)
Show Figures

Figure 1

19 pages, 8970 KiB  
Article
Improved YOLOv5 Based on Hybrid Domain Attention for Small Object Detection in Optical Remote Sensing Images
by Tianmin Deng, Xuhui Liu and Guotao Mao
Electronics 2022, 11(17), 2657; https://doi.org/10.3390/electronics11172657 - 25 Aug 2022
Cited by 9 | Viewed by 3824
Abstract
The object detection technology of optical remote sensing images has been widely applied in military investigation, traffic planning, and environmental monitoring, among others. In this paper, a method is proposed for solving the problem of small object detection in optical remote sensing images. [...] Read more.
The object detection technology of optical remote sensing images has been widely applied in military investigation, traffic planning, and environmental monitoring, among others. In this paper, a method is proposed for solving the problem of small object detection in optical remote sensing images. In the proposed method, the hybrid domain attention units (HDAUs) of channel and spatial attention mechanisms are combined and employed to improve the feature extraction capability and suppress background noise. In addition, we designed a multiscale dynamic weighted feature fusion network (MDW-Net) to improve adaptive optimization and deep fusion of shallow and deep feature layers. The model is trained and tested on the DIOR dataset, and some ablation and comparative experiments are carried out. The experimental results show that the mAP of the proposed model surpasses that of YOLOv5 by a large margin of +2.3 and has obvious advantages regarding the detection performance for small object categories, such as airplane, ship, and vehicle, which support its application for small target detection in optical remote sensing images. Full article
Show Figures

Figure 1

Back to TopTop