Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = hue value ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1383 KB  
Article
Enhancing Underwater Images with LITM: A Dual-Domain Lightweight Transformer Framework
by Wang Hu, Zhuojing Rong, Lijun Zhang, Zhixiang Liu, Zhenhua Chu, Lu Zhang, Liping Zhou and Jingxiang Xu
J. Mar. Sci. Eng. 2025, 13(8), 1403; https://doi.org/10.3390/jmse13081403 - 23 Jul 2025
Viewed by 544
Abstract
Underwater image enhancement (UIE) technology plays a vital role in marine resource exploration, environmental monitoring, and underwater archaeology. However, due to the absorption and scattering of light in underwater environments, images often suffer from blurred details, color distortion, and low contrast, which seriously [...] Read more.
Underwater image enhancement (UIE) technology plays a vital role in marine resource exploration, environmental monitoring, and underwater archaeology. However, due to the absorption and scattering of light in underwater environments, images often suffer from blurred details, color distortion, and low contrast, which seriously affect the usability of underwater images. To address the above limitations, a lightweight transformer-based model (LITM) is proposed for improving underwater degraded images. Firstly, our proposed method utilizes a lightweight RGB transformer enhancer (LRTE) that uses efficient channel attention blocks to capture local detail features in the RGB domain. Subsequently, a lightweight HSV transformer encoder (LHTE) is utilized to extract global brightness, color, and saturation from the hue–saturation–value (HSV) domain. Finally, we propose a multi-modal integration block (MMIB) to effectively fuse enhanced information from the RGB and HSV pathways, as well as the input image. Our proposed LITM method significantly outperforms state-of-the-art methods, achieving a peak signal-to-noise ratio (PSNR) of 26.70 and a structural similarity index (SSIM) of 0.9405 on the LSUI dataset. Furthermore, the designed method also exhibits good generality and adaptability on unpaired datasets. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 3771 KB  
Article
BGIR: A Low-Illumination Remote Sensing Image Restoration Algorithm with ZYNQ-Based Implementation
by Zhihao Guo, Liangliang Zheng and Wei Xu
Sensors 2025, 25(14), 4433; https://doi.org/10.3390/s25144433 - 16 Jul 2025
Viewed by 429
Abstract
When a CMOS (Complementary Metal–Oxide–Semiconductor) imaging system operates at a high frame rate or a high line rate, the exposure time of the imaging system is limited, and the acquired image data will be dark, with a low signal-to-noise ratio and unsatisfactory sharpness. [...] Read more.
When a CMOS (Complementary Metal–Oxide–Semiconductor) imaging system operates at a high frame rate or a high line rate, the exposure time of the imaging system is limited, and the acquired image data will be dark, with a low signal-to-noise ratio and unsatisfactory sharpness. Therefore, in order to improve the visibility and signal-to-noise ratio of remote sensing images based on CMOS imaging systems, this paper proposes a low-light remote sensing image enhancement method and a corresponding ZYNQ (Zynq-7000 All Programmable SoC) design scheme called the BGIR (Bilateral-Guided Image Restoration) algorithm, which uses an improved multi-scale Retinex algorithm in the HSV (hue–saturation–value) color space. First, the RGB image is used to separate the original image’s H, S, and V components. Then, the V component is processed using the improved algorithm based on bilateral filtering. The image is then adjusted using the gamma correction algorithm to make preliminary adjustments to the brightness and contrast of the whole image, and the S component is processed using segmented linear enhancement to obtain the base layer. The algorithm is also deployed to ZYNQ using ARM + FPGA software synergy, reasonably allocating each algorithm module and accelerating the algorithm by using a lookup table and constructing a pipeline. The experimental results show that the proposed method improves processing speed by nearly 30 times while maintaining the recovery effect, which has the advantages of fast processing speed, miniaturization, embeddability, and portability. Following the end-to-end deployment, the processing speeds for resolutions of 640 × 480 and 1280 × 720 are shown to reach 80 fps and 30 fps, respectively, thereby satisfying the performance requirements of the imaging system. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

16 pages, 1159 KB  
Article
Enhancing Product Quality, Nutrition, Antioxidant Capacity, and Sensory Quality of Chicken Sausages by Replacing Fats with Agaricus bisporus and Soybean Oil
by Haijuan Nan, Haixu Zhou, Tetiana M. Stepanova, Zongshuai Zhu and Bo Li
Foods 2025, 14(13), 2296; https://doi.org/10.3390/foods14132296 - 28 Jun 2025
Viewed by 752
Abstract
There are growing health concerns regarding high-fat meat products. This study systematically evaluated the quality of reformulated chicken sausages through progressive substitution (30%, 60%, and 90%) of traditional pork-back fat with an Agaricus bisporus–soybean oil complex. The 60% substitution optimized texture, fatty [...] Read more.
There are growing health concerns regarding high-fat meat products. This study systematically evaluated the quality of reformulated chicken sausages through progressive substitution (30%, 60%, and 90%) of traditional pork-back fat with an Agaricus bisporus–soybean oil complex. The 60% substitution optimized texture, fatty acids, and sensory properties: hardness increased from 4332.38 N (control) to 5810.04 N, and chewiness from 3048.55 N to 3896.93 N. Linoleic acid (C18:2n6) rose from 13.00 to 32.81 g/100 g and α-linolenic acid (C18:3n3) from 0.60 to 3.05 g/100 g, improving the PUFA/SFA ratio from 0.40 to 1.15). Sensory scores (flavor/taste/overall) increased from 6.0/5.1/6.6 to 7.2/5.6/7.4. After 35-day storage, TBARS values (0.161, 0.147, 0.126 mg/100 g for 30%/60%/90% groups) remained below the control (0.232 mg/100 g). Meanwhile, the reduced-fat sausages exhibited a deeper, less saturated red hue. Scanning electron microscopy (SEM) revealed an enhanced network structure in the sausage matrix. The reformulated sausages maintained essential product characteristics such as cooking yield, moisture retention, protein content, and amino acid profile while achieving a 9.5–16.1% reduction in energy value. These findings collectively demonstrate that the A. bisporus–soybean oil complex effectively enhances the product quality, nutrition, antioxidant capacity, and sensory quality of reduced-fat chicken sausages, demonstrating this plant-based composite as a promising functional ingredient for developing healthier meat products. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

15 pages, 4479 KB  
Article
Hue Angle-Based Remote Sensing of Secchi Disk Depth Using Sentinel-3 OLCI in the Coastal Waters of Qinhuangdao, China
by Yongwei Huo, Sufang Zhao, Zhongjie Yuan, Xiang Wang and Lin Wang
J. Mar. Sci. Eng. 2025, 13(6), 1149; https://doi.org/10.3390/jmse13061149 - 10 Jun 2025
Viewed by 749
Abstract
Seawater transparency provides critical insight into marine ecological dynamics and serves as a foundational indicator for fisheries management, environmental monitoring, and coastal resource development. Among various indicators, the Secchi disk depth (SDD) is widely used to quantify seawater transparency in marine environmental monitoring. [...] Read more.
Seawater transparency provides critical insight into marine ecological dynamics and serves as a foundational indicator for fisheries management, environmental monitoring, and coastal resource development. Among various indicators, the Secchi disk depth (SDD) is widely used to quantify seawater transparency in marine environmental monitoring. This study develops a remote sensing inversion model for estimating the SDD in the coastal waters of Qinhuangdao, utilizing Sentinel-3 OLCI satellite imagery and in situ measurements. The model is based on the CIE hue angle and demonstrates high accuracy (R2 = 0.93, MAPE = 7.88%, RMSE = 0.25 m), outperforming traditional single-band, band-ratio, and multi-band approaches. Using the proposed model, we analyzed the monthly and interannual variations of SDD in Qinhuangdao’s coastal waters from 2018 to 2024. The results reveal a clear seasonal pattern, with SDD values generally increasing and then decreasing throughout the year, primarily driven by the East Asian monsoon and other natural factors. Notably, the average annual SDD in 2018 was significantly lower than in subsequent years (2019–2024), which is closely associated with comprehensive water management and pollution reduction initiatives in the Bohai Sea region. These findings highlight marked improvements in the coastal marine environment and underscore the benefits of China’s ecological civilization strategy, particularly the principle that “lucid waters and lush mountains are invaluable assets.” Full article
(This article belongs to the Special Issue Remote Sensing for Maritime Monitoring and Ship Surveillance)
Show Figures

Figure 1

22 pages, 3547 KB  
Article
Classification of Garden Chrysanthemum Flowering Period Using Digital Imagery from Unmanned Aerial Vehicle (UAV)
by Jiuyuan Zhang, Jingshan Lu, Qimo Qi, Mingxiu Sun, Gangjun Zheng, Qiuyan Zhang, Fadi Chen, Sumei Chen, Fei Zhang, Weimin Fang and Zhiyong Guan
Agronomy 2025, 15(2), 421; https://doi.org/10.3390/agronomy15020421 - 7 Feb 2025
Cited by 3 | Viewed by 1231
Abstract
Monitoring the flowering period is essential for evaluating garden chrysanthemum cultivars and their landscaping use. However, traditional field observation methods are labor-intensive. This study proposes a classification method based on color information from canopy digital images. In this study, an unmanned aerial vehicle [...] Read more.
Monitoring the flowering period is essential for evaluating garden chrysanthemum cultivars and their landscaping use. However, traditional field observation methods are labor-intensive. This study proposes a classification method based on color information from canopy digital images. In this study, an unmanned aerial vehicle (UAV) with a red-green-blue (RGB) sensor was utilized to capture orthophotos of garden chrysanthemums. A mask region-convolutional neural network (Mask R-CNN) was employed to remove field backgrounds and categorize growth stages into vegetative, bud, and flowering periods. Images were then converted to the hue-saturation-value (HSV) color space to calculate eight color indices: R_ratio, Y_ratio, G_ratio, Pink_ratio, Purple_ratio, W_ratio, D_ratio, and Fsum_ratio, representing various color proportions. A color ratio decision tree and random forest model were developed to further subdivide the flowering period into initial, peak, and late periods. The results showed that the random forest model performed better with F1-scores of 0.9040 and 0.8697 on two validation datasets, requiring less manual involvement. This method provides a rapid and detailed assessment of flowering periods, aiding in the evaluation of new chrysanthemum cultivars. Full article
(This article belongs to the Special Issue New Trends in Agricultural UAV Application—2nd Edition)
Show Figures

Figure 1

15 pages, 300 KB  
Article
The Impact of Partially Replacing Dietary Maize with Graded Levels of Banana Peels on Nutrient Digestibility, Physiology, and Meat Quality Traits in Jumbo Quail
by Indibabale Kumalo, Victor Mlambo and Caven Mguvane Mnisi
Poultry 2024, 3(4), 437-451; https://doi.org/10.3390/poultry3040034 - 16 Dec 2024
Cited by 2 | Viewed by 2027
Abstract
We evaluated the effect of replacing maize with graded levels of banana (Musa acuminata) peels (BPs) on feed utilisation, physiological performance, and meat quality traits in Jumbo quail. In a completely randomised design, 341 one-week-old, unsexed quail chicks were randomly allocated [...] Read more.
We evaluated the effect of replacing maize with graded levels of banana (Musa acuminata) peels (BPs) on feed utilisation, physiological performance, and meat quality traits in Jumbo quail. In a completely randomised design, 341 one-week-old, unsexed quail chicks were randomly allocated to 30 cages and reared on five experimental diets containing 0 (BP0), 25 (BP25), 50 (BP50), 75 (BP75), and 100 g/kg BP (BP100) in a conventional grower diet. Dry matter, organic matter, and gross energy digestibility values linearly declined (p < 0.05) with BP levels. Feed intake in the 5th week linearly declined (p < 0.05) as BP levels increased. The BP0 diet promoted greater overall body weight gain than BP100. Similarly, birds on BP0 had a higher (p < 0.05) overall gain-to-feed ratio than birds on BP75 and BP100. Significant linear increases were observed for relative gizzard, and small and large intestine weights. There were negative quadratic effects (p < 0.05) for relative proventriculus weight, breast lightness, and thigh chroma as BP levels increased. Furthermore, thigh yellowness linearly decreased, while hue angle linearly increased with BP levels. The partial substitution of maize with BP in Jumbo quail diet compromised feed digestibility and performance parameters, stimulated visceral organ development, and altered some meat colour attributes. Full article
34 pages, 13091 KB  
Article
Methods for Extracting Fractional Vegetation Cover from Differentiated Scenarios Based on Unmanned Aerial Vehicle Imagery
by Changning Sun, Yonggang Ma, Heng Pan, Qingxue Wang, Jiali Guo, Na Li and Hong Ran
Land 2024, 13(11), 1840; https://doi.org/10.3390/land13111840 - 5 Nov 2024
Cited by 1 | Viewed by 1263
Abstract
Fractional vegetation cover (FVC) plays a key role in ecological and environmental status assessment because it directly reflects the extent of vegetation cover and its status, yet vegetation is an important component of ecosystems. FVC estimation methods have evolved from traditional manual interpretation [...] Read more.
Fractional vegetation cover (FVC) plays a key role in ecological and environmental status assessment because it directly reflects the extent of vegetation cover and its status, yet vegetation is an important component of ecosystems. FVC estimation methods have evolved from traditional manual interpretation to advanced remote sensing technologies, such as satellite data analysis and unmanned aerial vehicle (UAV) image processing. Extraction methods based on high-resolution UAV data are being increasingly studied in the fields of ecology and remote sensing. However, research on UAV-based FVC extraction against the backdrop of the high soil reflectance in arid regions remains scarce. In this paper, based on 12 UAV visible light images in differentiated scenarios in the Ebinur Lake basin, Xinjiang, China, various methods are used for high-precision FVC estimation: Otsu’s thresholding method combined with 12 Visible Vegetation Indices (abbreviated as Otsu-VVIs) (excess green index, excess red index, excess red minus green index, normalized green–red difference index, normalized green–blue difference index, red–green ratio index, color index of vegetation extraction, visible-band-modified soil-adjusted vegetation index, excess green minus red index, modified green–red vegetation index, red–green–blue vegetation index, visible-band difference vegetation index), color space method (red, green, blue, hue, saturation, value, lightness, ‘a’ (Green–Red component), and ‘b’ (Blue–Yellow component)), linear mixing model (LMM), and two machine learning algorithms (a support vector machine and a neural network). The results show that the following methods exhibit high accuracy in FVC extraction across differentiated scenarios: Otsu–CIVE, color space method (‘a’: Green–Red component), LMM, and SVM (Accuracy > 0.75, Precision > 0.8, kappa coefficient > 0.6). Nonetheless, higher scene complexity and image entropy reduce the applicability of precise FVC extraction methods. This study facilitates accurate, efficient extraction of vegetation information in differentiated scenarios within arid and semiarid regions, providing key technical references for FVC estimation in similar arid areas. Full article
Show Figures

Figure 1

15 pages, 1699 KB  
Article
Vacuum Packaging Can Protect Ground Beef Color and Oxidation during Cold Storage
by Gabriela M. Bernardez-Morales, Savannah L. Douglas, Brooks W. Nichols, Ricardo J. Barrazueta-Cordero, Aeriel D. Belk, Terry D. Brandebourg, Tristan M. Reyes and Jason T. Sawyer
Foods 2024, 13(17), 2841; https://doi.org/10.3390/foods13172841 - 7 Sep 2024
Cited by 4 | Viewed by 3361
Abstract
Storing ground beef at frozen temperatures prior to refrigerated display when using thermoforming vacuum packaging is not a common manufacturing practice. However, limited data on thermoforming packaging film and its interaction with meat quality suggests that more information is needed. The current study [...] Read more.
Storing ground beef at frozen temperatures prior to refrigerated display when using thermoforming vacuum packaging is not a common manufacturing practice. However, limited data on thermoforming packaging film and its interaction with meat quality suggests that more information is needed. The current study aimed to identify the influences of thermoforming packaging on the surface color and lipid oxidation of ground beef. Ground beef was portioned into 454 g bricks and packaged into one of three thermoforming films: T1 (150 µ polyethylene/EVOH/polyethylene coextrusion), T2 (175 µ polyethylene /EVOH/polyethylene coextrusion), and T3 (200 µ polyethylene/EVOH/polyethylene coextrusion), stored for 21 days at −20.83 °C (±1.50 °C), and displayed for 42 days at 3.0 °C ± 1.5 °C. There were no statistical differences for the packaging treatment of lipid oxidation (p = 0.0744), but oxidation increased throughout storage day (p < 0.0001). The main effects of treatment and day resulted in altered (p < 0.05) surface lightness (L*), redness (a*), yellowness, hue angle (°), red-to-brown (RTB), and relative myoglobin for met-myoglobin (MET), deoxymyoglobin (DMB), and oxymyoglobin (OMB). Surprisingly, there was an interaction between treatment and day for the calculated relative values of chroma (p = 0.0321), Delta E (p = 0.0155), and the ratio of a*:b* (p < 0.0001). These results indicate that thermoforming vacuum packaging can reduce the rate of deterioration that occurs to ground beef color and the rate of oxidation. Full article
(This article belongs to the Special Issue Safety and Quality Control in Meat Processing)
Show Figures

Figure 1

19 pages, 12972 KB  
Article
Integrating Image Analysis and Machine Learning for Moisture Prediction and Appearance Quality Evaluation: A Case Study of Kiwifruit Drying Pretreatment
by Shuai Yu, Haoran Zheng, David I. Wilson, Wei Yu and Brent R. Young
Foods 2024, 13(12), 1789; https://doi.org/10.3390/foods13121789 - 7 Jun 2024
Cited by 5 | Viewed by 1654
Abstract
The appearance of dried fruit clearly influences the consumer’s perception of the quality of the product but is a subtle and nuanced characteristic that is difficult to quantitatively measure, especially online. This paper describes a method that combines several simple strategies to assess [...] Read more.
The appearance of dried fruit clearly influences the consumer’s perception of the quality of the product but is a subtle and nuanced characteristic that is difficult to quantitatively measure, especially online. This paper describes a method that combines several simple strategies to assess a suitable surrogate for the elusive quality using imaging, combined with multivariate statistics and machine learning. With such a convenient tool, this study also shows how one can vary the pretreatments and drying conditions to optimize the resultant product quality. Specifically, an image batch processing method was developed to extract color (hue, saturation, and value) and morphological (area, perimeter, and compactness) features. The accuracy of this method was verified using data from a case study experiment on the pretreatment of hot-air-dried kiwifruit slices. Based on the extracted image features, partial least squares and random forest models were developed to satisfactorily predict the moisture ratio (MR) during drying process. The MR of kiwifruit slices during drying could be accurately predicted from changes in appearance without using any weighing device. This study also explored determining the optimal drying strategy based on appearance quality using principal component analysis. Optimal drying was achieved at 60 °C with 4 mm thick slices under ultrasonic pretreatment. For the 70 °C, 6 mm sample groups, citric acid showed decent performance. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Food Industry)
Show Figures

Figure 1

12 pages, 1455 KB  
Article
Oxidative Evolution of Different Model Rosé Wines Affected by Distinct Anthocyanin and Tannin Contents
by Federico Baris, Antonio Castro Marin and Fabio Chinnici
Beverages 2024, 10(2), 43; https://doi.org/10.3390/beverages10020043 - 4 Jun 2024
Cited by 1 | Viewed by 1701
Abstract
The quality of rosé wines significantly depends on their phenolic composition, particularly tannins, anthocyanins, and their derivatives, which determine the perceived color of these products and their color evolution throughout the storage and shelf-life periods. This study investigated the impact of phenolic content [...] Read more.
The quality of rosé wines significantly depends on their phenolic composition, particularly tannins, anthocyanins, and their derivatives, which determine the perceived color of these products and their color evolution throughout the storage and shelf-life periods. This study investigated the impact of phenolic content on the oxidation and color evolution of five different model rosé wines obtained by blending a fixed amount of grape tannins with varying concentrations of oenocyanin to modulate their respective ratio and color intensity. The solutions were monitored for color and pigment changes promoted by oxidation in a Fenton-like environment. The findings revealed a potential correlation between the initial phenolic concentration and the different degrees of oxidation within each solution, resulting in significant variations in CIELAB data. Overall, all solutions exhibited a substantial decrease in redness, with losses ranging from 23% in the darkest solution to 43% in the lightest one compared to their initial levels. Additionally, their color profiles shifted toward yellow hues, up to triple the original value, indicating the degradation of the pigments responsible for the characteristic rosé color. Greater amounts of anthocyanins preserved higher Fe(II) concentrations over time, suggesting the antioxidant role of these compounds. The whole dataset also permitted the evaluation of the different oxidation susceptibilities of individual anthocyanins, among which derived pigments, such as vitisins, proved to be notably more stable than native pigments, particularly delphinidin and petunidin. Full article
(This article belongs to the Section Wine, Spirits and Oenological Products)
Show Figures

Figure 1

17 pages, 8658 KB  
Article
Effect of Sprouted Buckwheat on Glycemic Index and Quality of Reconstituted Rice
by Lingtao Kang, Jiaqian Luo, Zhipeng Su, Liling Zhou, Qiutao Xie and Gaoyang Li
Foods 2024, 13(8), 1148; https://doi.org/10.3390/foods13081148 - 10 Apr 2024
Cited by 4 | Viewed by 2771
Abstract
This study utilized sprouted buckwheat as the main component and aimed to optimize its combination with other grains to produce reconstituted rice with enhanced taste and a reduced glycemic index (GI). The optimal blend comprised wheat flour, sprouted buckwheat flour, black rice flour, [...] Read more.
This study utilized sprouted buckwheat as the main component and aimed to optimize its combination with other grains to produce reconstituted rice with enhanced taste and a reduced glycemic index (GI). The optimal blend comprised wheat flour, sprouted buckwheat flour, black rice flour, and purple potato flour in a ratio of 34.5:28.8:26.7:10.0. Based on this blend, the reconstituted rice processed through extrusion puffing exhibited a purple-black hue; meanwhile, the instant reconstituted rice, produced through further microwave puffing, displayed a reddish-brown color. both imparted a rich cereal flavor. The starch in both types of rice exhibited a V-shaped structure with lower relative crystallinity. Compared to commercial rice, the reconstituted rice and instant reconstituted rice contained higher levels of flavonoids, polyphenols, and other flavor compounds, along with 1.63-fold and 1.75-fold more proteins, respectively. The GI values of the reconstituted rice and the instant reconstituted rice were 68.86 and 69.47, respectively; thus, they are medium-GI foods that can alleviate the increase in blood glucose levels. Full article
Show Figures

Figure 1

12 pages, 288 KB  
Article
Comparative Study of Carcass Characteristics and Meat Quality of Local Mediterranean Donkey Breeds
by Mohamed Aroua, Hayet Haj Koubaier, Chaima Rekik, Antonella Fatica, Samia Ben Said, Atef Malek, Mokhtar Mahouachi and Elisabetta Salimei
Foods 2024, 13(6), 942; https://doi.org/10.3390/foods13060942 - 20 Mar 2024
Cited by 7 | Viewed by 2365
Abstract
This study aimed to evaluate carcass and meat quality traits in Masri (n = 14) and North African (n = 14) male donkeys, raised in a semi-intensive breeding system, grazing on mountainous areas, with supplementation of 1 kg of barley per [...] Read more.
This study aimed to evaluate carcass and meat quality traits in Masri (n = 14) and North African (n = 14) male donkeys, raised in a semi-intensive breeding system, grazing on mountainous areas, with supplementation of 1 kg of barley per day per animal, slaughtered at 5 (±0.48) years old. Compared to Masri, the North African population exhibited higher (p < 0.05) final body weights (181.7 ± 2.1 and 212.5 ± 7.6 kg) and cold carcass weights (101.7 ± 1.3 and 116.2 ± 4.5 kg), but lower (p < 0.05) cold dressing percentages (56.0 ± 0.4 and 54.6 ± 0.4%). Meat quality analyses showed higher (p < 0.05) cooking loss values in Masri meat (43.9 ± 0.8 vs. 39.9 ± 1.2%). Among the meat color parameters, the hue value was higher (p < 0.05) in North African samples (0.42 ± 0.01 vs. 0.39 ± 0.1). Meat from North African donkeys had higher (p < 0.05) dry matter, fat, and protein contents. Meat amino acid analysis revealed abundant levels of lysine, leucine, and methionine, in both populations. Donkey meat from both populations presented a high polyunsaturated fatty acids content, resulting in polyunsaturated fatty acids/saturated fatty acids and omega 6/omega 3 ratios for all breeds close to the recommended values for human health. Atherogenic and thrombogenic indices were also suggested to have positive effects on consumers’ artery health. The characteristics of donkey meat present intriguing nutritional aspects compared to ruminant meat, and its production should be encouraged in the rural development of inner-Mediterranean areas. Full article
11 pages, 517 KB  
Article
Ethyl Formate Fumigation against Pineapple Mealybug, Dysmicoccus brevipes, a Quarantine Insect Pest of Pineapples
by Tae Hyung Kwon, Dong-Bin Kim, Bongsu Kim, Joanna Bloese, Byung-Ho Lee and Dong H. Cha
Insects 2024, 15(1), 25; https://doi.org/10.3390/insects15010025 - 2 Jan 2024
Cited by 5 | Viewed by 2690
Abstract
Pineapple mealybug, Dysmicoccus brevipes (Hemiptera: Pseudococcidae), is a significant pest in pineapple production and a key trade barrier. We explored the potential use of ethyl formate (EF) as a methyl bromide alternative for the postharvest fumigation of D. brevipes in imported pineapples. When [...] Read more.
Pineapple mealybug, Dysmicoccus brevipes (Hemiptera: Pseudococcidae), is a significant pest in pineapple production and a key trade barrier. We explored the potential use of ethyl formate (EF) as a methyl bromide alternative for the postharvest fumigation of D. brevipes in imported pineapples. When treated at 8 °C for 4 h, EF fumigation was effective against D. brevipes with LCt99, the lethal concentration × time product of EF necessary to achieve 99% mortality of D. brevipes nymphs and adults at 64.2 and 134.8 g h/m3, respectively. Sorption trials conducted with 70 g/m3 EF for 4 h at 8 °C using 7.5, 15 and 30% pineapple loading ratios (w/v) indicated that loading ratio lower than 30% is necessary to achieve the LCt99 values required to control D. brevipes. In a scaled up trial using 1 m3 chamber, EF fumigation with 70 g/m3 for 4 h at 8 °C with 20% pineapple loading ratio (w/v) resulted in a complete control of D. brevipes treated. There were no significant differences in hue values, sugar contents, firmness, and weight loss between EF-treated and untreated pineapples. Our results suggest that EF is a promising alternative to methyl bromide fumigation for the postharvest phytosanitary disinfection of D. brevipes in pineapples. Full article
(This article belongs to the Special Issue New Formulations of Natural Substances against Insect Pests)
Show Figures

Figure 1

13 pages, 5285 KB  
Article
Effect of Vine Age, Dry Farming and Supplemental Irrigation on Color and Phenolic Extraction of cv. Zinfandel Wines from California
by L. Federico Casassa, Jocelyn Alvarez Arredondo and Jean Catherine Dodson Peterson
Fermentation 2023, 9(11), 974; https://doi.org/10.3390/fermentation9110974 - 15 Nov 2023
Cited by 1 | Viewed by 2137
Abstract
A dry-farmed vineyard block with vines of varying ages including young vines (5 to 12 years old), control vines (2:1 ratio of old to young vines), and old vines (40 to 60 years old) was either submitted to irrigation or dry-farmed. The experimental [...] Read more.
A dry-farmed vineyard block with vines of varying ages including young vines (5 to 12 years old), control vines (2:1 ratio of old to young vines), and old vines (40 to 60 years old) was either submitted to irrigation or dry-farmed. The experimental design yielded six treatments, namely, Irrigated Control, Irrigated Young, Irrigated Old, Dry-farmed Control, Dry-farmed Young, and Dry-farmed Old. Irrigated Young wines were lower in alcohol, anthocyanins, and tannins, as well as higher in pH and hue angle values (H*), than the remaining treatments. Dry-farmed Young wines were higher in anthocyanins and small polymeric pigments, and showed higher color saturation and red hue. However, the magnitude of these differences was small. At pressing, the anthocyanin composition of these Zinfandel wines was largely dominated by malvidin-3-glucoside (60 to 65%), but after 15 months of bottle aging their anthocyanin profile shifted to 60% of anthocyanin derivatives, with small polymeric pigments accounting for more than 70% of the total polymeric pigment content of the wines. Irrigated Old wines and Dry-farmed Old wines did not differ to any significant extent in their basic chemistry, phenolic chemistry (including detailed anthocyanin composition), and chromatic composition. Full article
(This article belongs to the Collection New Aspect on Wine Fermentation)
Show Figures

Figure 1

15 pages, 1328 KB  
Article
Effect of Pretreatment and Temperature on Drying Characteristics and Quality of Green Banana Peel
by Kushal Dhake, Sanjay Kumar Jain, Sandeep Jagtap and Pankaj B. Pathare
AgriEngineering 2023, 5(4), 2064-2078; https://doi.org/10.3390/agriengineering5040127 - 3 Nov 2023
Cited by 9 | Viewed by 8648
Abstract
In banana cultivation, a considerable amount of the production is wasted every year because of various constraints present in the post-harvest management chain. Converting green banana pulp and peels into flour could help to reduce losses and enable the food sector to keep [...] Read more.
In banana cultivation, a considerable amount of the production is wasted every year because of various constraints present in the post-harvest management chain. Converting green banana pulp and peels into flour could help to reduce losses and enable the food sector to keep the product for an entire year or more. In order to use green banana fruit and peel flour in the food industry as a raw ingredient such as in bakery and confectionery items—namely biscuits, cookies, noodles, nutritious powder, etc.—it is essential to standardize the process for the production of the flour. As a result, the purpose of this study was to investigate the influence of pretreatment and temperature on the drying capabilities and quality of dried green banana peel. The green banana peel pieces were pretreated with 0.5 and 1.0% KMS (potassium metabisulfite), and untreated samples were taken as control, and dried at 40°, 50°, and 60 °C in a tray dryer. To reduce the initial moisture content of 90–91.58% (wb) to 6.25–9.73% (wb), a drying time of 510–360 min was required in all treatments. The moisture diffusivity (Deff) increased with temperature, i.e., Deff increased from 5.069–6.659 × 10−8, 6.013–7.653 × 10−8, and 4.969–6.510 × 10−8 m2/s for the control sample, 0.5% KMS, and 1.0% KMS, respectively. The Page model was determined to be the best suited for the drying data with the greatest R2 and the least χ2 and RSME values in comparison with the other two models. When 0.5% KMS-pretreated materials were dried at 60 °C, the water activity and drying time were minimal. Hue angle, chroma, and rehydration ratio were satisfactory and within the acceptable limits for 0.5% KMS-pretreated dried banana peel at 60 °C. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

Back to TopTop