Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = human-induced sinkhole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5880 KiB  
Article
Sinkhole Risk-Based Sensor Placement for Leakage Localization in Water Distribution Networks with a Data-Driven Approach
by Gabriele Medio, Giada Varra, Çağrı Alperen İnan, Luca Cozzolino and Renata Della Morte
Sustainability 2024, 16(12), 5246; https://doi.org/10.3390/su16125246 - 20 Jun 2024
Cited by 1 | Viewed by 2186
Abstract
Leakages from damaged or deteriorated buried pipes in urban water distribution networks may cause significant socio-economic and environmental impacts, such as depletion of water resources and sinkhole events. Sinkholes are often caused by internal erosion and fluidization of the soil surrounding leaking pipes, [...] Read more.
Leakages from damaged or deteriorated buried pipes in urban water distribution networks may cause significant socio-economic and environmental impacts, such as depletion of water resources and sinkhole events. Sinkholes are often caused by internal erosion and fluidization of the soil surrounding leaking pipes, with the formation of soil cavities that may eventually collapse. This in turn causes road disruption and building foundation damage, with possible victims. While the loss of precious water resources is a well-known problem, less attention has been paid to anthropogenic sinkhole events generated by leakages in water distribution systems. With a view to improving urban smart resilience and sustainability of urban areas, this study introduces an innovative framework to localize leakages based on a Machine learning model (for the training and evaluation of candidate sets of pressure sensors) and a Genetic algorithm (for the optimal sensor set positioning) with the goal of detecting and mitigating potential hydrogeological urban disruption due to water leakage in the most sensitive/critical locations. The application of the methodology on a synthetic case study from literature and a real-world case scenario shows that the methodology also contributes to reducing the depletion of water resources. Full article
Show Figures

Figure 1

22 pages, 49575 KiB  
Article
Spatial and Temporal Patterns of Land Subsidence and Sinkhole Occurrence in the Konya Endorheic Basin, Turkey
by Osman Orhan, Mahmud Haghshenas Haghighi, Vahdettin Demir, Ergin Gökkaya, Francisco Gutiérrez and Djamil Al-Halbouni
Geosciences 2024, 14(1), 5; https://doi.org/10.3390/geosciences14010005 - 22 Dec 2023
Cited by 7 | Viewed by 4689
Abstract
The endorheic Konya Basin is a vast aggradational plain in Central Anatolia, Türkiye. It occupies a significant portion of Konya Province, covering approximately 50,000 km2. The basin is subjected to intense groundwater withdrawal and extensive agricultural activities with excessive irrigation. These [...] Read more.
The endorheic Konya Basin is a vast aggradational plain in Central Anatolia, Türkiye. It occupies a significant portion of Konya Province, covering approximately 50,000 km2. The basin is subjected to intense groundwater withdrawal and extensive agricultural activities with excessive irrigation. These activities have led to human-induced hazards, such as sinkholes and regional land subsidence. Although sinkhole occurrence mainly occurs in the Karapınar area, land subsidence is primarily observed in the central sector of Konya city, with 2 million inhabitants, as well as in various parts of the basin. This study focuses on determining the extent and rate of land subsidence throughout the basin, understanding sinkhole formation, and unraveling their relationship with anthropogenic activities. For this purpose, Interferometric Synthetic Aperture Radar (InSAR) analysis of Sentinel-1 data from 2014 to 2022 was conducted to identify and assess land subsidence. We also used the land cover data and groundwater-level information to better understand the spatial and temporal patterns of land subsidence and sinkhole occurrence. Additionally, the land cover data were used to resolve spatial–temporal variations in the cultivated area and urbanization, which are the main factors governing groundwater exploitation in the region. Our study identified widespread subsidence zones with rates as high as 90 mm/y. Groundwater overexploitation to sustain extensive agricultural operations is the main cause of the high rate of land subsidence. Additionally, it was discovered that the number of sinkholes has substantially increased due to anthropogenic influences, currently amounting to as many as 660. Full article
Show Figures

Figure 1

18 pages, 3762 KiB  
Article
Ground Surface Deformation Analysis Integrating InSAR and GPS Data in the Karstic Terrain of Cheria Basin, Algeria
by Loubna Hamdi, Nabil Defaflia, Abdelaziz Merghadi, Chamssedine Fehdi, Ali P. Yunus, Jie Dou, Quoc Bao Pham, Hazem Ghassan Abdo, Hussein Almohamad and Motrih Al-Mutiry
Remote Sens. 2023, 15(6), 1486; https://doi.org/10.3390/rs15061486 - 7 Mar 2023
Cited by 10 | Viewed by 3937
Abstract
Karstic terrains are usually dominated by aquifer systems and/or underground cavities. Overexploitation of groundwater in such areas often induces land subsidence and sometimes causes sinkholes. The Cheria basin in Algeria suffers from severe land subsidence issues, and this phenomenon has been increasing in [...] Read more.
Karstic terrains are usually dominated by aquifer systems and/or underground cavities. Overexploitation of groundwater in such areas often induces land subsidence and sometimes causes sinkholes. The Cheria basin in Algeria suffers from severe land subsidence issues, and this phenomenon has been increasing in recent years due to population expansion and uncontrolled groundwater exploitation. This work uses GPS data and persistent scatterer interferometry synthetic aperture radar (PS-InSAR) techniques to monitor the land subsidence rate by employing Sentinel-1 satellite data for the period from 2016 to 2022. Our results demonstrate that the Cheria basin experiences both uplift and subsidence in places, with an overall substantial change in the land surface. The total cumulative subsidence over 6 years reached a maximum of 500 mm. Comparison of land deformation between PSI and GPS showed root mean square error (RMSE) values of about 2.83 mm/year, indicating that our analyzed results are satisfactorily reproducing the actual changes. Nonetheless, these results can be used to extract the susceptible zones for vertical ground displacement and evaluate the surface deformation inventory map of the region for reducing damages (e.g., human losses, economic impact, and environmental degradation) that may occur in the future (e.g., sinkholes) and can be further utilized in perspective for a sinkhole early warning system. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction)
Show Figures

Figure 1

21 pages, 22771 KiB  
Article
Multi-Temporal Satellite Interferometry for Fast-Motion Detection: An Application to Salt Solution Mining
by Lorenzo Solari, Roberto Montalti, Anna Barra, Oriol Monserrat, Silvia Bianchini and Michele Crosetto
Remote Sens. 2020, 12(23), 3919; https://doi.org/10.3390/rs12233919 - 29 Nov 2020
Cited by 15 | Viewed by 3261
Abstract
Underground mining is one of the human activities with the highest impact in terms of induced ground motion. The excavation of the mining levels creates pillars, rooms and cavities that can evolve in chimney collapses and sinkholes. This is a major threat where [...] Read more.
Underground mining is one of the human activities with the highest impact in terms of induced ground motion. The excavation of the mining levels creates pillars, rooms and cavities that can evolve in chimney collapses and sinkholes. This is a major threat where the mining activity is carried out in an urban context. Thus, there is a clear need for tools and instruments able to precisely quantify mining-induced deformation. Topographic measurements certainly offer very high spatial accuracy and temporal repeatability, but they lack in spatial distribution of measurement points. In the past decades, Multi-Temporal Satellite Interferometry (MTInSAR) has become one of the most reliable techniques for monitoring ground motion, including mining-induced deformation. Although with well-known limitations when high deformation rates and frequently changing land surfaces are involved, MTInSAR has been exploited to evaluate the surface motion in several mining area worldwide. In this paper, a detailed scale MTInSAR approach was designed to characterize ground deformation in the salt solution mining area of Saline di Volterra (Tuscany Region, central Italy). This mining activity has a relevant environmental impact, depleting the water resource and inducing ground motion; sinkholes are a common consequence. The MTInSAR processing approach is based on the direct integration of interferograms derived from Sentinel-1 images and on the phase splitting between low (LF) and high (HF) frequency components. Phase unwrapping is performed for the LF and HF components on a set of points selected through a “triplets closure” method. The final deformation map is derived by combining again the components to avoid error accumulation and by applying a classical atmospheric phase filtering to remove the remaining low frequency signal. The results obtained reveal the presence of several subsidence bowls, sometimes corresponding to sinkholes formed in the recent past. Very high deformation rates, up to −250 mm/yr, and time series with clear trend changes are registered. In addition, the spatial and temporal distribution of velocities and time series is analyzed, with a focus on the correlation with sinkhole occurrence. Full article
(This article belongs to the Special Issue Remote Sensing Analysis of Geologic Hazards)
Show Figures

Figure 1

36 pages, 44614 KiB  
Article
Analysis and Classification of Natural and Human-Induced Ground Deformations at Regional Scale (Campania, Italy) Detected by Satellite Synthetic-Aperture Radar Interferometry Archive Datasets
by Fabio Matano
Remote Sens. 2019, 11(23), 2822; https://doi.org/10.3390/rs11232822 - 28 Nov 2019
Cited by 25 | Viewed by 4372
Abstract
The high levels of geo-hydrological, seismic, and volcanic hazards in the Campania region prompted full data collection from C-band satellites ERS-1/2, ENVISAT, and RADARSAT within regional (TELLUS) and national (PST-A) projects. The quantitative analysis, interpretation, and classification of natural and human-induced slow-rate ground [...] Read more.
The high levels of geo-hydrological, seismic, and volcanic hazards in the Campania region prompted full data collection from C-band satellites ERS-1/2, ENVISAT, and RADARSAT within regional (TELLUS) and national (PST-A) projects. The quantitative analysis, interpretation, and classification of natural and human-induced slow-rate ground deformations across a span of two decades (1992–2010) was performed at regional scale (Campania, Italy) by using interferometric archive datasets, based on the Persistent Scatterer Interferometry approach. As radar satellite sensors have a side-looking view, the post-processing of the interferometric datasets allows for the evaluation of two spatial components (vertical and E-W horizontal ones) of ground deformation, while the N-S horizontal component cannot be detected. The ground deformation components have been analyzed across 89.5% of the Campania territory within a variety of environmental, topographical, and geological conditions. The main part (57%) of the regional territory was characterized during 1992–2010 by stable areas, where SAR signals do not have recorded significant horizontal and vertical components of ground deformation with an average annual rate greater than +1 mm/yr or lower than −1 mm/yr. Within the deforming areas, the coastal plains are characterized by widespread and continuous strong subsidence signals due to sediment compaction locally enhanced by human activity, while the inner plain sectors show mainly scattered spots with locally high subsidence in correspondence of urban areas, sinkholes, and groundwater withdrawals. The volcanic sectors show interplaying horizontal and vertical trends due to volcano-tectonic processes, while in the hilly and mountain inner sectors the ground deformation is mainly controlled by large-scale tectonic activity and by local landslide activity. The groundwater-related deformation is the dominant cause of human-caused ground deformation. The results confirm the importance of using Persistent Scatterer Interferometry data for a comprehensive understanding of rates and patterns of recent ground deformation at regional scale also within tectonically active areas as in Campania region. Full article
Show Figures

Graphical abstract

24 pages, 2850 KiB  
Review
A Review of Underground Pipeline Leakage and Sinkhole Monitoring Methods Based on Wireless Sensor Networking
by Haibat Ali and Jae-ho Choi
Sustainability 2019, 11(15), 4007; https://doi.org/10.3390/su11154007 - 24 Jul 2019
Cited by 83 | Viewed by 17396
Abstract
Major metropolitan cities worldwide have extensively invested to secure utilities and build state-of-the-art infrastructure related to underground fluid transportation. Sewer and water pipelines make our lives extremely convenient when they function appropriately. However, leakages in underground pipe mains causes sinkholes and drinking-water scarcity. [...] Read more.
Major metropolitan cities worldwide have extensively invested to secure utilities and build state-of-the-art infrastructure related to underground fluid transportation. Sewer and water pipelines make our lives extremely convenient when they function appropriately. However, leakages in underground pipe mains causes sinkholes and drinking-water scarcity. Sinkholes are the complex problems stemming from the interaction of leaked water and ground. The aim of this work is to review the existing methods for monitoring leakage in underground pipelines, the sinkholes caused by these leakages, and the viability of wireless sensor networking (WSN) for monitoring leakages and sinkholes. Herein, the authors have discussed the methods based on different objectives and their applicability via various approaches—(1) patent analysis; (2) web-of-science analysis; (3) WSN-based pipeline leakage and sinkhole monitoring. The study shows that the research on sinkholes due to leakages in sewer and water pipelines by using WSN is still in a premature stage and needs extensive investigation and research contributions. Additionally, the authors have suggested prospects for future research by comparing, analyzing, and classifying the reviewed methods. This study advocates collocating WSN, Internet of things, and artificial intelligence with pipeline monitoring methods to resolve the issues of the sinkhole occurrence. Full article
Show Figures

Figure 1

30 pages, 13504 KiB  
Review
The Role of Earth Observation, with a Focus on SAR Interferometry, for Sinkhole Hazard Assessment
by Andre Theron and Jeanine Engelbrecht
Remote Sens. 2018, 10(10), 1506; https://doi.org/10.3390/rs10101506 - 20 Sep 2018
Cited by 27 | Viewed by 8546
Abstract
Sinkholes are global phenomena with significant consequences on the natural- and built environment. Significant efforts have been devoted to the assessment of sinkhole hazards to predict the spatial and temporal occurrence of future sinkholes as well as to detect small-scale deformation prior to [...] Read more.
Sinkholes are global phenomena with significant consequences on the natural- and built environment. Significant efforts have been devoted to the assessment of sinkhole hazards to predict the spatial and temporal occurrence of future sinkholes as well as to detect small-scale deformation prior to collapse. Sinkhole hazard maps are created by considering the distribution of past sinkholes in conjunction with their geomorphic features, controlling conditions and triggering mechanisms. Quantitative risk assessment then involves the statistical analysis of sinkhole events in relation to these conditions with the aim of identifying high risk areas. Remote sensing techniques contribute to the field of sinkhole hazard assessment by providing tools for the population of sinkhole inventories and lend themselves to the monitoring of precursory deformation prior to sinkhole development. In this paper, we outline the background to sinkhole formation and sinkhole hazard assessment. We provide a review of earth observation techniques, both for the compilation of sinkhole inventories as well as the monitoring of precursors to sinkhole development. We discuss the advantages and limitations of these approaches and conclude by highlighting the potential role of radar interferometry in the early detection of sinkhole-induced instability resulting in a potential decrease in the risk to human lives and infrastructure by enabling proactive remediation. Full article
(This article belongs to the Special Issue Remote Sensing of Land Subsidence)
Show Figures

Graphical abstract

Back to TopTop