A Multimodal Fatigue Detection System Using sEMG and IMU Signals with a Hybrid CNN-LSTM-Attention Model
Abstract
Share and Cite
Hwang, S.; Kwon, N.; Lee, D.; Kim, J.; Yang, S.; Youn, I.; Moon, H.-J.; Sung, J.-K.; Han, S. A Multimodal Fatigue Detection System Using sEMG and IMU Signals with a Hybrid CNN-LSTM-Attention Model. Sensors 2025, 25, 3309. https://doi.org/10.3390/s25113309
Hwang S, Kwon N, Lee D, Kim J, Yang S, Youn I, Moon H-J, Sung J-K, Han S. A Multimodal Fatigue Detection System Using sEMG and IMU Signals with a Hybrid CNN-LSTM-Attention Model. Sensors. 2025; 25(11):3309. https://doi.org/10.3390/s25113309
Chicago/Turabian StyleHwang, Soree, Nayeon Kwon, Dongwon Lee, Jongman Kim, Sumin Yang, Inchan Youn, Hyuk-June Moon, Joon-Kyung Sung, and Sungmin Han. 2025. "A Multimodal Fatigue Detection System Using sEMG and IMU Signals with a Hybrid CNN-LSTM-Attention Model" Sensors 25, no. 11: 3309. https://doi.org/10.3390/s25113309
APA StyleHwang, S., Kwon, N., Lee, D., Kim, J., Yang, S., Youn, I., Moon, H.-J., Sung, J.-K., & Han, S. (2025). A Multimodal Fatigue Detection System Using sEMG and IMU Signals with a Hybrid CNN-LSTM-Attention Model. Sensors, 25(11), 3309. https://doi.org/10.3390/s25113309