Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,909)

Search Parameters:
Keywords = hybrid detection system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 3764 KB  
Review
AI-Enabled IoT Intrusion Detection: Unified Conceptual Framework and Research Roadmap
by Antonio Villafranca, Kyaw Min Thant, Igor Tasic and Maria-Dolores Cano
Mach. Learn. Knowl. Extr. 2025, 7(4), 115; https://doi.org/10.3390/make7040115 - 6 Oct 2025
Abstract
The Internet of Things (IoT) revolutionizes connectivity, enabling innovative applications across healthcare, industry, and smart cities but also introducing significant cybersecurity challenges due to its expanded attack surface. Intrusion Detection Systems (IDSs) play a pivotal role in addressing these challenges, offering tailored solutions [...] Read more.
The Internet of Things (IoT) revolutionizes connectivity, enabling innovative applications across healthcare, industry, and smart cities but also introducing significant cybersecurity challenges due to its expanded attack surface. Intrusion Detection Systems (IDSs) play a pivotal role in addressing these challenges, offering tailored solutions to detect and mitigate threats in dynamic and resource-constrained IoT environments. Through a rigorous analysis, this study classifies IDS research based on methodologies, performance metrics, and application domains, providing a comprehensive synthesis of the field. Key findings reveal a paradigm shift towards integrating artificial intelligence (AI) and hybrid approaches, surpassing the limitations of traditional, static methods. These advancements highlight the potential for IDSs to enhance scalability, adaptability, and detection accuracy. However, unresolved challenges, such as resource efficiency and real-world applicability, underline the need for further research. By contextualizing these findings within the broader landscape of IoT security, this work emphasizes the critical importance of developing IDS solutions that ensure the reliability, privacy, and security of interconnected systems, contributing to the sustainable evolution of IoT ecosystems. Full article
Show Figures

Figure 1

26 pages, 6000 KB  
Article
Leakage Fault Diagnosis of Wind Tunnel Valves Using Wavelet Packet Analysis and Vision Transformer-Based Deep Learning
by Fan Yi, Ruoxi Zhong, Wenjie Zhu, Run Zhou, Ying Wang and Li Guo
Mathematics 2025, 13(19), 3195; https://doi.org/10.3390/math13193195 - 6 Oct 2025
Abstract
High-frequency vibrations in annular gap type pressure-regulating valves of wind tunnels can induce fatigue, fracture, and operational failures, posing challenges to safe and reliable operation. This study proposes a hybrid leakage fault diagnosis framework that integrates wavelet packet-based signal analysis with advanced deep [...] Read more.
High-frequency vibrations in annular gap type pressure-regulating valves of wind tunnels can induce fatigue, fracture, and operational failures, posing challenges to safe and reliable operation. This study proposes a hybrid leakage fault diagnosis framework that integrates wavelet packet-based signal analysis with advanced deep learning techniques. Time-domain acceleration signals collected from multiple sensors are processed to extract maximum component energy and its variation rate, identified as sensitive and robust indicators for leakage detection. A fluid–solid coupled finite element model of the valve system further validates the reliability of these indicators under different operational scenarios. Based on this foundation, a Vision Transformer (ViT)-based model is trained on a dedicated database encompassing multiple leakage conditions and sensor arrangements. Comparative evaluation demonstrates that the ViT model outperforms conventional deep learning architectures in terms of accuracy, stability, and predictive reliability. The integrated framework enables fast, automated, and robust leakage diagnosis, providing a comprehensive solution to enhance the monitoring, maintenance, and operational safety of wind tunnel valve systems. Full article
(This article belongs to the Special Issue Numerical Analysis and Finite Element Method with Applications)
Show Figures

Figure 1

41 pages, 1929 KB  
Review
The Evolution and Taxonomy of Deep Learning Models for Aircraft Trajectory Prediction: A Review of Performance and Future Directions
by NaeJoung Kwak and ByoungYup Lee
Appl. Sci. 2025, 15(19), 10739; https://doi.org/10.3390/app151910739 - 5 Oct 2025
Abstract
Accurate aircraft trajectory prediction is fundamental to air traffic management, operational safety, and intelligent aerospace systems. With the growing availability of flight data, deep learning has emerged as a powerful tool for modeling the spatiotemporal complexity of 4D trajectories. This paper presents a [...] Read more.
Accurate aircraft trajectory prediction is fundamental to air traffic management, operational safety, and intelligent aerospace systems. With the growing availability of flight data, deep learning has emerged as a powerful tool for modeling the spatiotemporal complexity of 4D trajectories. This paper presents a comprehensive review of deep learning-based approaches for aircraft trajectory prediction, focusing on their evolution, taxonomy, performance, and future directions. We classify existing models into five groups—RNN-based, attention-based, generative, graph-based, and hybrid and integrated models—and evaluate them using standardized metrics such as the RMSE, MAE, ADE, and FDE. Common datasets, including ADS-B and OpenSky, are summarized, along with the prevailing evaluation metrics. Beyond model comparison, we discuss real-world applications in anomaly detection, decision support, and real-time air traffic management, and highlight ongoing challenges such as data standardization, multimodal integration, uncertainty quantification, and self-supervised learning. This review provides a structured taxonomy and forward-looking perspectives, offering valuable insights for researchers and practitioners working to advance next-generation trajectory prediction technologies. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

24 pages, 3163 KB  
Article
Machine Learning Investigation of Ternary-Hybrid Radiative Nanofluid over Stretching and Porous Sheet
by Hamid Qureshi, Muhammad Zubair and Sebastian Andreas Altmeyer
Nanomaterials 2025, 15(19), 1525; https://doi.org/10.3390/nano15191525 - 5 Oct 2025
Abstract
Ternary hybrid nanofluid have been revealed to possess a wide range of application disciplines reaching from biomedical engineering, detection of cancer, over or photovoltaic panels and cells, nuclear power plant engineering, to the automobile industry, smart cells and and eventually to heat exchange [...] Read more.
Ternary hybrid nanofluid have been revealed to possess a wide range of application disciplines reaching from biomedical engineering, detection of cancer, over or photovoltaic panels and cells, nuclear power plant engineering, to the automobile industry, smart cells and and eventually to heat exchange systems. Inspired by the recent developments in nanotechnology and in particular the high potential ability of use of such nanofluids in practical problems, this paper deals with the flow of a three phase nanofluid of MWCNT-Au/Ag nanoparticles dispersed in blood in the presence of a bidirectional stretching sheet. The model derived in this study yields a set of linked nonlinear PDEs, which are first transformed into dimensionless ODEs. From these ODEs we get a dataset with the help of MATHEMATICA environment, then solved using AI-based technique utilizing Levenberg Marquardt Feedforward Algorithm. In this work, flow characteristics under varying physical parameters have been studied and analyzed and the boundary layer phenomena has been investigated. In detail horizontal, vertical velocity profiles as well as temperature distribution are analyzed. The findings reveal that as the stretching ratio of the surface coincide with an increase the vertical velocity as the surface has thinned in this direction minimizing resistance to the fluid flow. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

24 pages, 7435 KB  
Article
Analysis of the Multimedia, Crossmedia and Transmedia Elements in Spanish Journalistic Media Projects During the Period 2020–2022
by Ana Serrano-Tellería and Arnau Gifreu-Castells
Journal. Media 2025, 6(4), 169; https://doi.org/10.3390/journalmedia6040169 - 5 Oct 2025
Abstract
This paper presents a qualitative exploratory study based on the analysis of a representative sample of 35 projects carried out during the period 2020–2022 by six Spanish newspapers: elDiario.es, ABC, IDEAL, El Correo, ElConfidencial.com and El País. This study aims to detect and [...] Read more.
This paper presents a qualitative exploratory study based on the analysis of a representative sample of 35 projects carried out during the period 2020–2022 by six Spanish newspapers: elDiario.es, ABC, IDEAL, El Correo, ElConfidencial.com and El País. This study aims to detect and analyze the main elements of multimedia, crossmedia and transmedia content in the selected projects using an original analysis sheet designed for this research. In relation to the categories proposed in the categorization model, in this work we will focus on analyzing two in particular: authorship and information architecture. The projects were selected based on criteria of appropriateness, quality and innovation, as well as the results of semi-structured interviews with the heads and innovation managers (laboratories) of the media included in the framework of the projects ‘NEWSNET: News, Networks, and Users in the Hybrid Media System: Transformation of the Media Industry and the News in the Post-Industrial Era’ and ‘IAMEDIA: Impact of Artificial Intelligence and Algorithms on Online Media, Journalist and Audiences’. The aim of the qualitative analysis is to propose a list of aspects, characteristics, and fundamentals in the ideation, elaboration, and distribution of these types of products. We conclude that the results of applying the designed analysis sheet help us to understand these processes and also to propose alternatives and improvements in its design and implementation Full article
Show Figures

Figure 1

35 pages, 5316 KB  
Review
Machine Learning for Quality Control in the Food Industry: A Review
by Konstantinos G. Liakos, Vassilis Athanasiadis, Eleni Bozinou and Stavros I. Lalas
Foods 2025, 14(19), 3424; https://doi.org/10.3390/foods14193424 - 4 Oct 2025
Abstract
The increasing complexity of modern food production demands advanced solutions for quality control (QC), safety monitoring, and process optimization. This review systematically explores recent advancements in machine learning (ML) for QC across six domains: Food Quality Applications; Defect Detection and Visual Inspection Systems; [...] Read more.
The increasing complexity of modern food production demands advanced solutions for quality control (QC), safety monitoring, and process optimization. This review systematically explores recent advancements in machine learning (ML) for QC across six domains: Food Quality Applications; Defect Detection and Visual Inspection Systems; Ingredient Optimization and Nutritional Assessment; Packaging—Sensors and Predictive QC; Supply Chain—Traceability and Transparency and Food Industry Efficiency; and Industry 4.0 Models. Following a PRISMA-based methodology, a structured search of the Scopus database using thematic Boolean keywords identified 124 peer-reviewed publications (2005–2025), from which 25 studies were selected based on predefined inclusion and exclusion criteria, methodological rigor, and innovation. Neural networks dominated the reviewed approaches, with ensemble learning as a secondary method, and supervised learning prevailing across tasks. Emerging trends include hyperspectral imaging, sensor fusion, explainable AI, and blockchain-enabled traceability. Limitations in current research include domain coverage biases, data scarcity, and underexplored unsupervised and hybrid methods. Real-world implementation challenges involve integration with legacy systems, regulatory compliance, scalability, and cost–benefit trade-offs. The novelty of this review lies in combining a transparent PRISMA approach, a six-domain thematic framework, and Industry 4.0/5.0 integration, providing cross-domain insights and a roadmap for robust, transparent, and adaptive QC systems in the food industry. Full article
(This article belongs to the Special Issue Artificial Intelligence for the Food Industry)
Show Figures

Figure 1

15 pages, 2358 KB  
Article
Optimized Lung Nodule Classification Using CLAHE-Enhanced CT Imaging and Swin Transformer-Based Deep Feature Extraction
by Dorsaf Hrizi, Khaoula Tbarki and Sadok Elasmi
J. Imaging 2025, 11(10), 346; https://doi.org/10.3390/jimaging11100346 - 4 Oct 2025
Abstract
Lung cancer remains one of the most lethal cancers globally. Its early detection is vital to improving survival rates. In this work, we propose a hybrid computer-aided diagnosis (CAD) pipeline for lung cancer classification using Computed Tomography (CT) scan images. The proposed CAD [...] Read more.
Lung cancer remains one of the most lethal cancers globally. Its early detection is vital to improving survival rates. In this work, we propose a hybrid computer-aided diagnosis (CAD) pipeline for lung cancer classification using Computed Tomography (CT) scan images. The proposed CAD pipeline integrates ten image preprocessing techniques and ten pretrained deep learning models for feature extraction including convolutional neural networks and transformer-based architectures, and four classical machine learning classifiers. Unlike traditional end-to-end deep learning systems, our approach decouples feature extraction from classification, enhancing interpretability and reducing the risk of overfitting. A total of 400 model configurations were evaluated to identify the optimal combination. The proposed approach was evaluated on the publicly available Lung Image Database Consortium and Image Database Resource Initiative dataset, which comprises 1018 thoracic CT scans annotated by four thoracic radiologists. For the classification task, the dataset included a total of 6568 images labeled as malignant and 4849 images labeled as benign. Experimental results show that the best performing pipeline, combining Contrast Limited Adaptive Histogram Equalization, Swin Transformer feature extraction, and eXtreme Gradient Boosting, achieved an accuracy of 95.8%. Full article
(This article belongs to the Special Issue Advancements in Imaging Techniques for Detection of Cancer)
12 pages, 284 KB  
Article
AI-Enabled Secure and Scalable Distributed Web Architecture for Medical Informatics
by Marian Ileana, Pavel Petrov and Vassil Milev
Appl. Sci. 2025, 15(19), 10710; https://doi.org/10.3390/app151910710 - 4 Oct 2025
Abstract
Current medical informatics systems face critical challenges, including limited scalability across distributed institutions, insufficient real-time AI-driven decision support, and lack of standardized interoperability for heterogeneous medical data exchange. To address these challenges, this paper proposes a novel distributed web system architecture for medical [...] Read more.
Current medical informatics systems face critical challenges, including limited scalability across distributed institutions, insufficient real-time AI-driven decision support, and lack of standardized interoperability for heterogeneous medical data exchange. To address these challenges, this paper proposes a novel distributed web system architecture for medical informatics, integrating artificial intelligence techniques and cloud-based services. The system ensures interoperability via HL7 FHIR standards and preserves data privacy and fault tolerance across interconnected medical institutions. A hybrid AI pipeline combining principal component analysis (PCA), K-Means clustering, and convolutional neural networks (CNNs) is applied to diffusion tensor imaging (DTI) data for early detection of neurological anomalies. The architecture leverages containerized microservices orchestrated with Docker Swarm, enabling adaptive resource management and high availability. Experimental validation confirms reduced latency, improved system reliability, and enhanced compliance with medical data exchange protocols. Results demonstrate superior performance with an average latency of 94 ms, a diagnostic accuracy of 91.3%, and enhanced clinical workflow efficiency compared to traditional monolithic architectures. The proposed solution successfully addresses scalability limitations while maintaining data security and regulatory compliance across multi-institutional deployments. This work contributes to the advancement of intelligent, interoperable, and scalable e-health infrastructures aligned with the evolution of digital healthcare ecosystems. Full article
(This article belongs to the Special Issue Data Science and Medical Informatics)
Show Figures

Figure 1

46 pages, 3080 KB  
Review
Machine Learning for Structural Health Monitoring of Aerospace Structures: A Review
by Gennaro Scarselli and Francesco Nicassio
Sensors 2025, 25(19), 6136; https://doi.org/10.3390/s25196136 - 4 Oct 2025
Abstract
Structural health monitoring (SHM) plays a critical role in ensuring the safety and performance of aerospace structures throughout their lifecycle. As aircraft and spacecraft systems grow in complexity, the integration of machine learning (ML) into SHM frameworks is revolutionizing how damage is detected, [...] Read more.
Structural health monitoring (SHM) plays a critical role in ensuring the safety and performance of aerospace structures throughout their lifecycle. As aircraft and spacecraft systems grow in complexity, the integration of machine learning (ML) into SHM frameworks is revolutionizing how damage is detected, localized, and predicted. This review presents a comprehensive examination of recent advances in ML-based SHM methods tailored to aerospace applications. It covers supervised, unsupervised, deep, and hybrid learning techniques, highlighting their capabilities in processing high-dimensional sensor data, managing uncertainty, and enabling real-time diagnostics. Particular focus is given to the challenges of data scarcity, operational variability, and interpretability in safety-critical environments. The review also explores emerging directions such as digital twins, transfer learning, and federated learning. By mapping current strengths and limitations, this paper provides a roadmap for future research and outlines the key enablers needed to bring ML-based SHM from laboratory development to widespread aerospace deployment. Full article
(This article belongs to the Special Issue Feature Review Papers in Fault Diagnosis & Sensors)
Show Figures

Figure 1

19 pages, 827 KB  
Article
Optimized Hybrid Ensemble Intrusion Detection for VANET-Based Autonomous Vehicle Security
by Ahmad Aloqaily, Emad E. Abdallah, Aladdin Baarah, Mohammad Alnabhan, Esra’a Alshdaifat and Hind Milhem
Network 2025, 5(4), 43; https://doi.org/10.3390/network5040043 - 3 Oct 2025
Abstract
Connected and Autonomous Vehicles are promising for advancing traffic safety and efficiency. However, the increased connectivity makes these vehicles vulnerable to a broad array of cyber threats. This paper presents a novel hybrid approach for intrusion detection in in-vehicle networks, specifically focusing on [...] Read more.
Connected and Autonomous Vehicles are promising for advancing traffic safety and efficiency. However, the increased connectivity makes these vehicles vulnerable to a broad array of cyber threats. This paper presents a novel hybrid approach for intrusion detection in in-vehicle networks, specifically focusing on the Controller Area Network bus. Ensemble learning techniques are combined with sophisticated optimization techniques and dynamic adaptation mechanisms to develop a robust, accurate, and computationally efficient intrusion detection system. The proposed system is evaluated on real-world automotive network datasets that include various attack types (e.g., Denial of Service, fuzzy, and spoofing attacks). With these results, the proposed hybrid adaptive system achieves an unprecedented accuracy of 99.995% with a 0.00001% false positive rate, which is significantly more accurate than traditional methods. In addition, the system is very robust to novel attack patterns and is tolerant to varying computational constraints and is suitable for deployment on a real-time basis in various automotive platforms. As this research represents a significant advancement in automotive cybersecurity, a scalable and proactive defense mechanism is necessary to safely operate next-generation vehicles. Full article
(This article belongs to the Special Issue Emerging Trends and Applications in Vehicular Ad Hoc Networks)
25 pages, 1245 KB  
Article
Evaluating Cybersecurity Measures for Smart Grids Under Uncertainty: A Picture Fuzzy SWARA–CODAS Approach
by Betul Kara, Ertugrul Ayyildiz, Bahar Yalcin Kavus and Tolga Kudret Karaca
Appl. Sci. 2025, 15(19), 10704; https://doi.org/10.3390/app151910704 - 3 Oct 2025
Abstract
Smart grid operators face escalating cyber threats and tight resource constraints, demanding the transparent, defensible prioritization of security controls. This paper asks how to select cybersecurity controls for smart grids while retaining picture fuzzy evidence throughout and supporting policy-sensitive “what-if” analyses. We propose [...] Read more.
Smart grid operators face escalating cyber threats and tight resource constraints, demanding the transparent, defensible prioritization of security controls. This paper asks how to select cybersecurity controls for smart grids while retaining picture fuzzy evidence throughout and supporting policy-sensitive “what-if” analyses. We propose a hybrid Picture Fuzzy Stepwise Weight Assessment Ratio Analysis (SWARA) and Combinative Distance-based Assessment (CODAS) framework that carries picture fuzzy evidence end-to-end over a domain-specific cost/benefit criteria system and a relative-assessment matrix, complemented by multi-scenario sensitivity analysis. Applied to ten prominent solutions across twenty-nine sub-criteria in four dimensions, the model highlights Performance as the most influential main criterion; at the sub-criterion level, the decisive factors are updating against new threats, threat-detection capability, and policy-customization flexibility; and Zero Trust Architecture emerges as the best overall alternative, with rankings stable under varied weighting scenarios. A managerial takeaway is that foundation controls (e.g., OT-integrated monitoring and ICS-aware detection) consistently remain near the top, while purely deceptive or access-centric options rank lower in this context. The framework contributes an end-to-end picture fuzzy risk-assessment model for smart grid cybersecurity and suggests future work on larger expert panels, cross-utility datasets, and dynamic, periodically refreshed assessments. Full article
(This article belongs to the Special Issue Applications of Fuzzy Systems and Fuzzy Decision Making)
42 pages, 3952 KB  
Article
An Explainable Markov Chain–Machine Learning Sequential-Aware Anomaly Detection Framework for Industrial IoT Systems Based on OPC UA
by Youness Ghazi, Mohamed Tabaa, Mohamed Ennaji and Ghita Zaz
Sensors 2025, 25(19), 6122; https://doi.org/10.3390/s25196122 - 3 Oct 2025
Abstract
Stealth attacks targeting industrial control systems (ICS) exploit subtle sequences of malicious actions, making them difficult to detect with conventional methods. The OPC Unified Architecture (OPC UA) protocol—now widely adopted in SCADA/ICS environments—enhances OT–IT integration but simultaneously increases the exposure of critical infrastructures [...] Read more.
Stealth attacks targeting industrial control systems (ICS) exploit subtle sequences of malicious actions, making them difficult to detect with conventional methods. The OPC Unified Architecture (OPC UA) protocol—now widely adopted in SCADA/ICS environments—enhances OT–IT integration but simultaneously increases the exposure of critical infrastructures to sophisticated cyberattacks. Traditional detection approaches, which rely on instantaneous traffic features and static models, neglect the sequential dimension that is essential for uncovering such gradual intrusions. To address this limitation, we propose a hybrid sequential anomaly detection pipeline that combines Markov chain modeling to capture temporal dependencies with machine learning algorithms for anomaly detection. The pipeline is further augmented by explainability through SHapley Additive exPlanations (SHAP) and causal inference using the PC algorithm. Experimental evaluation on an OPC UA dataset simulating Man-In-The-Middle (MITM) and denial-of-service (DoS) attacks demonstrates that incorporating a second-order sequential memory significantly improves detection: F1-score increases by +2.27%, precision by +2.33%, and recall by +3.02%. SHAP analysis identifies the most influential features and transitions, while the causal graph highlights deviations from the system’s normal structure under attack, thereby providing interpretable insights into the root causes of anomalies. Full article
21 pages, 1625 KB  
Article
Multi-Objective Feature Selection for Intrusion Detection Systems: A Comparative Analysis of Bio-Inspired Optimization Algorithms
by Anıl Sezgin, Mustafa Ulaş and Aytuğ Boyacı
Sensors 2025, 25(19), 6099; https://doi.org/10.3390/s25196099 - 3 Oct 2025
Abstract
The increasing sophistication of cyberattacks makes Intrusion Detection Systems (IDSs) essential, yet the high dimensionality of modern network traffic hinders accuracy and efficiency. We conduct a comparative study of multi-objective feature selection for IDS using four bio-inspired metaheuristics—Grey Wolf Optimizer (GWO), Genetic Algorithm [...] Read more.
The increasing sophistication of cyberattacks makes Intrusion Detection Systems (IDSs) essential, yet the high dimensionality of modern network traffic hinders accuracy and efficiency. We conduct a comparative study of multi-objective feature selection for IDS using four bio-inspired metaheuristics—Grey Wolf Optimizer (GWO), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO)—on the X-IIoTID dataset. GA achieved the highest accuracy (99.60%) with the lowest FPR (0.39%) using 34 features. GWO offered the best accuracy–subset balance, reaching 99.50% accuracy with 22 features (65.08% reduction) within 0.10 percentage points of GA while using ~35% fewer features. PSO delivered competitive performance with 99.58% accuracy, 32 features (49.21% reduction), FPR 0.40%, and FNR 0.44%. ACO was the fastest (total training time 3001 s) and produced the smallest subset (7 features; 88.89% reduction), at an accuracy of 97.65% (FPR 2.30%, FNR 2.40%). These results delineate clear trade-off regions of high accuracy (GA/PSO/GWO), balanced (GWO), and efficiency-oriented (ACO) and underscore that algorithm choice should align with deployment constraints (e.g., edge vs. enterprise vs. cloud). We selected this quartet because it spans distinct search paradigms (hierarchical hunting, evolutionary recombination, social swarming, pheromone-guided foraging) commonly used in IDS feature selection, aiming for a representative, reproducible comparison rather than exhaustiveness; extending to additional bio-inspired and hybrid methods is left for future work. Full article
Show Figures

Figure 1

14 pages, 1081 KB  
Article
Hybrid Deep Learning Approach for Secure Electric Vehicle Communications in Smart Urban Mobility
by Abdullah Alsaleh
Vehicles 2025, 7(4), 112; https://doi.org/10.3390/vehicles7040112 - 2 Oct 2025
Abstract
The increasing adoption of electric vehicles (EVs) within intelligent transportation systems (ITSs) has elevated the importance of cybersecurity, especially with the rise in Vehicle-to-Everything (V2X) communications. Traditional intrusion detection systems (IDSs) struggle to address the evolving and complex nature of cyberattacks in such [...] Read more.
The increasing adoption of electric vehicles (EVs) within intelligent transportation systems (ITSs) has elevated the importance of cybersecurity, especially with the rise in Vehicle-to-Everything (V2X) communications. Traditional intrusion detection systems (IDSs) struggle to address the evolving and complex nature of cyberattacks in such dynamic environments. To address these challenges, this study introduces a novel deep learning-based IDS designed specifically for EV communication networks. We present a hybrid model that integrates convolutional neural networks (CNNs), long short-term memory (LSTM) layers, and adaptive learning strategies. The model was trained and validated using the VeReMi dataset, which simulates a wide range of attack scenarios in V2X networks. Additionally, an ablation study was conducted to isolate the contribution of each of its modules. The model demonstrated strong performance with 98.73% accuracy, 97.88% precision, 98.91% sensitivity, and 98.55% specificity, as well as an F1-score of 98.39%, an MCC of 0.964, a false-positive rate of 1.45%, and a false-negative rate of 1.09%, with a detection latency of 28 ms and an AUC-ROC of 0.994. Specifically, this work fills a clear gap in the existing V2X intrusion detection literature—namely, the lack of scalable, adaptive, and low-latency IDS solutions for hardware-constrained EV platforms—by proposing a hybrid CNN–LSTM architecture coupled with an elastic weight consolidation (EWC)-based adaptive learning module that enables online updates without full retraining. The proposed model provides a real-time, adaptive, and high-precision IDS for EV networks, supporting safer and more resilient ITS infrastructures. Full article
Show Figures

Figure 1

23 pages, 1443 KB  
Article
Hybrid Architecture to Predict the Remaining Useful Lifetime of an Industrial Machine from Its Specific Energy Consumption
by Diego Rodriguez-Obando, Javier Rosero-García and Esteban Emilio Rosero-García
Appl. Sci. 2025, 15(19), 10657; https://doi.org/10.3390/app151910657 - 2 Oct 2025
Abstract
This paper presents a data-driven flexible hybrid architecture which explores the use of a Specific Energy Consumption (SEC) index for predicting the Remaining Useful Lifetime (RUL) of spare mechanical parts of an industrial electric machine. The architecture carries out a hybrid process between [...] Read more.
This paper presents a data-driven flexible hybrid architecture which explores the use of a Specific Energy Consumption (SEC) index for predicting the Remaining Useful Lifetime (RUL) of spare mechanical parts of an industrial electric machine. The architecture carries out a hybrid process between a physics-based and data-driven deterioration model, and a similarity model based on a recursive database continuously enriched with real data on current used electrical power and the flow of raw material. The architecture enriches the production database with both synthetic and real data through continuous improvement based on the extraction of features from new incoming real data. This recursive process of database construction is carried out to improve the robustness, accuracy, and precision of estimations. The integration of the architecture aims to enhance predictive maintenance. As an example to illustrate the architecture, the case of an industrial shredder machine is analyzed from real data. The proposed architecture successfully predicts the RUL of sugarcane shredder spare parts from the recursive database and a defined threshold condition. The RUL prognosis converges toward a representative trajectory of the database after a given early time with respect to the total useful life. Full article
Show Figures

Figure 1

Back to TopTop