Oxidative Evolution of Different Model Rosé Wines Affected by Distinct Anthocyanin and Tannin Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Samples
2.3. Phenolic and Tannin Contents, Total Anthocyanins, Color, and CIELAB Coordinates of Model Rosé Wines
2.4. Determination of Fe(II) and Total Fe in Model Rosé Wines
2.5. Identification and Quantification of Anthocyanins in Model Rosé Wines
2.6. Statistical Treatment of Data
3. Results and Discussion
3.1. Initial Color of Model Rosé Wines and Its Oxidative Evolution during Storage
3.2. Iron Speciation
3.3. Evolution of Monomeric Anthocyanins and Derived Pigments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iazzi, A.; Scorrano, P.; Rosato, P.; Grandhi, B. Millennial Generation Preferences for Rosé Wine: An Exploratory Study of the Italian and French Markets. Br. Food J. 2020, 122, 2443–2461. [Google Scholar] [CrossRef]
- Leborgne, C.; Lambert, M.; Ducasse, M.A.; Meudec, E.; Verbaere, A.; Sommerer, N.; Boulet, J.C.; Masson, G.; Mouret, J.R.; Cheynier, V. Elucidating the Color of Rosé Wines Using Polyphenol-Targeted Metabolomics. Molecules 2022, 27, 1359. [Google Scholar] [CrossRef]
- Brouillard, R.; Chassaing, S.; Fougerousse, A. Why Are Grape/Fresh Wine Anthocyanins so Simple and Why Is It That Red Wine Color Lasts so Long? Phytochemistry 2003, 64, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Mané, C.; Souquet, J.M.; Ollé, D.; Verriés, C.; Véran, F.; Mazerolles, G.; Cheynier, V.; Fulcrand, H. Optimization of Simultaneous Flavanol, Phenolic Acid, and Anthocyanin Extraction from Grapes Using an Experimental Design: Application to the Characterization of Champagne Grape Varieties. J. Agric. Food Chem. 2007, 55, 7224–7233. [Google Scholar] [CrossRef]
- Fulcrand, H.; Atanasova, V.; Salas, E.; Cheynier, V. The Fate of Anthocyanins in Wine: Are There Determining Factors? ACS Symp. Ser. 2004, 886, 68–88. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology, Volume 1: The Microbiology of Wine and Vinifications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; ISBN 0-470-01034-7. [Google Scholar]
- Skouroumounis, G.K.; Kwiatkowski, M.J.; Francis, I.L.; Oakey, H.; Capone, D.L.; Duncan, B.; Sefton, M.A.; Waters, E.J. The Impact of Closure Type and Storage Conditions on the Composition, Colour and Flavour Properties of a Riesling and a Wooded Chardonnay Wine during Five Years’ Storage. Aust. J. Grape Wine Res. 2005, 11, 369–377. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef]
- Cheynier, V.; Prieur, C.; Guyot, S.; Rigaud, J.; Moutounet, M. The Structures of Tannins in Grapes and Wines and Their Interactions with Proteins. ACS Symp. Ser. 1997, 661, 81–93. [Google Scholar] [CrossRef]
- Rivas-Gonzalo, J.C.; Santos-Buelga, C. Understanding the Colour of Red Wines: From Anthocyanins to Complex Pigments. In Polyphenols, Wine and Health; Springer: Dordrecht, The Netherlands, 2001; pp. 99–121. [Google Scholar] [CrossRef]
- Alcalde-Eon, C.; Escribano-Bailón, M.T.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Changes in the Detailed Pigment Composition of Red Wine during Maturity and Ageing: A Comprehensive Study. Anal. Chim. Acta 2006, 563, 238–254. [Google Scholar] [CrossRef]
- Mateus, N.; Silva, A.M.S.; Rivas-Gonzalo, J.C.; Santos-Buelga, C.; De Freitas, V. A New Class of Blue Anthocyanin-Derived Pigments Isolated from Red Wines. J. Agric. Food Chem. 2003, 51, 1919–1923. [Google Scholar] [CrossRef]
- Wirth, J.; Caillé, S.; Souquet, J.M.; Samson, A.; Dieval, J.B.; Vidal, S.; Fulcrand, H.; Cheynier, V. Impact of Post-Bottling Oxygen Exposure on the Sensory Characteristics and Phenolic Composition of Grenache Rosé Wines. Food Chem. 2012, 132, 1861–1871. [Google Scholar] [CrossRef]
- Gil, M.; Louazil, P.; Iturmendi, N.; Moine, V.; Cheynier, V.; Saucier, C. Effect of Polyvinylpolypyrrolidone Treatment on Rosés Wines during Fermentation: Impact on Color, Polyphenols and Thiol Aromas. Food Chem. 2019, 295, 493–498. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Review of Reaction Mechanisms of Oxygen and Proposed Intermediate Reduction Products in Wine: Central Role of Iron and Copper. Am. J. Enol. Vitic. 2003, 54, 73–85. [Google Scholar] [CrossRef]
- Garrido-Bañuelos, G.G.; Buica, A.; Sharp, E.; de Villiers, A.; du Toit, W.J. The Impact of Different Tannin to Anthocyanin Ratios and of Oxygen on the Phenolic Polymerisation Over Time in a Wine-like Solution. S. Afr. J. Enol. Vitic. 2019, 40, 1. [Google Scholar] [CrossRef]
- Gambuti, A.; Picariello, L.; Rinaldi, A.; Moio, L. Evolution of Sangiovese Wines with Varied Tannin and Anthocyanin Ratios during Oxidative Aging. Front. Chem. 2018, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Salinas, M.R.; Garijo, J.; Pardo, F.; Zalacain, A.; Alonso, G.L. Color, Polyphenol, and Aroma Compounds in Rose Wines after Prefermentative Maceration and Enzymatic Treatments. Am. J. Enol. Vitic. 2003, 54, 195–202. [Google Scholar] [CrossRef]
- Kelebek, H.; Canbas, A.; Selli, S. HPLC-DAD-MS Analysis of Anthocyanins in Rose Wine Made from Cv. Öküzgözü Grapes, and Effect of Maceration Time on Anthocyanin Content. Chromatographia 2007, 66, 207–212. [Google Scholar] [CrossRef]
- Glories, Y. La Couleur Des Vins Rouges. 2e Partie: Mesure, Origine et Interprétation. OENO One 1984, 18, 253–271. [Google Scholar] [CrossRef]
- Negueruela, A.I.; Ech, J.F.; Pi, M.M. A Study of Correlation Between Enological Colorimetric Indexes and CIE Colorimetric Parameters in Red Wines. Am. J. Enol. Vitic. 1995, 46, 353–356. [Google Scholar] [CrossRef]
- OIV. Compendium of International Analysis of Methods—OIV Chromatic Characteristics Determination of Chromatic Characteristics According to CIELab (Resolution Oeno 1/2006). Available online: https://www.oiv.int/public/medias/2478/oiv-ma-as2-11.pdf (accessed on 20 May 2024).
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Margheri, G.; Falcieri, E. Importanza Dell’evoluzione Delle Sostanza Polifenoliche Nei Vini Rossi Di Qualità Durante l’invecchiamento. Vini D’italia 1972, 14, 501–511. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Boulton, R. The Copigmentation of Anthocyanins and Its Role in the Color of Red Wine: A Critical Review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Waterhouse, A.L. A Production-Accessible Method: Spectrophotometric Iron Speciation in Wine Using Ferrozine and Ethylenediaminetetraacetic Acid. J. Agric. Food Chem. 2019, 67, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Chinnici, F.; Sonni, F.; Natali, N.; Galassi, S.; Riponi, C. Colour Features and Pigment Composition of Italian Carbonic Macerated Red Wines. Food Chem. 2009, 113, 651–657. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; José, M.L.G.-S. Prediction of Red and Rosé Wine CIELab Parameters from Simple Absorbance Measurements. J. Sci. Food Agric. 2002, 82, 1319–1324. [Google Scholar] [CrossRef]
- Suriano, S.; Basile, T.; Tarricone, L.; Di Gennaro, D.; Tamborra, P. Effects of Skin Maceration Time on the Phenolic and Sensory Characteristics of Bombin o Nero Rosé Wines. Ital. J. Agron. 2015, 10, 21–29. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Pontallier, P.; Glories, Y. Some Interpretations of Colour Changes in Young Red Wines during Their Conservation. J. Sci. Food Agric. 1983, 34, 505–516. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Fe(II):Fe(III) Ratio and Redox Status of White Wines. Am. J. Enol. Vitic. 2016, 67, 44. [Google Scholar] [CrossRef]
- Dipalmo, T.; Crupi, P.; Pati, S.; Clodoveo, M.L.; Di Luccia, A. Studying the Evolution of Anthocyanin-Derived Pigments in a Typical Red Wine of Southern Italy to Assess Its Resistance to Aging. LWT 2016, 71, 1–9. [Google Scholar] [CrossRef]
- Marquez, A.; Serratosa, M.P.; Merida, J. Pyranoanthocyanin Derived Pigments in Wine: Structure and Formation during Winemaking. J. Chem. 2013, 2013, 713028. [Google Scholar] [CrossRef]
- Mazza, G.; Brouillard, R. Color Stability and Structural Transformations of Cyanidin,5-Diglucoside and Four 3-Deoxyanthocyanins in Aqueous Solutions. J. Agric. Food Chem. 1987, 35, 422–426. [Google Scholar] [CrossRef]
- Boido, E.; Alcalde-Eon, C.; Carrau, F.; Dellacassa, E.; Rivas-Gonzalo, J.C. Aging Effect on the Pigment Composition and Color of Vitis Vinifera L. Cv. Tannat Wines. Contribution of the Main Pigment Families to Wine Color. J. Agric. Food Chem. 2006, 54, 6692–6704. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-L.; Yu, Y.-Q.; Chen, Z.-J.; Wen, G.-S.; Wei, F.-G.; Zheng, Q.; Wang, C.-D.; Xiao, X.-L. Stability-Increasing Effects of Anthocyanin Glycosyl Acylation. Food Chem. 2017, 214, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; He, F.; Zhang, X.-K.; Shi, Y.; Duan, C.-Q. Impact of Three Phenolic Copigments on the Stability and Color Evolution of Five Basic Anthocyanins in Model Wine System. Food Chem. 2022, 375, 131670. [Google Scholar] [CrossRef] [PubMed]
- Cabita, L.; Fossen, T.; Andersen, Ø.M. Colour and Stability of the Six Common Anthocyanidin 3-Glucosides in Aqueous Solutions. Food Chem. 2000, 68, 101–107. [Google Scholar] [CrossRef]
- Cheynier, V.; Souquet, J.-M.; Kontek, A.; Moutounet, M. Anthocyanin Degradation in Oxidising Grape Musts. J. Sci. Food Agric. 1994, 66, 283–288. [Google Scholar] [CrossRef]
VD T0 | D T0 | I T0 | L T0 | VL T0 | |
---|---|---|---|---|---|
L* | 60.2 ± 0.2 | 75.7 ± 0.2 | 85.5 ± 0.1 | 91.2 ± 0.1 | 93.9 ± 0.1 |
a* | 40.07 ± 0.16 | 24.45 ± 0.20 | 14.11 ± 0.10 | 7.05 ± 0.07 | 3.64 ± 0.05 |
b* | 4.22 ± 0.08 | 4.58 ± 0.05 | 5.37 ± 0.07 | 6.03 ± 0.06 | 6.29 ± 0.03 |
dA% | 53.94 ± 0.03 | 53.20 ± 0.10 | 44.57 ± 0.03 | 29.59 ± 0.17 | 11.13 ± 0.73 |
C* | 40.29 ± 0.12 | 24.78 ± 0.18 | 15.16 ± 0.09 | 9.23 ± 0.08 | 7.33 ± 0.03 |
H* | 6.01 ± 0.09 | 10.60 ± 0.04 | 20.82 ± 0.11 | 40.56 ± 0.04 | 59.93 ± 0.25 |
CD | 1.50 ± 0.00 | 0.89 ± 0.00 | 0.53 ± 0.00 | 0.36 ± 0.00 | 0.27 ± 0.00 |
TPI | 749 ± 2.03 | 637 ± 5.35 | 567 ± 0.55 | 555 ± 4.37 | 486 ± 10.15 |
VRF | 457 ± 5.70 | 362 ± 3.98 | 310 ± 3.33 | 252 ± 3.33 | 245 ± 0.81 |
TA | 13.42 ± 0.29 | 6.41 ± 0.14 | 2.94 ± 0.01 | 1.47 ± 0.04 | 0.67 ± 0.03 |
PC% | 41.95 ± 0.24 | 45.05 ± 0.24 | 45.14 ± 0.33 | 53.55 ± 0.00 | 55.16 ± 0.48 |
VD T480 | D T480 | I T480 | L T480 | VL T480 | |
---|---|---|---|---|---|
L* | 11.8 ± 0.3 a | 4.3 ± 0.3 b | 1.3 ± 0.2 c | −1.3 ± 0.5 d | −2.2 ± 0.6 d |
a* | 23.05 ± 0.69 a | −22.59 ± 1.33 a | −25.38 ± 1.89 a | −35.43 ± 1.22 b | −42.97 ± 1.33 c |
b* | 336.18 ± 1.28 a | 313.12 ± 0.87 b | 257.11 ± 2.06 c | 228.24 ± 1.11 d | 215.59 ± 1.34 e |
dA% | −26.53 ± 2.83 a | −50.94 ± 2.96 ab | −73.46 ± 2.89 ab | −100.00 ± 0.00 b | −100.00 ± 0.00 b |
C* | 6.28 ± 0.27 d | 8.32 ± 0.46 d | 12.70 ± 0.50 c | 112.22 ± 1.08 b | 201.14 ± 1.45 a |
H* | 412.95 ± 5.60 a | 324.12 ± 5.75 b | 194.02 ± 4.38 c | 89.99 ± 0.64 d | 40.21 ± 0.31 e |
∆E* | 18.35 ± 0.15 a | 15.72 ± 0.09 b | 14.30 ± 0.03 c | 14.05 ± 0.02 cd | 13.80 ± 0.03 d |
CD | 22.30 ± 5.68 c | 31.47 ± 8.33 c | 68.96 ± 13.88 b | 77.9 ± 14.43 b | 121.95 ± 11.62 a |
TPI | −10.80 ± 3.86 a | −13.59 ± 3.46 a | −15.30 ± 1.05 a | −15.44 ± 0.76 a | −15.83 ± 1.42 a |
VRF | −15.69 ± 0.96 a | −19.38 ± 1.43 a | −18.30 ± 0.67 a | −13.46 ± 1.57 a | −16.97 ± 3.43 a |
TA | −51.67 ± 2.81 a | −50.57 ± 3.36 a | −50.63 ± 4.45 a | −41.20 ± 1.86 ab | −35.26 ± 3.37 b |
PC% | 26.43 ± 0.57 a | 19.34 ± 0.47 b | 18.65 ± 0.78 b | 8.91 ± 0.18 c | 7.05 ± 0.70 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baris, F.; Castro Marin, A.; Chinnici, F. Oxidative Evolution of Different Model Rosé Wines Affected by Distinct Anthocyanin and Tannin Contents. Beverages 2024, 10, 43. https://doi.org/10.3390/beverages10020043
Baris F, Castro Marin A, Chinnici F. Oxidative Evolution of Different Model Rosé Wines Affected by Distinct Anthocyanin and Tannin Contents. Beverages. 2024; 10(2):43. https://doi.org/10.3390/beverages10020043
Chicago/Turabian StyleBaris, Federico, Antonio Castro Marin, and Fabio Chinnici. 2024. "Oxidative Evolution of Different Model Rosé Wines Affected by Distinct Anthocyanin and Tannin Contents" Beverages 10, no. 2: 43. https://doi.org/10.3390/beverages10020043
APA StyleBaris, F., Castro Marin, A., & Chinnici, F. (2024). Oxidative Evolution of Different Model Rosé Wines Affected by Distinct Anthocyanin and Tannin Contents. Beverages, 10(2), 43. https://doi.org/10.3390/beverages10020043