Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = hybrid–FRP bridges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10167 KiB  
Article
A Metamodel-Based Multi-Scale Reliability Analysis of FRP Truss Structures under Hybrid Uncertainties
by Desheng Zhao, Xiaoyi Zhou and Wenqing Wu
Materials 2024, 17(1), 29; https://doi.org/10.3390/ma17010029 - 20 Dec 2023
Cited by 1 | Viewed by 1451
Abstract
This study introduces a Radial Basis Function-Genetic Algorithm-Back Propagation-Importance Sampling (RBF-GA-BP-IS) algorithm for the multi-scale reliability analysis of Fiber-Reinforced Polymer (FRP) composite structures. The proposed method integrates the computationally powerful RBF neural network with GA, BP neural network and IS to efficiently calculate [...] Read more.
This study introduces a Radial Basis Function-Genetic Algorithm-Back Propagation-Importance Sampling (RBF-GA-BP-IS) algorithm for the multi-scale reliability analysis of Fiber-Reinforced Polymer (FRP) composite structures. The proposed method integrates the computationally powerful RBF neural network with GA, BP neural network and IS to efficiently calculate inner and outer optimization problems for reliability analysis with hybrid random and interval uncertainties. The investigation profoundly delves into incorporating both random and interval parameters in the reliability appraisal of FRP constructs, ensuring fluctuating parameters within designated boundaries are meticulously accounted for, thus augmenting analytic exactness. In application, the algorithm was subjected to diverse structural evaluations, including a seven-bar planar truss, an architectural space dome truss, and an intricate nonlinear truss bridge. Results demonstrate the algorithm’s exceptional performance in terms of model invocation counts and accurate failure probability estimation. Specifically, within the seven-bar planar truss evaluation, the algorithm exhibited a deviation of 0.08% from the established failure probability benchmark. Full article
(This article belongs to the Special Issue Multiscale Analysis of Advanced Fiber Materials and Structures)
Show Figures

Figure 1

42 pages, 15346 KiB  
Review
A Review of Fibre Reinforced Polymer Bridges
by Jawed Qureshi
Fibers 2023, 11(5), 40; https://doi.org/10.3390/fib11050040 - 4 May 2023
Cited by 18 | Viewed by 16415
Abstract
Fibre-reinforced polymer composites (FRPs) offer various benefits for bridge construction. Lightweight, durability, design flexibility and fast erection in inaccessible areas are their unique selling points for bridge engineering. FRPs are used in four bridge applications: (1) FRP rebars/tendons in concrete; (2) repair and [...] Read more.
Fibre-reinforced polymer composites (FRPs) offer various benefits for bridge construction. Lightweight, durability, design flexibility and fast erection in inaccessible areas are their unique selling points for bridge engineering. FRPs are used in four bridge applications: (1) FRP rebars/tendons in concrete; (2) repair and strengthening of existing bridges; (3) new hybrid–FRP bridges with conventional materials and (4) all–FRP composite new bridges made entirely of FRP materials. This paper reviews FRP bridges, including all–FRP and hybrid–FRP bridges. FRP bridges’ history, materials, processes and bridge components—deck, girder, truss, moulded parts and cables/rebars are considered. This paper does not discuss the use of FRP as an architectural element and a strengthening system. While lack of design codes, material specifications and recycling are the major challenges, the high cost of FRPs still remains the most critical barrier to the progress of FRPs in bridges. Full article
(This article belongs to the Collection Review Papers of Fibers)
Show Figures

Figure 1

22 pages, 11565 KiB  
Article
Time-Dependent Seismic Performance of Coastal Bridges Reinforced with Hybrid FRP and Steel Bars
by Wei Yuan, Zhong-Kui Cai, Xiaolan Pan and Jun Lin
Materials 2022, 15(15), 5293; https://doi.org/10.3390/ma15155293 - 1 Aug 2022
Cited by 4 | Viewed by 2352
Abstract
To increase the durability and seismic resilience of coastal bridges, a hybrid reinforced concrete (HRC) bridge that incorporates both glass fiber-reinforced polymer (GFRP) bars and steel bars is proposed. The time-dependent seismic performance of the HRC bridge is comprehensively investigated at three levels, [...] Read more.
To increase the durability and seismic resilience of coastal bridges, a hybrid reinforced concrete (HRC) bridge that incorporates both glass fiber-reinforced polymer (GFRP) bars and steel bars is proposed. The time-dependent seismic performance of the HRC bridge is comprehensively investigated at three levels, namely the material, bridge column and bridge structure levels. First, the decrease of tensile strength of GFRP bars over time is analyzed based on the Arrhenius theory, and corrosion initiation time and performance deterioration of steel bars are determined by Fick’s second law and an empirical formula. Second, an efficient finite element modeling method for aging HRC bridge columns is proposed. Simulation of the compression/tension behavior and the fracture failure of the GFRP bar is described. Hysteretic analysis is further conducted to investigate the time-dependent energy dissipation, ductility, residual displacement, bearing capacity and post-yield stiffness ratio. Meanwhile, comparisons of HRC bridge columns to reinforced concrete (RC) references are provided. Third, the seismic demand and damage evolution of deteriorated HRC bridge structures are investigated through dynamic time-history analysis. The results indicate that the corrosion-resistant GFRP bars contribute to improving the bearing capacity and to reducing the residual displacement of the HRC bridge. With an increase in service time, the seismic damage to the bridge column, abutment and expansion bearing increases, but the damage to fixed bearing decreases. Research results presented herein show that the HRC bridge is a promising alternative structure scheme in the marine environment. Full article
Show Figures

Figure 1

22 pages, 12258 KiB  
Article
Integrated Finite Strip Computation for Modelling and Frequency Analysis of Hybrid Laminated FRP Structures
by Hamidreza Naderian, Moe M. S. Cheung, Elena Dragomirescu and Abdolmajid Mohammadian
Math. Comput. Appl. 2022, 27(3), 47; https://doi.org/10.3390/mca27030047 - 27 May 2022
Cited by 1 | Viewed by 2465
Abstract
This paper proposes an efficient numerical technique for simulating hybrid fiber-reinforced polymer (FRP) bridge systems. An integrated finite strip method (IFSM) is proposed to evaluate the free vibration performance of cable-stayed FRP bridges. The structural performance of the ultra-long span cable-stayed bridge (ULSCSB) [...] Read more.
This paper proposes an efficient numerical technique for simulating hybrid fiber-reinforced polymer (FRP) bridge systems. An integrated finite strip method (IFSM) is proposed to evaluate the free vibration performance of cable-stayed FRP bridges. The structural performance of the ultra-long span cable-stayed bridge (ULSCSB) is totally different than steel and concrete bridge structures due to the complexity of the mechanical behavior of the FRP deck. Herein, the anisotropic nature of the FRP laminated deck is considered in the analysis by introducing so-called laminate spline strips in the integrated finite strip solution. The structural interactions between all the components of the bridge can be handled using the proposed method. Column strips and cable strips are introduced and used to model the towers and cables, respectively. In addition, a straightforward scheme for modeling boundary conditions is developed. A case study is presented through which the accuracy and efficiency of the IFSM in modeling such structures, as well as in performing natural frequency analysis of long-span cable-stayed FRP bridges, are evaluated. The finite strip results are verified against the finite element analysis, and a significant enhancement in efficiency in terms of reduction in computational cost is demonstrated with the same level of accuracy. Full article
Show Figures

Figure 1

16 pages, 3330 KiB  
Review
Fiber-Reinforced Polymer Composites in the Construction of Bridges: Opportunities, Problems and Challenges
by Paweł Grzegorz Kossakowski and Wiktor Wciślik
Fibers 2022, 10(4), 37; https://doi.org/10.3390/fib10040037 - 18 Apr 2022
Cited by 33 | Viewed by 13669
Abstract
In this review, we discuss the basic issues related to the use of FRP (fiber-reinforced polymer) composites in bridge construction. This modern material is presented in detail in terms of the possibility of application in engineering structures. A general historical outline of the [...] Read more.
In this review, we discuss the basic issues related to the use of FRP (fiber-reinforced polymer) composites in bridge construction. This modern material is presented in detail in terms of the possibility of application in engineering structures. A general historical outline of the use and development of modern structural materials, such as steel and concrete, is included to introduce composites as a novel material in engineering, and the most important features and advantages of polymers as a construction material are characterized. We also compare FRP to basic structural materials, such as steel and concrete, which enables estimation of the effectiveness of using of FRP polymers as structural material in different applications. The first bridges made of FRP composites are presented and analyzed in terms of applied technological solutions. Examples of structural solutions for deck slabs, girders and other deck elements made of FRP composites are discussed. Particular attention is paid to the systems of deck slabs, especially those composed of pultruded profiles, sandwich panels and hybrid decks. The disadvantages of composites, as well as barriers and limitations in their application in engineering practice, are presented. Exemplary analyses of the costs of construction, maintenance and demolition of FRP composite bridges are presented and compared with the corresponding costs of concrete and steel bridges. The directions of development of composite bridge structures and the greatest challenges facing engineers and constructors in the coming years are discussed. Full article
(This article belongs to the Special Issue Fiber Composite Process)
Show Figures

Figure 1

17 pages, 3725 KiB  
Article
Characterizing the Structural Behavior of FRP Profiles—FRCM Hybrid Superficial Elements: Experimental and Numerical Studies
by Amir Reza Eskenati, Amir Mahboob, Ernest Bernat-Maso and Lluís Gil
Polymers 2022, 14(6), 1076; https://doi.org/10.3390/polym14061076 - 8 Mar 2022
Cited by 3 | Viewed by 2256
Abstract
Composite materials have been increasingly used to produce hybrid structures together with concrete. This system is commonly applied to bridges and roof structures. The main idea of the current research was to extend this approach by replacing the concrete with a fabric-reinforced cementitious [...] Read more.
Composite materials have been increasingly used to produce hybrid structures together with concrete. This system is commonly applied to bridges and roof structures. The main idea of the current research was to extend this approach by replacing the concrete with a fabric-reinforced cementitious matrix (FRCM) composite, resulting in a combination of composite materials. The main aim was to characterize the structural behavior of fiber-reinforced polymer (FRP) profiles and FRCM hybrid superficial elements. Two different prototypes of the hybrid superficial structural typology were tested to cover bidimensional and three-dimensional application cases of the proposed technology. After mortar cracking, the experimental results revealed a ductile response and a high mechanical capacity. A finite element model was implemented, calibrated, and validated by comparing numerical data with experimental results of the two prototypes. The output was a validated model that correctly captured the characteristic response of the proposed technology, which consisted of changing the structural response from a stiff plate configuration to a membrane type due to cracking of the FRCM composite part of the full solution. The suggested numerical model adequately reflected the experimental response and proved valuable for understanding and explaining the resistive processes established along this complicated FRP-FRCM hybrid structure. Full article
(This article belongs to the Special Issue Reinforced Polymer Composites III)
Show Figures

Figure 1

19 pages, 4459 KiB  
Article
Numerical and Experimental Studies of the Use of Fiber-Reinforced Polymers in Long-Span Suspension Bridges
by Yuri Gosteev, Ilya Konovalov, Alexander Lebedev, Alexander Obukhovskiy, Sergey Salenko and Andrey Yashnov
Energies 2022, 15(5), 1864; https://doi.org/10.3390/en15051864 - 3 Mar 2022
Cited by 5 | Viewed by 2048
Abstract
For the construction of transport infrastructure (including pipeline bridges for oil and gas transportation) in the conditions of the Far North, it is necessary to improve modern regulatory and technological base for using the fiber-reinforcing polymers. It is necessary to conduct searching research [...] Read more.
For the construction of transport infrastructure (including pipeline bridges for oil and gas transportation) in the conditions of the Far North, it is necessary to improve modern regulatory and technological base for using the fiber-reinforcing polymers. It is necessary to conduct searching research to determine the conditions and shapes of application of the fiber-reinforced polymer (FRP) in the load-bearing structures of bridges and pipelines through barriers. One such searching research is the study of the use of a suspension hybrid bridge with a superstructure of FRP. For this purpose, the calculations of finite-element models of pedestrian suspension bridges were performed and their aerodynamic stability was investigated on the section models in a wind tunnel. The novelty of the study consists in the proposed additions to the structure of the bridge, and the permissible geometric of the cross-sections of the superstructure were established for ensuring aerodynamic stability. Finally, this was the first time that it was directly established that the strength, stiffness and aerodynamic stability of a suspension hybrid bridge were provided. Full article
Show Figures

Figure 1

20 pages, 5846 KiB  
Article
Experimental Study on a Novel Shear Connection System for FRP-Concrete Hybrid Bridge Girder
by Mateusz Rajchel, Maciej Kulpa and Tomasz Siwowski
Materials 2020, 13(9), 2045; https://doi.org/10.3390/ma13092045 - 27 Apr 2020
Cited by 10 | Viewed by 3049
Abstract
The study presents experimental results of an investigation on a novel shear connection system for hybrid bridge girders composed of laminated composite beams and concrete slabs. The special connector comprised of a steel plate and welded bolts is attached to beam’s top flange [...] Read more.
The study presents experimental results of an investigation on a novel shear connection system for hybrid bridge girders composed of laminated composite beams and concrete slabs. The special connector comprised of a steel plate and welded bolts is attached to beam’s top flange by adhesive bonding and with a preset torque of nuts. The study’s purpose is to check ductility, safety, reliability and robustness of the shear connection before its implementation in the first Polish composite bridge. Three static push-out tests and fatigue test were performed to evaluate the shear connection behavior under static and cyclic loading. The load–slip curves, shear capacity, fatigue strength and failure mechanisms of the novel shear connectors are discussed. The high-slip modulus indicates that the connectors can very efficiently promote the composite action. The ultimate resistance and the fatigue strength obtained from the test was about 12% and 66% higher than the characteristic resistance and the fatigue strength of common headed studs, according to Eurocode 4, respectively. An estimated global safety factor of 3.67 showed the high safety, reliability and robustness of the novel connection system. The study discusses the structural performance of the proposed connection system, demonstrating its technical suitability. Full article
(This article belongs to the Special Issue Polymer in/on Concrete)
Show Figures

Figure 1

19 pages, 3294 KiB  
Article
Behavior of Cross Arms Inserted in Concrete-Filled Circular GFRP Tubular Columns
by Fang Xie, Ju Chen, Qian-Qian Yu and Xinlong Dong
Materials 2019, 12(14), 2280; https://doi.org/10.3390/ma12142280 - 16 Jul 2019
Cited by 6 | Viewed by 2969
Abstract
Fiber-reinforced polymer (FRP) materials nowadays have attracted much attention in both retrofitting of aged infrastructure and developing of new structural systems attributed to the outstanding mechanical properties. Extensive studies have been performed on concrete-filled glass FRP (GFRP) tubes for the potential application in [...] Read more.
Fiber-reinforced polymer (FRP) materials nowadays have attracted much attention in both retrofitting of aged infrastructure and developing of new structural systems attributed to the outstanding mechanical properties. Extensive studies have been performed on concrete-filled glass FRP (GFRP) tubes for the potential application in piling, poles, highways overhead sign structures and bridge components. The new hybrid member also provides an alternative solution for traditional transmission structures. However, the connection between concrete-filled GFRP tubes and cross arms has not been fully understood. In this paper, an experimental study and theoretical analysis were conducted on the behavior of cross arms inserted in concrete-filled circular GFRP tubular columns. Steel bars with a larger stiffness in comparison with GFRP tubes were selected here for the cross arm to simulate a more severe scenario. The structural responses of the system when the cross arms were subjected to concentrated loads were carefully recorded. Experimental results showed that the concrete-filled GFRP tubes could offer a sufficient restraint to the deformation of the cross arm. No visible cracks were found on the GFRP tube at the corner of the cross arm where the stress and strain concentrated. Theoretical solutions based on available theories and equations were adopted to predict the displacement of the cross arms and a good agreement was achieved between the prediction results and experimental findings. Full article
(This article belongs to the Special Issue Experimental and Numerical Investigation of Composite Materials)
Show Figures

Figure 1

Back to TopTop