Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,816)

Search Parameters:
Keywords = human evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 44344 KB  
Article
The “Greenness-Quality Paradox” in the Arid Region of Northwest China: Disentangling Non-Linear Drivers via Interpretable Machine Learning
by Chen Yang, Xuemin He, Qianhong Tang, Jing Liu and Qingbin Xu
Remote Sens. 2026, 18(2), 363; https://doi.org/10.3390/rs18020363 - 21 Jan 2026
Abstract
The Arid Region of Northwest China (ARNC) functions as a critical ecological barrier for the Eurasian hinterland. To clarify the non-linear drivers of eco-environmental dynamics, a long-term (2000–2024) Remote Sensing Ecological Index (RSEI) time series was constructed and analyzed using an interpretable machine [...] Read more.
The Arid Region of Northwest China (ARNC) functions as a critical ecological barrier for the Eurasian hinterland. To clarify the non-linear drivers of eco-environmental dynamics, a long-term (2000–2024) Remote Sensing Ecological Index (RSEI) time series was constructed and analyzed using an interpretable machine learning framework (XGBoost-SHAP). The analysis reveals pronounced spatial asymmetry in ecological evolution: improvements are concentrated in localized, human-managed areas, while degradation occurs as a diffuse process driven by geomorphological inertia. The ARNC exhibits low-level stability (mean RSEI 0.25–0.30) and marked unbalanced dynamics, with significant degradation (19.9%) affecting more than twice the area of improvement (6.5%). Attribution analysis identifies divergent driving mechanisms: ecological improvement (R2 = 0.559) is primarily anthropogenic (58.3%), whereas degradation (R2 = 0.692) is mainly governed by natural constraints (58.4%), particularly structural topographic factors, where intrinsic landscape vulnerability is exacerbated by human activities. SHAP analysis corroborates a “Greenness-Quality Paradox” in stable agroecosystems, where high vegetation cover coincides with reduced evaporative cooling and secondary salinization from irrigation, resulting in declining Eco-Environmental Quality (EEQ). A zero-threshold effect for grazing intensity is also identified, indicating that any increase beyond the baseline immediately initiates ecological decline. In response, a Resist-Accept-Direct (RAD) framework is proposed: direct salt-water balance regulation in oases, resist hydrological cutoff in ecotones, and accept natural dynamics in the desert matrix. These findings provide a scientific basis for reconciling artificial greening initiatives with hydrological sustainability in water-limited regions. Full article
34 pages, 11904 KB  
Article
Influence of Bloat Control on Relocation Rules Automatically Designed via Genetic Programming
by Tena Škalec and Marko Đurasević
Biomimetics 2026, 11(1), 83; https://doi.org/10.3390/biomimetics11010083 - 21 Jan 2026
Abstract
The container relocation problem (CRP) is a critical optimisation problem in maritime port operations, in which efficient container handling is essential for maximising terminal throughput. Relocation rules (RRs) are a widely adopted solution approach for the CRP, particularly in online and dynamic environments, [...] Read more.
The container relocation problem (CRP) is a critical optimisation problem in maritime port operations, in which efficient container handling is essential for maximising terminal throughput. Relocation rules (RRs) are a widely adopted solution approach for the CRP, particularly in online and dynamic environments, as they enable fast, rule-based decision-making. However, the manual design of effective relocation rules is both time-consuming and highly dependent on problem-specific characteristics. To overcome this limitation, genetic programming (GP), a bio-inspired optimisation technique grounded in the principles of natural evolution, has been employed to automatically generate RRs. By emulating evolutionary processes such as selection, recombination, and mutation, GP can explore large heuristic search spaces and often produces rules that outperform manually designed alternatives. Despite these advantages and their inherently white-box nature, GP-generated relocation rules frequently exhibit excessive complexity, which hinders their interpretability and limits insight into the underlying decision logic. Motivated by the biomimetic observation that evolutionary systems tend to favour compact and efficient structures, this study investigates two mechanisms for controlling rule complexity, parsimony pressure, and solution pruning, and it analyses their effects on both the quality and size of relocation rules evolved by GP. The results demonstrate that substantial reductions in rule size can be achieved with only minor degradation in performance, measured as the number of relocated containers, highlighting a favourable trade-off between heuristic simplicity and solution quality. This enables the derivation of simpler and more interpretable heuristics while maintaining competitive performance, which is particularly valuable in operational settings where human planners must understand, trust, and potentially adjust automated decision rules. Full article
26 pages, 8292 KB  
Article
Altitudinal Gradient and Influencing Factors of Carbon Storage in the Gonghe Basin of the Qinghai–Tibet Plateau
by Ailing Sun, Xingsheng Xia, Yanqin Wang, Haifeng Zhang and Xuechang Zheng
ISPRS Int. J. Geo-Inf. 2026, 15(1), 48; https://doi.org/10.3390/ijgi15010048 - 21 Jan 2026
Abstract
Investigating the spatial distribution and dynamics of terrestrial carbon storage is vital for climate change mitigation. However, horizontal spatial analyses often overlook heterogeneity in complex terrains. Here, we focused on the Gonghe Basin on the northeastern margin of the Qinghai–Tibet Plateau, where resource [...] Read more.
Investigating the spatial distribution and dynamics of terrestrial carbon storage is vital for climate change mitigation. However, horizontal spatial analyses often overlook heterogeneity in complex terrains. Here, we focused on the Gonghe Basin on the northeastern margin of the Qinghai–Tibet Plateau, where resource exploitation and ecological conservation interact. By using land use and DEM data and integrating the InVEST model, Geoda, and a geographical detector, we showed the altitudinal gradient effect and spatiotemporal evolution of carbon storage in the Gonghe Basin from 2000 to 2020 and identified the key factors influencing these patterns. Results show the following: (1) From 2000 to 2020, carbon storage in the Gonghe Basin exhibited a distinct pattern of “high at mid-elevations, low at both summit and valley” along the elevation gradient. High-value areas were concentrated in the forest–grassland zone between 2800–4400 m, while low-value areas were distributed in the human activity-intensive zone of 2100–2800 m and the alpine desert zone of 4400–5000 m. (2) The synergistic drivers of carbon storage differed markedly across elevation gradients. The low-elevation zone (2100–2800 m) was characterized by strengthened interactions between vegetation cover and precipitation as well as human activity variables, indicating a coupled natural–anthropogenic driving regime. In the mid-elevation zone (2800–4400 m), interactive effects shifted from vegetation–natural factor coupling to enhanced synergy with social factors such as population density. In the high-elevation zone (4400–5000 m), stable long-term interactions between vegetation and temperature predominated, while sensitivity to interactions involving human activity factors increased. (3) Although natural factors remained dominant, the explanatory power of human activity factors—including GDP density, land-use intensity, and grazing intensity—increased over time across all elevation gradients, suggesting progressively stronger human intervention in carbon cycling. (4) Based on these findings, this study proposes a “three belts–three strategies” synergistic governance framework—“regulation and restoration” for the low-elevation belt, “conservation and efficiency enhancement” for the mid-elevation belt, and “monitoring and early warning” for the high-elevation belt—aiming to enhance regional carbon sink capacity and ecological resilience through zone-specific, targeted interventions. These findings offer a scientific basis for reinforcing regional ecological security and improving carbon sink management. Full article
30 pages, 1916 KB  
Review
KRAS Inhibition in Pancreatic Ductal Adenocarcinoma
by Roshini Pradeep, Nooredeen Jamal Isbeih, Freya F. Abraham, Ehsan Noori, Zachary P Yeung and Madappa N Kundranda
J. Clin. Med. 2026, 15(2), 873; https://doi.org/10.3390/jcm15020873 - 21 Jan 2026
Abstract
KRAS alterations are a hallmark of pancreatic ductal adenocarcinoma (PDAC) found in >90% of tumors. This review examines the historical evolution of the understanding of RAS and its central role in PDAC biology. We summarize the various downstream effectors, feedback loops, and resistance [...] Read more.
KRAS alterations are a hallmark of pancreatic ductal adenocarcinoma (PDAC) found in >90% of tumors. This review examines the historical evolution of the understanding of RAS and its central role in PDAC biology. We summarize the various downstream effectors, feedback loops, and resistance mechanisms that play a pivotal role in PDAC oncogenesis. Our review explores the early development of covalent inhibitors of KRAS G12C and efforts at specific inhibition of other codons and newer approaches of targeted protein degradation. We subsequently summarize the development of panRAS inhibitors and allosteric and switch-region targeting before focusing on rational therapeutic blockade of crosstalk and upstream signaling, with attention to synthetic lethality approaches transitioning from preclinical to early-phase in-human clinical trials. This review elaborates on ongoing KRAS-specific siRNA research and evolving KRAS-directed immunotherapies. We conclude by outlining the current KRAS clinical trial landscape and future areas of investigation. Full article
(This article belongs to the Special Issue Diagnosis, Treatment, and Management of Gastrointestinal Oncology)
15 pages, 3355 KB  
Article
Deleterious Mutations in the Mitogenomes of Cetacean Populations
by Matthew Freeman, Umayal Ramasamy and Sankar Subramanian
Biology 2026, 15(2), 199; https://doi.org/10.3390/biology15020199 - 21 Jan 2026
Abstract
Cetaceans are artiodactyls adapted to live in the marine environment, and this group includes whales, dolphins, and porpoises. Although mitochondrial nucleotide diversity has been reported separately for many cetacean groups, the proportion of deleterious mutations in these populations is unknown. Furthermore, a comparison [...] Read more.
Cetaceans are artiodactyls adapted to live in the marine environment, and this group includes whales, dolphins, and porpoises. Although mitochondrial nucleotide diversity has been reported separately for many cetacean groups, the proportion of deleterious mutations in these populations is unknown. Furthermore, a comparison of mitogenomic diversities across all cetaceans is also lacking. To investigate this, we conducted a comparative genomic analysis of 2244 mitochondrial genomes from 65 populations across 32 cetacean species. We observed a 78-fold variation in mitogenomic diversity among cetacean populations, suggesting a large difference in genetic diversity. We used the ratio of nonsynonymous-to-synonymous diversities (dN/dS) to measure the proportion of deleterious mutations in the mitochondrial exomes. The dN/dS ratio showed a 22-fold difference between the cetacean population. Based on genetic theories, the large differences observed in the two measures could be attributed to differences in the effective sizes of the cetacean populations. Typically, small populations have low heterozygosity and a high dN/dS ratio, and the reverse is true for large populations. This was further confirmed by the negative correlation observed between heterozygosity and dN/dS ratios of cetacean populations. While our analysis revealed similarities in mitogenomic diversity between the endangered and least-concern cetacean species, the dN/dS ratio of the former was found to be higher than that of the latter. The findings of this study are useful for identifying the relative magnitude of reductions in the population sizes of different cetacean species. This will help conservation management efforts prioritise the use of limited resources, time, and effort to protect the cetacean populations that need immediate attention. Full article
(This article belongs to the Special Issue Genetic Variability within and between Populations)
Show Figures

Figure 1

19 pages, 371 KB  
Article
Between Religion and Crisis: Yasir Qadhi’s Da‘wa as Islamic Practical Theology in Post-October 7 America
by Elad Ben David
Religions 2026, 17(1), 118; https://doi.org/10.3390/rel17010118 - 21 Jan 2026
Abstract
Practical theology is the application of theological reflection to concrete human experience—how faith is interpreted and embodied within shifting social realities. In the article, I examine how Islamic practical theology was interpreted amid the extensive crisis in light of the Gaza war in [...] Read more.
Practical theology is the application of theological reflection to concrete human experience—how faith is interpreted and embodied within shifting social realities. In the article, I examine how Islamic practical theology was interpreted amid the extensive crisis in light of the Gaza war in post-October 7 America, connecting it to the Islamic concept of da’wa (call to Islam). As a case study, I explore the doctrine of Sheikh Yasir Qadhi, one of the most prominent clerics in the US, who emerged as part of a new generation of young American imams who burst into the Western public sphere during the post-9/11 era. The rise of social media gained him prestige and solidified his global influence, amplifying his impact on shaping contemporary Islamic discourse to millions in America and the West. Similar to Qadhi’s post-9/11 use of daʿwa as a practical theology that transformed Islamophobia into a means of strengthening faith and American Muslim identity, his post-October 7 da’wa discourse is a clear case of Islamic practical theology in response to crisis. Following the October 7 events, Qadhi framed the chaotic situation in Gaza as both a spiritual and activist catalyst. His emphasis on daʿwa promoted personal piety, repentance, and communal solidarity, while also urging political activism, interfaith dialogue, and advocacy for global Muslim causes. This dual strategy—spiritual renewal intertwined with socio-political mobilization—illustrates how daʿwa functions as a flexible instrument of Islamic practical theology addressing individual, communal, and national concerns. By comparing Qadhi’s post-9/11 and post-October 7 discourses, the article highlights a shift from defensive apologetics shaped by Islamophobia to a more assertive public theology intertwined with political engagement. This evolution illustrates how American Muslim leadership employs a living, crisis-responsive theology to redefine faith, identity, and responsibility in moments of profound upheaval. Full article
(This article belongs to the Special Issue Islamic Practical Theology)
18 pages, 4731 KB  
Article
Dynamics of PM2.5 Emissions from Cropland Fires in Typical Regions of China and Its Impact on Air Quality
by Chenqin Lian and Zhiming Feng
Fire 2026, 9(1), 46; https://doi.org/10.3390/fire9010046 - 20 Jan 2026
Abstract
Cropland fires are an important source of air pollution emissions and have a significant impact on regional air quality and human health. Although straw-burning ban policies have been implemented to mitigate emissions, the dynamics of PM2.5 emissions from cropland fires under such [...] Read more.
Cropland fires are an important source of air pollution emissions and have a significant impact on regional air quality and human health. Although straw-burning ban policies have been implemented to mitigate emissions, the dynamics of PM2.5 emissions from cropland fires under such stringent regulations are still not fully understood. This study utilizes PM2.5 emission data from the Global Fire Assimilation System (GFAS), land-cover data from CLCD, and PM2.5 concentration data from ChinaHighAirPollutants (CHAP) to examine the dynamic evolution of PM2.5 emissions from cropland fires under straw-burning ban policies across China and to assess their environmental impacts. The results show that the 2013 Air Pollution Prevention and Control Action Plan initiated the development of provincial straw-burning ban policies. These policies resulted in a drastic reduction in PM2.5 emissions from cropland fires in North China (NC), with a 65% decrease in 2022 compared to the 2012 peak. In contrast, a notable lagged effect was observed in Northeast China (NEC), where the increasing trend of PM2.5 emissions was not reversed until 2017. By 2022, emissions in this region had declined by 53% and 45% compared to the 2015 peak and 2017 sub-peak, respectively. Moreover, significant regional differences were found in the environmental impacts of PM2.5 emissions from cropland fires, with strong effects during summer in NC and during spring and autumn in NEC. This study provides empirical support for understanding the environmental impacts of cropland fires in key regions of China and offers critical insights to inform and refine related pollution control policies. Full article
Show Figures

Figure 1

17 pages, 1647 KB  
Article
Novel Genetic Diversity and Geographic Structures of Aspergillus fumigatus (Order Eurotiales, Family Aspergillaceae) in the Karst Regions of Guizhou, China
by Duanyong Zhou, Yixian Liu, Qifeng Zhang, Ying Zhang and Jianping Xu
Microorganisms 2026, 14(1), 237; https://doi.org/10.3390/microorganisms14010237 - 20 Jan 2026
Abstract
Aspergillus fumigatus is the primary pathogen causing aspergillosis. Recent molecular population genetic studies have demonstrated that A. fumigatus exhibits high local genetic diversity, with evidence for limited differentiation among geographic populations. However, research on the impacts of geomorphological factors on shaping the population [...] Read more.
Aspergillus fumigatus is the primary pathogen causing aspergillosis. Recent molecular population genetic studies have demonstrated that A. fumigatus exhibits high local genetic diversity, with evidence for limited differentiation among geographic populations. However, research on the impacts of geomorphological factors on shaping the population genetic diversity patterns of this species remains scarce. In this study, large-scale sampling and in-depth population genetic analysis were performed on soil-derived A. fumigatus from Guizhou Province, a representative karst landscape in southern China. This area is dominated by plateaus and mountains (accounting for 92.5% of the total area) and represents a classic example of conical karst landscapes. A total of 206 A. fumigatus strains were isolated from 9 sampling sites across Guizhou. Genetic diversity, genetic differentiation, and population structure of these strains were analyzed based on short tandem repeats (STRs) at 9 loci. The results revealed that A. fumigatus in the karst region of Guizhou harbors abundant novel alleles and genotypes, with high genetic diversity. Gene flow among geographical populations was infrequent, and significant genetic differentiation was detected between 30 of the 36 pairs of geographical populations where mountain ranges played a very important role, with the overall regional genetic differentiation reaching PhiPT = 0.061 (p = 0.001). Furthermore, the Guizhou populations showed significant differences from those reported in other regions worldwide. Surprisingly, only one of the 206 (0.49%) A. fumigatus isolates from this region exhibited resistance to the two medical triazoles commonly used for treating aspergillosis, and this resistance frequency was far lower than those reported in previous studies from other regions. We discuss the implications of our results for evolution and environmental antifungal resistance management in this important human fungal pathogen. Full article
(This article belongs to the Special Issue Ecology and Genetics of Medically Important Fungi)
Show Figures

Figure 1

17 pages, 2563 KB  
Article
Structural and Catalytic Roles of the Disulfide Bonds Cys19–Cys154 and Cys134–Cys199 in Trypsin-like Proteases: Evolutionary Insights for Disulfide Bond Acquisition
by Maiko Minakata, Yuri Murakami, Orika Ashida, Miki Matsuzaki, Kairi Ogawa, Nanako Saeki, Shigeru Shimamoto, Mitsuhiro Miyazawa, Yuji Hidaka and Nana Sakata
Molecules 2026, 31(2), 351; https://doi.org/10.3390/molecules31020351 - 19 Jan 2026
Viewed by 25
Abstract
Trypsin is one of the most extensively studied enzymes in biochemistry. However, little information is available on the role of the disulfide bonds to establish the correct conformation and enzyme activity during molecular evolution. To obtain this information, two additional disulfide bonds corresponding [...] Read more.
Trypsin is one of the most extensively studied enzymes in biochemistry. However, little information is available on the role of the disulfide bonds to establish the correct conformation and enzyme activity during molecular evolution. To obtain this information, two additional disulfide bonds corresponding to those found in human trypsin were individually or simultaneously introduced into the trypsin-like protease cocoonase (Bombyx mori), which contains three consensus disulfide bonds, and structural effects were analyzed. Enzyme assays of the mutant proteins revealed that, during molecular evolution, the Cys19–Cys154 bond contributed to improving substrate recognition (Km), whereas the Cys134–Cys199 bond contributed to enhancing catalytic turnover (kcat). In addition, the Cys134–Cys199 disulfide bond significantly increased the structural stability, whereas the Cys19–Cys154 disulfide bond promoted a more compact folded ensemble. Interestingly, when both disulfide bridges were introduced together, their effects acted synergistically, yielding the highest catalytic activity toward the substrate BAEE (kcat/Km). Taken together, these findings suggest that trypsin-like proteases evolved through a two-step adaptive process: an initial phase in which the catalytic efficiency (kcat) and structural stability were enhanced, followed by a second phase in which the fold became more compact, thereby improving the overall enzymatic activity. Full article
(This article belongs to the Special Issue Peptide and Protein Folding)
Show Figures

Graphical abstract

14 pages, 488 KB  
Article
The Evolution of Nanoparticle Regulation: A Meta-Analysis of Research Trends and Historical Parallels (2015–2025)
by Sung-Kwang Shin, Niti Sharma, Seong Soo A. An and Meyoung-Kon (Jerry) Kim
Nanomaterials 2026, 16(2), 134; https://doi.org/10.3390/nano16020134 - 19 Jan 2026
Viewed by 19
Abstract
Objective: We analyzed nanoparticle regulation research to examine the evolution of regulatory frameworks, identify major thematic structures, and evaluate current challenges in the governance of rapidly advancing nanotechnologies. By drawing parallels with the historical development of radiation regulation, the study aimed to [...] Read more.
Objective: We analyzed nanoparticle regulation research to examine the evolution of regulatory frameworks, identify major thematic structures, and evaluate current challenges in the governance of rapidly advancing nanotechnologies. By drawing parallels with the historical development of radiation regulation, the study aimed to contextualize emerging regulatory strategies and derive lessons for future governance. Methods: A total of 9095 PubMed-indexed articles published between January 2015 and October 2025 were analyzed using text mining, keyword frequency analysis, and topic modeling. Preprocessed titles and abstracts were transformed into a TF-IDF (Term Frequency–Inverse Document Frequency) document–term matrix, and NMF (Non-negative Matrix Factorization) was applied to extract semantically coherent topics. Candidate topic numbers (K = 1–12) were evaluated using UMass coherence scores and qualitative interpretability criteria to determine the optimal topic structure. Results: Six major research topics were identified, spanning energy and sensor applications, metal oxide toxicity, antibacterial silver nanoparticles, cancer nano-therapy, and nanoparticle-enabled drug and mRNA delivery. Publication output increased markedly after 2019 with interdisciplinary journals driving much of the growth. Regulatory considerations were increasingly embedded within experimental and biomedical research, particularly in safety assessment and environmental impact analyses. Conclusions: Nanoparticle regulation matured into a dynamic multidisciplinary field. Regulatory efforts should prioritize adaptive, data-informed, and internationally harmonized frameworks that support innovation while ensuring human and environmental safety. These findings provide a data-driven overview of how regulatory thinking was evolved alongside scientific development and highlight areas where future governance efforts were most urgently needed. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

30 pages, 5064 KB  
Article
Antimicrobial Functionalized Mesoporous Silica FDU-12 Loaded with Bacitracin
by Dan Adrian Vasile, Ludmila Motelica, Luiza-Andreea Mîrț, Gabriel Vasilievici, Oana-Maria Memecică, Ovidiu Cristian Oprea, Adrian-Vasile Surdu, Roxana Doina Trușcă, Cristina Chircov, Bogdan Ștefan Vasile, Zeno Dorian Ghizdavet, Denisa Ficai, Ana-Maria Albu, Radu Pericleanu, Andreea Ștefania Dumbravă, Mara-Mădălina Mihai, Irina Gheorghe-Barbu and Anton Ficai
Molecules 2026, 31(2), 340; https://doi.org/10.3390/molecules31020340 - 19 Jan 2026
Viewed by 46
Abstract
The threats leading to the extinction of humanity accelerate the evolution and development of materials that are capable of providing conditions for preserving health and, implicitly, life. In our work, we developed drug delivery systems based on mesoporous silica which can deliver an [...] Read more.
The threats leading to the extinction of humanity accelerate the evolution and development of materials that are capable of providing conditions for preserving health and, implicitly, life. In our work, we developed drug delivery systems based on mesoporous silica which can deliver an antibiotic, bacitracin, in a more controlled manner. The synthesis of the FDU-12 was performed through a sol–gel method and alternatively functionalized with -NH2 groups or with poly(N-acryloylmorpholine) chains. The loading of bacitracin was performed using the vacuum-assisted method we successfully used to load these mesoporous materials preferentially within the pores as proved by the TGA-DSC results. The release was performed in two types of simulated body fluid (SBF) and this process was evaluated with chromatographic method using UV detection. The obtained data were fitted in three mathematical models of kinetic drug release (Weibull model, Korsmeyer–Peppas model, and nonlinear regression). The antimicrobial evaluation demonstrated that bacitracin-loaded FDU-12 formulations exhibited strong activity against both reference and clinical Staphylococcus strains. At sub-inhibitory concentrations, all formulations significantly reduced microbial adherence and biofilm formation, although certain strain-dependent stimulatory effects were observed. Furthermore, exposure to sub-MIC levels modulated the production of soluble virulence factors (hemolysins, lipase, and amylase), in a formulation- and strain-dependent manner, underscoring the ability of surface-functionalized FDU-12 carriers to influence bacterial pathogenicity while enhancing antimicrobial efficacy. Full article
Show Figures

Graphical abstract

22 pages, 2600 KB  
Article
Risk Identification and Chaotic Synchronization Control for Spent Fuel Road Transportation Based on Complex Network Evolution Models
by Wen Chen, Shuliang Zou, Changjun Qiu and Meiyan Gan
Appl. Sci. 2026, 16(2), 994; https://doi.org/10.3390/app16020994 - 19 Jan 2026
Viewed by 41
Abstract
To improve the safety of road transportation of Spent Nuclear Fuel (SNF), this paper proposes a novel approach for risk identification and chaotic synchronous control in SNF road transportation systems. Firstly, a dynamic risk evolution model for the road transportation of SNF is [...] Read more.
To improve the safety of road transportation of Spent Nuclear Fuel (SNF), this paper proposes a novel approach for risk identification and chaotic synchronous control in SNF road transportation systems. Firstly, a dynamic risk evolution model for the road transportation of SNF is developed by analyzing the nonlinear interactions among vehicles, environmental conditions, and human factors using complex network analysis and nonlinear dynamics. Secondly, an enhanced K-shell decomposition method is applied to identify key risk nodes and assess the relative importance of different risk factors, providing a basis for targeted risk control. Finally, a chaotic synchronization control strategy based on Lyapunov stability is proposed to suppress risk divergence and restore system stability. Three targeted control schemes are evaluated by varying the control gain coefficients across the ‘Vehicle–Environment–Human’ dimensions. Simulation results indicate that the strategy prioritizing environmental and human risk control yields the fastest convergence, significantly outperforming vehicle-centric approaches. The results show that prioritizing both environmental and human-factor control is most effective for suppressing chaotic divergence. This provides a solid quantitative basis for the strategic shift from passive defense to active environmental warning, thereby significantly optimizing the dynamic risk management of the SNF transportation system. Full article
Show Figures

Figure 1

24 pages, 303 KB  
Article
Darwinian Narratives: Cultural Impact and Reconsideration
by Jonathan R. Witt
Religions 2026, 17(1), 114; https://doi.org/10.3390/rel17010114 - 19 Jan 2026
Viewed by 100
Abstract
The rise in the West of religious unbelief and its sometimes companions, relativism and nihilism, has been widely noted. Dostoyevsky’s famous dictum, “Without God, everything is permissible,” has in many quarters been taken as more recommendation than warning. The causes behind this trend [...] Read more.
The rise in the West of religious unbelief and its sometimes companions, relativism and nihilism, has been widely noted. Dostoyevsky’s famous dictum, “Without God, everything is permissible,” has in many quarters been taken as more recommendation than warning. The causes behind this trend are surely complex, but a key accelerant appears to have been the triumph of Darwin’s theory of evolution, in its original and now updated forms. Taken to its logical conclusions, the theory, together with part of its methodological apparatus (methodological naturalism), would seem to drain physical reality of meaning and humans of free will, significance, and higher purpose. Atheist philosopher Daniel Dennett called it a “universal acid.” The subject is one that could fill many books. One manageable way of rendering the subject manageable in a single paper is by considering key narratives that buttress Darwinian theory and by tracing the theory’s impact on the narrative arts of literature and film. How have Christians in the academy responded to modern evolutionary theory’s impact on the culture? One response has been to graft it onto Christianity in the hopes of neutralizing the theory’s more pernicious cultural implications. In practice, such attempts have tended to fundamentally alter either modern evolutionary theory or Christianity or both. Before attempting any such union, we would do well to revisit the foundations of the theory. Full article
(This article belongs to the Special Issue Humans, Science, and Faith)
21 pages, 5218 KB  
Article
Groundwater Pollution Transport in Plain-Type Landfills: Numerical Simulation of Coupled Impacts of Precipitation and Pumping
by Tengchao Li, Shengyan Zhang, Xiaoming Mao, Yuqin He, Ninghao Wang, Daoyuan Zheng, Henghua Gong and Tianye Wang
Hydrology 2026, 13(1), 36; https://doi.org/10.3390/hydrology13010036 - 17 Jan 2026
Viewed by 67
Abstract
Landfills serve as a primary disposal method for municipal solid waste in China, with over 20,000 operational sites nationwide; however, long-term operations risk leachate leakage and groundwater contamination. Amid intensifying climate change and human activities, understanding contaminant evolution mechanisms in landfills has become [...] Read more.
Landfills serve as a primary disposal method for municipal solid waste in China, with over 20,000 operational sites nationwide; however, long-term operations risk leachate leakage and groundwater contamination. Amid intensifying climate change and human activities, understanding contaminant evolution mechanisms in landfills has become critically urgent. Focusing on a representative plain-based landfill in North China, this study integrated field investigations and groundwater monitoring to establish a monthly coupled groundwater flow–solute transport model (using MODFLOW and MT3DMS codes) based on site-specific hydrogeological boundaries and multi-year monitoring data, analyzing spatiotemporal plume evolution under the coupled impacts of precipitation variability (climate change) and intensive groundwater extraction (human activities), spanning the historical period (2021–2024) and future projections (2025–2040). Historical simulations demonstrated robust model performance with satisfactory calibration against observed water levels and chloride concentrations, revealing that the current contamination plume exhibits a distinct distribution beneath the site. Future projections indicate nonlinear concentration increases: in the plume core zone, concentrations rise with precipitation, whereas at the advancing front, concentrations escalate with extraction intensity. Spatially, high-risk zones (>200 mg/L) emerge earlier under wetter conditions—under the baseline scenario (S0), such zones form by 2033 and exceed site boundaries by 2037. Plume expansion scales positively with extraction intensity, reaching its maximum advancement and coverage under the high-extraction scenario. These findings demonstrate dual drivers—precipitation accelerates contaminant accumulation through enhanced leaching, while groundwater extraction promotes plume expansion via heightened hydraulic gradients. This work elucidates coupled climate–human activity impacts on landfill contamination mechanisms, proposing a transferable numerical modeling framework that provides a quantitative scientific basis for post-closure supervision, risk assessment, and regional groundwater protection strategies, thereby aligning with China’s Standard for Pollution Control on the Landfill Site of Municipal Solid Waste and the Zero-Waste City initiative. Full article
26 pages, 14905 KB  
Article
Data–Knowledge Collaborative Learning Framework for Cellular Traffic Forecasting via Enhanced Correlation Modeling
by Keyi An, Qiangjun Li, Kaiqi Chen, Min Deng, Yafei Liu, Senzhang Wang and Kaiyuan Lei
ISPRS Int. J. Geo-Inf. 2026, 15(1), 43; https://doi.org/10.3390/ijgi15010043 - 16 Jan 2026
Viewed by 234
Abstract
Forecasting the spatio-temporal evolutions of cellular traffic is crucial for urban management. However, achieving accurate forecasting is challenging due to “complex correlation modeling” and “model-blindness” issues. Specifically, cellular traffic is generated within complex urban systems characterized by an intricate structure and human mobility. [...] Read more.
Forecasting the spatio-temporal evolutions of cellular traffic is crucial for urban management. However, achieving accurate forecasting is challenging due to “complex correlation modeling” and “model-blindness” issues. Specifically, cellular traffic is generated within complex urban systems characterized by an intricate structure and human mobility. Existing approaches, often based on proximity or attributes, struggle to learn the latent correlation matrix governing traffic evolution, which limits forecasting accuracy. Furthermore, while substantial knowledge about urban systems can supplement the modeling of correlations, existing methods for integrating this knowledge—typically via loss functions or embeddings—overlook the synergistic collaboration between data and knowledge, resulting in weak model robustness. To address these challenges, we develop a data–knowledge collaborative learning framework termed the knowledge-empowered spatio-temporal neural network (KESTNN). This framework first extracts knowledge triplets representing urban structures to construct a knowledge graph. Representation learning is then conducted to learn the correlation matrix. Throughout this process, data and knowledge are integrated collaboratively via backpropagation, contrasting with the forward feature injection methods typical of existing approaches. This mechanism ensures that data and knowledge directly guide the dynamic updating of model parameters through backpropagation, rather than merely serving as a static feature prompt, thereby fundamentally alleviating the “model-blindness” issue. Finally, the optimized matrix is embedded into a forecasting module. Experiments on the Milan dataset demonstrate that the KESTNN exhibits excellent forecast performance, reducing RMSE by up to 23.91%, 16.73%, and 10.40% for 3-, 6-, and 9-step forecasts, respectively, compared to the best baseline. Full article
Show Figures

Figure 1

Back to TopTop